Medial Linearly Distributive Categories

Rose Kudzman-Blais

Supervised by Dr Richard Blute University of Ottawa

31st Foundational Methods in Computer Science Workshop July 13, 2024

Rose Kudzman-Blais (UO)

Medial Linearly Distributive Categories

July 13, 2024

글 > - - 글 >

Fox's Theorem

Definition

Consider a symmetric monoidal category, or SMC, $(\mathcal{X}, \oslash, I, \alpha, \rho, \gamma)$.

• A cocommutative comonoid is a triple $\langle A, \Delta_A, t_A \rangle$ of an object A in \mathcal{X} equipped with two morphisms, the diagonal $\Delta_A : A \to A \oslash A$ and the counit $t_A : A \to I$ such that:

$$\Delta_{\scriptscriptstyle\!{A}}$$
; ($1_{\scriptscriptstyle\!{A}} \oslash \Delta_{\scriptscriptstyle\!{A}}$) $= \Delta_{\scriptscriptstyle\!{A}}$; ($\Delta_{\scriptscriptstyle\!{A}} \oslash 1_{\scriptscriptstyle\!{A}}$); $lpha_{\scriptscriptstyle\!{A,A,A}}$

$$\Delta_{A}$$
; $(\mathbf{1}_{A} \oslash t_{A}) =
ho_{A}$ Δ_{A} ; $\gamma_{A,A} = \Delta_{A}$

• A comonoid morphism $f : \langle A, \Delta_A, t_A \rangle \to \langle B, \Delta_B, t_B \rangle$ is a morphism $f : A \to B$ in \mathcal{X} such that

$$f; \Delta_{B} = \Delta_{A}; (f \oslash f) \qquad f; t_{B} = t_{A}$$

イロト イポト イラト イラト

Fox's Theorem (cont'd)

Let $C(\mathcal{X})$ denote the category of cocommutative comonoids and comonoid morphisms.

Proposition

 $C(\mathcal{X})$ is a cartesian category.

Theorem (Fox [6]) The functor C(-): <u>SMON</u> \rightarrow <u>CART</u> is right adjoint to the inclusion.

Corollary

A SMC \mathcal{X} is cartesian if and only if it is isomorphic to its category of cocommutative comonoids $C(\mathcal{X})$.

3/21

くロト (部) (ア・) (ア・)

Cartesian LDCs

Definition (Cockett, Seely [4])

A symmetric linearly distributive category, or SLDC, $(X, \otimes, \top, \oplus, \bot)$ consists of:

- a category $(X, ;, 1_A)$,
- a symmetric *tensor* monoidal structure (X, \otimes, \top) ,
- a symmetric *par* monoidal structure (X, \oplus, \bot) , and
- left and right *linear distributivity* natural transformations

 $\delta^{\boldsymbol{R}}:(\boldsymbol{A}\oplus\boldsymbol{B})\otimes\boldsymbol{C}\rightarrow\boldsymbol{A}\oplus(\boldsymbol{B}\otimes\boldsymbol{C})\qquad\delta^{\boldsymbol{L}}:\boldsymbol{A}\otimes(\boldsymbol{B}\oplus\boldsymbol{C})\rightarrow(\boldsymbol{A}\otimes\boldsymbol{B})\oplus\boldsymbol{C}$

A cartesian linearly distributive category is a SLDC such that the tensor \otimes is the product (\top is the terminal object) and \oplus is the coproduct (\perp is the initial object).

-

Cartesian LDCs (cont'd)

Example

1 Cartesian *-autonomous category \iff Boolean algebra \rightarrow Joyal's paradox: a cartesian closed category + involutive negation \implies any two arrows $A \rightarrow B$ identified [7, Thm 12]

Distributive lattice

 \rightarrow A distributive category is a cartesian LDC if and only if it is a preorder [4, Prop 5.1].

3 Category with all finite biproducts

- \rightarrow Rel, with the disjoint union
- \rightarrow SupLat, with the cartesian product
- ightarrow Ab, with the direct sum
- \rightarrow Compact closed category with products (or coproducts) [9]

< ロ > < 同 > < 三 > < 三 > <

Motivation

Motivation: Is there a Fox-like theorem for cartesian LDCs?

- A SLDC is cartesian if and only it is isomorphic to its own LDC of what?
- Does the construction work for all SLDC?
- Does this determine a functor which is adjoint to the inclusion?

Characterizing cartesian LDCs

By Fox's theorem and its dual statement, we get:

Proposition

A SLDC \mathbb{X} is cartesian if and only if there are natural transformations

 $\Delta_A: A \to A \otimes A \qquad t_A: A \to \top \qquad \nabla_A: A \oplus A \to A \qquad s_A: \bot \to A$

such that, $\forall A, B \in \mathbb{X}$,

- $\langle A, \Delta_A, t_A \rangle$ determines a \otimes -cocommutative comonoid,
- $\langle A, \nabla_A, s_A \rangle$ determines a \oplus -commutative monoid, and

$$\Delta_{A\otimes B} = (\Delta_A \otimes \Delta_B); \mathbf{s}_{A,A,B,B}^{\otimes} \qquad t_{A\otimes B} = (t_A \otimes t_B); \mathbf{u}_{\otimes \top}^{R-1}$$
$$\nabla_{A\oplus B} = \mathbf{s}_{A,B,A,B}^{\oplus}; (\nabla_A \oplus \nabla_B) \qquad \mathbf{s}_{A\oplus B} = \mathbf{u}_{\oplus \perp}^{R-1}; (\mathbf{s}_A \oplus \mathbf{s}_B)$$
$$\Delta_{\top} = \mathbf{u}_{\otimes \top}^{R} \qquad t_{\top} = \mathbf{1}_{\top} \qquad \nabla_{\perp} = \mathbf{u}_{\oplus \perp}^{R} \qquad \mathbf{s}_{\perp} = \mathbf{1}_{\perp}$$

э

Characterizing cartesian LDCs

If we consider any SLDC X and try forming the category of such quintuples $\langle A, \Delta_A, t_A, \nabla_A, s_A \rangle$, we quickly realize this does not define a LDC:

$$\nabla_{A\otimes B} : (A\otimes B) \oplus (A\otimes B) \xrightarrow{?} (A\oplus A) \otimes (B\oplus B) \xrightarrow{\nabla_A \otimes \nabla_B} A \otimes B$$
$$\Delta_{A\oplus B} : A \oplus B \xrightarrow{\Delta_A \oplus \Delta_B} (A \otimes A) \oplus (B \otimes B) \xrightarrow{?} (A \oplus B) \otimes (A \oplus B)$$
$$s_{A\otimes B} : \bot \xrightarrow{?} \bot \otimes \bot \xrightarrow{s_A \otimes s_B} A \otimes B \qquad t_{A\oplus B} : A \oplus B \xrightarrow{t_A \oplus t_B} \top \oplus \top \xrightarrow{?} \top$$
The above "unknown" arrows may or may not exist in any given

LDCs. They do exist in all cartesian LDCs by the universal properties of products and coproducts.

 \implies We need a SLDC X which has arrows $\forall A, B, C, D$,

$$(A \otimes B) \oplus (C \otimes D) \rightarrow (A \oplus C) \otimes (B \oplus D)$$

 $\bot \to \bot \otimes \bot \qquad \qquad \top \oplus \top \to \top \\ \stackrel{\scriptstyle \leftarrow}{}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}_{\stackrel{\scriptstyle \leftarrow}{}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}_{\stackrel{\scriptstyle \leftarrow}{}_{\stackrel{\scriptstyle \leftarrow}{}_{\stackrel{\scriptstyle \leftarrow}{}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}}_{\stackrel{\scriptstyle \leftarrow}{}}_{\stackrel{\scriptstyle \leftarrow}}}_{\stackrel{\scriptstyle \leftarrow}}}$ _{\stackrel{\scriptstyle }}}_{\stackrel{\scriptstyle \leftarrow}}}_{\stackrel{\scriptstyle }}}_{\stackrel{\scriptstyle \leftarrow}}}_{\stackrel{\scriptstyle \leftarrow}}}_{\stackrel{\scriptstyle \leftarrow}}}_{\stackrel{\scriptstyle \leftarrow}}}_{\stackrel{\scriptstyle \leftarrow}}}_{\stackrel{\scriptstyle \leftarrow}}}_{\stackrel{\scriptstyle \leftarrow}}}_{\stackrel{\scriptstyle }}}_{\stackrel{\scriptstyle \leftarrow}}}_{\stackrel{\scriptstyle }}}_{\stackrel{\scriptstyle \leftarrow}}}_{\stackrel{\scriptstyle }}}_{\stackrel{\scriptstyle \leftarrow}}_{\stackrel{\scriptstyle \leftarrow}}}_{\stackrel{\scriptstyle }}}_{\stackrel{\scriptstyle \scriptstyle }}_{\stackrel{\scriptstyle }}_{\stackrel{\scriptstyle }}}_{\stackrel{\scriptstyle }}_{\stackrel{\scriptstyle }}}_{\stackrel{\scriptstyle }}_{\stackrel{\scriptstyle }}_{\stackrel{\scriptstyle }}}_{\stackrel{\scriptstyle }}_{\stackrel{\scriptstyle }}}_{\stackrel{\scriptstyle }}}_{\stackrel{\scriptstyle

Medial rule

 $(A \otimes B) \oplus (C \otimes D) \rightarrow (A \oplus C) \otimes (B \oplus D)$ is known as the **medial rule**.

It has appeared alongside switch (linear distributivity) in different systems of logic, especially within **deep inference** (introduced by A. Guglielmi):

 \rightarrow it allows the systems to become local (the rules, in particular contraction, can be given in their atomic state)

Medial rule has been considered in a local system for classical logic [2], for intuitionistic logic [13] and for linear logic [11].

The medial rule has also been studied in the categorical semantics for classical logic and in defining the concept of "Boolean category":

- *-autonomous categories with finitary medial and the absorption law (Lamarche [10])
- B3-category (Strassburger [12])

э

Defining medial LDCs

Definition

A symmetric *medial LDC* is a SLDC $(X, \otimes, \top, \oplus, \bot)$ equipped with morphisms (called the *nullary medial* and *comedial* maps)

 $\nabla_\top:\top\oplus\top\to\top\qquad\qquad \Delta_\bot:\bot\to\bot\otimes\bot$

and a medial natural transformation

$$\mu_{{\scriptscriptstyle {A}},{\scriptscriptstyle {B}},{\scriptscriptstyle {C}},{\scriptscriptstyle {D}}}:({\it A}\otimes{\it B})\oplus({\it C}\otimes{\it D}) o({\it A}\oplus{\it C})\otimes({\it B}\oplus{\it D})$$

such that

- ∇_{\top} equips \top with a commutative semigroup structure,
- Δ_{\perp} equips \perp with a cocommutative semigroup structure,
- the *medial maps* interact coherently with γ , α , δ , and
- the *absorption laws* holds.

Mix LDCs

Definition (Cockett, Seely [3])

A LDC X is *mix* if there is a morphism $m : \bot \to \top$ such that $\forall A, B \in X$, the two induced maps $A \otimes B \to A \oplus B$ are equal:

$$A \otimes B \cong (A \oplus \bot) \otimes B \xrightarrow{\delta^R} A \oplus (\bot \otimes B) \xrightarrow{1 \oplus (m \otimes 1)} A \oplus (\top \otimes B) \cong A \oplus B$$

and $A \otimes B \cong A \otimes (\bot \oplus B) \xrightarrow{\delta^{\perp}} (A \otimes \bot) \oplus B \xrightarrow{(1 \otimes m) \oplus 1} (A \otimes \top) \oplus B \cong A \oplus B$

Proposition

A medial LDC is mix.

Rose Kudzman-Blais (UO)

Medial Linearly Distributive Categories

July 13, 2024

11/21

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Duoidal categories

LDCs are not the only category with two monoidal structures:

Definition (Aguiar, Mahajan [1])

A *duoidal category* $(\mathcal{X}, \star, J, \diamond, I)$ is category \mathcal{X} with two monoidal structures (\mathcal{X}, \star, J) and $(\mathcal{X}, \diamond, I)$ equipped with morphisms

$$\Delta_I: I \to I \star I \qquad \nabla_J: J \diamond J \to J \qquad \iota: I \to J$$

and an interchange natural transformation

$$\zeta_{{\scriptscriptstyle A},{\scriptscriptstyle B},{\scriptscriptstyle C},{\scriptscriptstyle D}}:({\it A}\star{\it B})\diamond({\it C}\star{\it D})\rightarrow({\it A}\diamond{\it C})\star({\it B}\diamond{\it D})$$

satisfying some coherence conditions.

 \rightarrow A medial LDC is a duoidal category with monoidal structures and further equipped with linear distributivities.

くロト (部) (ア・) (ア・)

Defining bimonoids

Let $\ensuremath{\mathbb{X}}$ be a symmetric medial linearly distributive category.

Definition (Aguiar, Mahajan [1])

A bicommutative *bimonoid* in \mathbb{X} is a quintuple $\langle A, \Delta_A, t_A, \nabla_A, s_A \rangle$ consisting of an object A and four morphisms

$$\Delta_{\mathsf{A}}: \mathsf{A} \to \mathsf{A} \otimes \mathsf{A} \qquad t_{\mathsf{A}}: \mathsf{A} \to \top \qquad \nabla_{\mathsf{A}}: \mathsf{A} \oplus \mathsf{A} \to \mathsf{A} \qquad s_{\mathsf{A}}: \bot \to \mathsf{A}$$

such that $\langle A, \Delta_A, t_A \rangle$ is a cocommutative \otimes -comonoid, $\langle A, \nabla_A, s_A \rangle$ is a commutative \oplus -monoid, and satisfying coherence conditions

$$abla_{\mathsf{A}}; \Delta_{\mathsf{A}} = (\Delta_{\mathsf{A}} \oplus \Delta_{\mathsf{A}}); \mu_{\mathsf{A},\mathsf{A},\mathsf{A},\mathsf{A}}; (\nabla_{\mathsf{A}} \otimes \nabla_{\mathsf{A}}) \qquad s_{\mathsf{A}}; t_{\mathsf{A}} = m$$

$$abla_{\mathsf{A}}; t_{\mathsf{A}} = (t_{\mathsf{A}} \oplus t_{\mathsf{A}});
abla_{ op} \qquad \mathbf{s}_{\mathsf{A}}; \Delta_{\mathsf{A}} = \Delta_{\perp}; (\mathbf{s}_{\mathsf{A}} \otimes \mathbf{s}_{\mathsf{A}})$$

A *bimonoid morphism* is an arrow $f : A \rightarrow B$ that is a \otimes -comonoid morphism and \oplus -monoid morphism.

Defining bimonoids (cont'd)

Proposition

 $\langle \top, u_{\otimes_{\top}}^{R}, 1_{\top}, \nabla_{\top}, m \rangle$ and $\langle \bot, \Delta_{\bot}, m, u_{\oplus_{\bot}}^{R}, 1_{\bot} \rangle$ are bimonoids. Given two bicommutative bimonoids $\langle A, \Delta_{A}, t_{A}, \nabla_{A}, s_{A} \rangle$ and $\langle B, \Delta_{B}, t_{B}, \nabla_{B}, s_{B} \rangle$ in \mathbb{X} , then $\langle A \otimes B, \Delta_{A \otimes B}, t_{A \otimes B}, \nabla_{A \otimes B}, s_{A \otimes B} \rangle$ defined by

$$\begin{split} \Delta_{A\otimes B} &= (\Delta_A \otimes \Delta_B); \, \boldsymbol{s}_{A,A,B,B}^{\otimes} \qquad \qquad \boldsymbol{t}_{A\otimes B} = (\boldsymbol{t}_A \otimes \boldsymbol{t}_B); \, \boldsymbol{u}_{\otimes \top}^{R^{-1}} \\ \nabla_{A\otimes B} &= \mu_{A,B,A,B}; \, (\nabla_A \otimes \nabla_B) \qquad \qquad \boldsymbol{s}_{A\otimes B} = \Delta_{\perp}; \, (\boldsymbol{s}_A \otimes \boldsymbol{s}_B) \,, \end{split}$$

and $\langle A \oplus B, \Delta_{A \oplus B}, t_{A \oplus B}, \nabla_{A \oplus B}, s_{A \oplus B} \rangle$ defined by

$$egin{aligned} \Delta_{A\oplus B} &= (\Delta_A \oplus \Delta_B); \, \mu_{A,A,B,B} & t_{A\oplus B} &= (t_A \oplus t_B); \,
abla_{ op} \
abla_{B\oplus B} &= s^\oplus_{A,B,A,B}; \, (
abla_A \oplus
abla_B) & s_{A\oplus B} &= u^{R^{-1}}_{\oplus_{\perp}}; \, (s_A \oplus s_B) \ , \end{aligned}$$

are bicommutative bimonoids.

Cartesian LDC of bimonoids

Definition

Define Bim(X) to be the category of bicommutative bimonoids and bimonoid morphisms in X.

Theorem

Bim(X) is a cartesian linearly distributive category.

Examples of medial LDCs

Example

- *-autonomous categories with finitary medial and the absorption law [10]
- 2 Symmetric monoidal categories, viewed as compact LDCs \rightarrow medial maps are given by associativities and symmetries: $\alpha_{A,B,C \oslash D}$; $(1_A \oslash \alpha_{B,C,D}^{-1})$; $(1_A \oslash (\gamma_{B,C} \oslash 1_D))$; $(1_A \oslash \alpha_{C,B,D})$; $\alpha_{A,C,B \oslash D}^{-1}$ $= \alpha_{A,B,C \oslash D}$; $(1_A \oslash \gamma_{B,C \oslash D})$; $(1_A \oslash \alpha_{C,D,B})$; $(1_A \oslash (1_C \oslash \gamma_{D,C}))$; $\alpha_{A,C,B \oslash D}^{-1}$ $= s_{A,B,C,D}^{\oslash}$: $(A \oslash B) \oslash (C \oslash D) \rightarrow (A \oslash C) \oslash (B \oslash D)$
- **3** Cartesian linearly distributive categories \rightarrow medial maps given by universal properties of (co)products: $[\mu^0_{A,C} \times \mu^0_{B,D}, \mu^1_{A,C} \times \mu^1_{B,D}] : (A \times B) + (C \times D) \rightarrow (A + C) \times (B + D)$

note: $\mu^0_{X,Y} : X \to X + Y$ and $\mu^1_{X,Y} : Y \to X + Y$ denote injections, while $[f,g] : X + Y \to Z$ denotes unique map given by coproduct

Examples of medial LDCs (cont'd)

Recall the categories of coherent spaces COH (Girard [8]) and hypercoherences HCohL (Ehrhard [5]), models of linear logic and full classical linear logic respectively.

These were generalized (by Lamarche) as follows:

Definition ([10])

Let Q denote a LD-poset.

- A *Q*-coherence $A = (|A|, \rho_A)$ consisting of a poset $(|A|, \sqsubseteq)$ and a symmetric monotone function $\rho_A : |A| \times |A| \rightarrow Q$.
- A *Q*-coherence map $f: A \rightarrow B$ is a relation $f: |A| \rightarrow |B|$ which is
 - down-closed in the source: $(a, b) \in f \land a' \sqsubseteq a \implies (a', b) \in f$,
 - up-closed in the target: $(a, b) \in f \land b \sqsubseteq b' \implies (a, b') \in f$,
 - $(a,b) \in f \land (a',b') \in f \implies \rho_{\scriptscriptstyle A}(a,a') \le \rho_{\scriptscriptstyle B}(b,b').$

Examples of medial LDCs (cont'd)

Definition ([10])

Define Q-Coh to be the LDC of Q-coherences with

 $\boldsymbol{A}\otimes\boldsymbol{B}=(|\boldsymbol{A}|\times|\boldsymbol{B}|,\rho_{\boldsymbol{A}\otimes\boldsymbol{B}}),\quad\rho_{\boldsymbol{A}\otimes\boldsymbol{B}}((\boldsymbol{a},\boldsymbol{b}),(\boldsymbol{a}',\boldsymbol{b}'))=\rho_{\boldsymbol{A}}(\boldsymbol{a},\boldsymbol{a}')\otimes\rho_{\boldsymbol{B}}(\boldsymbol{b},\boldsymbol{b}')$

 $\boldsymbol{A}\otimes\boldsymbol{B}=(|\boldsymbol{A}|\times|\boldsymbol{B}|,\rho_{\boldsymbol{A}\oplus\boldsymbol{B}}),\quad\rho_{\boldsymbol{A}\oplus\boldsymbol{B}}((\boldsymbol{a},\boldsymbol{b}),(\boldsymbol{a}',\boldsymbol{b}'))=\rho_{\boldsymbol{A}}(\boldsymbol{a},\boldsymbol{a}')\oplus\rho_{\boldsymbol{B}}(\boldsymbol{b},\boldsymbol{b}')$

Theorem

Q-Coh is a medial LDC if and only if *Q* is a medial LD-poset, with medial maps are relations defined by

 $(\textit{a},\textit{b},\textit{c},\textit{d})\mu_{\textit{A},\textit{B},\textit{C},\textit{D}}(\textit{a}',\textit{c}',\textit{b}',\textit{d}')\iff\textit{a}\sqsubseteq\textit{a}'\wedge\textit{b}\sqsubseteq\textit{b}'\wedge\textit{c}\sqsubseteq\textit{c}'\wedge\textit{d}\sqsubseteq\textit{d}'$

Example

- 4 Q-Coh for a medial LD-poset Q
 - \rightarrow All distributive lattices are examples of medial LD-posets.

Further Work

- Complete the Fox theorem for medial LDCs
 - Define medial linear functors and linear natural transformations: 2-cat MLDC
 - Determine that Bim(-) extends to a functor SMLDC \rightarrow CLDC
 - Prove Bim(-) is right adjoint to inclusion
- Develop examples further
 - Find more examples of medial LDCs X
 - What is Bim(X), in particular what is Bim(Q-Coh)?
- Develop a sequent calculus for MLL+medial
 - Is there a version of cut elimination?

References I

- M. Aguiar, S. Mahajan, *Monoidal functors, species and Hopf algebras*, CRM Monograph Series, vol. 29, American Mathematical Society, Providence, RI, 2010.
- [2] K. Brünnler, A. Tiu, A local system for classical logic, Logic for programming, artificial intelligence, and reasoning, Lecture Notes in Comput. Sci., vol. 2250, Springer, Berlin, 2001, pp. 347–361.
- [3] J.R.B. Cockett, R.A.G. Seely, Proof theory for full intuitionistic linear logic, bilinear logic, and MIX categories, Theory Appl. Categ. 3 (1997), no. 5, 85–131.
- [4] J.R.B. Cockett, R.A.G. Seely, Weakly distributive categories, J. Pure Appl. Algebra 114 (1997), no. 2, 133–173.
- [5] T. Ehrhard, *Hypercoherences: a strongly stable model of linear logic*, Advances in linear logic, London Math. Soc. Lecture Note Ser., vol. 222, Cambridge Univ. Press, Cambridge, 1995, pp. 83–108.
- [6] T. Fox, *Coalgebras and Cartesian categories*, Comm. Algebra **4** (1976), no. 7, 665–667.
- [7] J.-Y. Girard, A new constructive logic: classical logic, Math. Structures Comput. Sci. 1 (1991), no. 3, 255–296.
- [8] J.-Y. Girard, *Linear logic*, Theoret. Comput. Sci. **50** (1987), no. 1, 1–102.

Medial Linearly Distributive Categories

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 Iuly 13, 2024

References II

- [9] R. Houston, *Finite products are biproducts in a compact closed category*, J. Pure Appl. Algebra **212** (2008), no. 2, 394–400.
- [10] F. Lamarche, *Exploring the gap between linear and classical logic*, Theory Appl. Categ. **18** (2007), no. 17, 471–533.
- [11] L. Straßburger, A local system for linear logic, Logic for programming, artificial intelligence, and reasoning, Lecture Notes in Comput. Sci., vol. 2514, Springer, Berlin, 2002, pp. 388–402.
- [12] L. Straßburger, On the axiomatisation of Boolean categories with and without medial, Theory Appl. Categ. 18 (2007), no. 18, 536–601.
- [13] A. Tiu, A local system for intuitionistic logic, Logic for programming, artificial intelligence, and reasoning, Lecture Notes in Comput. Sci., vol. 4246, Springer, Berlin, 2006, pp. 242–256.

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >