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Motivation Fox’s Theorem

Fox’s Theorem

Definition
Consider a symmetric monoidal category, or SMC, (X ,⊘, I, α, ρ, γ).

• A cocommutative comonoid is a triple ⟨A,∆A, tA⟩ of an object A in
X equipped with two morphisms, the diagonal ∆A : A → A ⊘ A
and the counit tA : A → I such that:

∆A; (1A ⊘∆A) = ∆A; (∆A ⊘ 1A);αA,A,A

∆A; (1A ⊘ tA) = ρA ∆A; γA,A = ∆A

• A comonoid morphism f : ⟨A,∆A, tA⟩ → ⟨B,∆B, tB⟩ is a morphism
f : A → B in X such that

f ; ∆B = ∆A; (f ⊘ f ) f ; tB = tA
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Motivation Fox’s Theorem

Fox’s Theorem (cont’d)

Let C(X ) denote the category of cocommutative comonoids and
comonoid morphisms.

Proposition
C(X ) is a cartesian category.

Theorem (Fox [6])
The functor C(−) : SMON → CART is right adjoint to the inclusion.

Corollary
A SMC X is cartesian if and only if it is isomorphic to its category of
cocommutative comonoids C(X ).
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Motivation Cartesian LDCs

Cartesian LDCs

Definition (Cockett, Seely [4])
A symmetric linearly distributive category, or SLDC, (X,⊗,⊤,⊕,⊥)
consists of:
• a category (X, ; ,1A),
• a symmetric tensor monoidal structure (X,⊗,⊤),
• a symmetric par monoidal structure (X,⊕,⊥), and
• left and right linear distributivity natural transformations

δR : (A ⊕ B)⊗ C → A ⊕ (B ⊗ C) δL : A ⊗ (B ⊕ C) → (A ⊗ B)⊕ C

A cartesian linearly distributive category is a SLDC such that the
tensor ⊗ is the product (⊤ is the terminal object) and ⊕ is the
coproduct (⊥ is the initial object).
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Motivation Cartesian LDCs

Cartesian LDCs (cont’d)

Example
1 Cartesian ∗-autonomous category ⇐⇒ Boolean algebra

→ Joyal’s paradox: a cartesian closed category + involutive
negation =⇒ any two arrows A → B identified [7, Thm 12]

2 Distributive lattice
→ A distributive category is a cartesian LDC if and only if it is a
preorder [4, Prop 5.1].

3 Category with all finite biproducts
→ Rel, with the disjoint union
→ SupLat, with the cartesian product
→ Ab, with the direct sum
→ Compact closed category with products (or coproducts) [9]

Rose Kudzman-Blais (UO) Medial Linearly Distributive Categories July 13, 2024 5 / 21



Motivation Cartesian LDCs

Motivation

Motivation: Is there a Fox-like theorem for cartesian LDCs?

• A SLDC is cartesian if and only it is isomorphic to its own LDC of
what?

• Does the construction work for all SLDC?
• Does this determine a functor which is adjoint to the inclusion?
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Medial linearly distributive categories Characterizing cartesian LDCs

Characterizing cartesian LDCs
By Fox’s theorem and its dual statement, we get:

Proposition
A SLDC X is cartesian if and only if there are natural transformations

∆A : A → A ⊗ A tA : A → ⊤ ∇A : A ⊕ A → A sA : ⊥ → A

such that, ∀A,B ∈ X,
• ⟨A,∆A, tA⟩ determines a ⊗-cocommutative comonoid,
• ⟨A,∇A, sA⟩ determines a ⊕-commutative monoid, and

∆A⊗B = (∆A ⊗∆B); s⊗
A,A,B,B tA⊗B = (tA ⊗ tB);uR

⊗
−1
⊤

∇A⊕B = s⊕
A,B,A,B; (∇A ⊕∇B) sA⊕B = uR

⊕
−1

⊥ ; (sA ⊕ sB)

∆⊤ = uR
⊗⊤ t⊤ = 1⊤ ∇⊥ = uR

⊕⊥ s⊥ = 1⊥
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Medial linearly distributive categories Characterizing cartesian LDCs

Characterizing cartesian LDCs
If we consider any SLDC X and try forming the category of such
quintuples ⟨A,∆A, tA,∇A, sA⟩, we quickly realize this does not define
a LDC:

∇A⊗B : (A ⊗ B)⊕ (A ⊗ B)
?−→ (A ⊕ A)⊗ (B ⊕ B)

∇A⊗∇B−−−−−→ A ⊗ B

∆A⊕B : A ⊕ B
∆A⊕∆B−−−−−→ (A ⊗ A)⊕ (B ⊗ B)

?−→ (A ⊕ B)⊗ (A ⊕ B)

sA⊗B : ⊥ ?−→ ⊥⊗⊥ sA⊗sB−−−−→ A ⊗ B tA⊕B : A ⊕ B
tA⊕tB−−−→ ⊤⊕⊤ ?−→ ⊤

The above “unknown” arrows may or may not exist in any given
LDCs. They do exist in all cartesian LDCs by the universal properties
of products and coproducts.

=⇒ We need a SLDC X which has arrows ∀A,B,C,D,

(A ⊗ B)⊕ (C ⊗ D) → (A ⊕ C)⊗ (B ⊕ D)

⊥ → ⊥⊗⊥ ⊤⊕⊤ → ⊤
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Medial linearly distributive categories Medial rule

Medial rule
(A ⊗ B)⊕ (C ⊗ D) → (A ⊕ C)⊗ (B ⊕ D) is known as the medial rule.

It has appeared alongside switch (linear distributivity) in different
systems of logic, especially within deep inference (introduced by
A. Guglielmi):
→ it allows the systems to become local (the rules, in particular
contraction, can be given in their atomic state)

Medial rule has been considered in a local system for classical logic
[2], for intuitionistic logic [13] and for linear logic [11].

The medial rule has also been studied in the categorical semantics
for classical logic and in defining the concept of “Boolean category”:
• ∗-autonomous categories with finitary medial and the

absorption law (Lamarche [10])
• B3-category (Strassburger [12])
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Medial linearly distributive categories Defining medial LDCs

Defining medial LDCs

Definition
A symmetric medial LDC is a SLDC (X,⊗,⊤,⊕,⊥) equipped with
morphisms (called the nullary medial and comedial maps)

∇⊤ : ⊤⊕⊤ → ⊤ ∆⊥ : ⊥ → ⊥⊗⊥

and a medial natural transformation

µA,B,C,D : (A ⊗ B)⊕ (C ⊗ D) → (A ⊕ C)⊗ (B ⊕ D)

such that
• ∇⊤ equips ⊤ with a commutative semigroup structure,
• ∆⊥ equips ⊥ with a cocommutative semigroup structure,
• the medial maps interact coherently with γ, α, δ, and
• the absorption laws holds.
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Medial linearly distributive categories Duoidal categories and mix LDCs

Mix LDCs

Definition (Cockett, Seely [3])
A LDC X is mix if there is a morphism m : ⊥ → ⊤ such that
∀A,B ∈ X, the two induced maps A ⊗ B → A ⊕ B are equal:

A ⊗ B ∼= (A ⊕⊥)⊗ B δR
−→ A ⊕ (⊥⊗ B)

1⊕(m⊗1)−−−−−−→ A ⊕ (⊤⊗ B) ∼= A ⊕ B

and

A ⊗ B ∼= A ⊗ (⊥⊕ B)
δL
−→ (A ⊗⊥)⊕ B

(1⊗m)⊕1−−−−−−→ (A ⊗⊤)⊕ B ∼= A ⊕ B

Proposition
A medial LDC is mix.
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Medial linearly distributive categories Duoidal categories and mix LDCs

Duoidal categories

LDCs are not the only category with two monoidal structures:

Definition (Aguiar, Mahajan [1])
A duoidal category (X , ⋆, J, ⋄, I) is category X with two monoidal
structures (X , ⋆, J) and (X , ⋄, I) equipped with morphisms

∆I : I → I ⋆ I ∇J : J ⋄ J → J ι : I → J

and an interchange natural transformation

ζA,B,C,D : (A ⋆ B) ⋄ (C ⋆ D) → (A ⋄ C) ⋆ (B ⋄ D)

satisfying some coherence conditions.

→ A medial LDC is a duoidal category with monoidal structures and
further equipped with linear distributivities.
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Bimonoids Defining bimonoids

Defining bimonoids
Let X be a symmetric medial linearly distributive category.

Definition (Aguiar, Mahajan [1])
A bicommutative bimonoid in X is a quintuple ⟨A,∆A, tA,∇A, sA⟩
consisting of an object A and four morphisms

∆A : A → A ⊗ A tA : A → ⊤ ∇A : A ⊕ A → A sA : ⊥ → A

such that ⟨A,∆A, tA⟩ is a cocommutative ⊗-comonoid, ⟨A,∇A, sA⟩ is a
commutative ⊕-monoid, and satisfying coherence conditions

∇A; ∆A = (∆A ⊕∆A);µA,A,A,A; (∇A ⊗∇A) sA; tA = m

∇A; tA = (tA ⊕ tA);∇⊤ sA; ∆A = ∆⊥; (sA ⊗ sA)

A bimonoid morphism is an arrow f : A → B that is a ⊗-comonoid
morphism and ⊕-monoid morphism.

Rose Kudzman-Blais (UO) Medial Linearly Distributive Categories July 13, 2024 13 / 21



Bimonoids Defining bimonoids

Defining bimonoids (cont’d)

Proposition

⟨⊤,uR
⊗⊤,1⊤,∇⊤,m⟩ and ⟨⊥,∆⊥,m,uR

⊕⊥,1⊥⟩ are bimonoids.

Given two bicommutative bimonoids ⟨A,∆A, tA,∇A, sA⟩ and
⟨B,∆B, tB,∇B, sB⟩ in X, then ⟨A ⊗ B,∆A⊗B, tA⊗B,∇A⊗B, sA⊗B⟩ defined by

∆A⊗B = (∆A ⊗∆B); s⊗
A,A,B,B tA⊗B = (tA ⊗ tB);uR

⊗
−1

⊤

∇A⊗B = µA,B,A,B; (∇A ⊗∇B) sA⊗B = ∆⊥; (sA ⊗ sB) ,

and ⟨A ⊕ B,∆A⊕B, tA⊕B,∇A⊕B, sA⊕B⟩ defined by

∆A⊕B = (∆A ⊕∆B);µA,A,B,B tA⊕B = (tA ⊕ tB);∇⊤

∇A⊕B = s⊕
A,B,A,B; (∇A ⊕∇B) sA⊕B = uR

⊕
−1

⊥ ; (sA ⊕ sB) ,

are bicommutative bimonoids.
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Bimonoids Cartesian LDC of bimonoids

Cartesian LDC of bimonoids

Definition
Define Bim(X) to be the category of bicommutative bimonoids and
bimonoid morphisms in X.

Theorem
Bim(X) is a cartesian linearly distributive category.
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Examples of medial LDCs

Examples of medial LDCs

Example
1 ∗-autonomous categories with finitary medial and the

absorption law [10]
2 Symmetric monoidal categories, viewed as compact LDCs

→ medial maps are given by associativities and symmetries:
αA,B,C⊘D; (1A ⊘ α−1

B,C,D); (1A ⊘ (γB,C ⊘ 1D)); (1A ⊘ αC,B,D);α
−1
A,C,B⊘D

= αA,B,C⊘D; (1A ⊘ γB,C⊘D); (1A ⊘ αC,D,B); (1A ⊘ (1C ⊘ γD,C));α
−1
A,C,B⊘D

= s⊘
A,B,C,D : (A ⊘ B)⊘ (C ⊘ D) → (A ⊘ C)⊘ (B ⊘ D)

3 Cartesian linearly distributive categories
→ medial maps given by universal properties of (co)products:
[ π0

A,C × π0
B,D,

π1
A,C × π1

B,D] : (A × B) + (C × D) → (A + C)× (B + D)

note: π0
X,Y : X → X + Y and π1

X,Y : Y → X + Y denote injections, while
[f ,g] : X + Y → Z denotes unique map given by coproduct
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Examples of medial LDCs

Examples of medial LDCs (cont’d)

Recall the categories of coherent spaces COH (Girard [8]) and
hypercoherences HCohL (Ehrhard [5]), models of linear logic and
full classical linear logic respectively.

These were generalized (by Lamarche) as follows:

Definition ( [10])
Let Q denote a LD-poset.
• A Q-coherence A = (|A|, ρA) consisting of a poset (|A|,⊑) and a

symmetric monotone function ρA : |A| × |A| → Q.

• A Q-coherence map f : A → B is a relation f : |A| //• |B| which is
• down-closed in the source: (a,b) ∈ f ∧ a′ ⊑ a =⇒ (a′,b) ∈ f ,
• up-closed in the target: (a,b) ∈ f ∧ b ⊑ b′ =⇒ (a,b′) ∈ f ,
• (a,b) ∈ f ∧ (a′,b′) ∈ f =⇒ ρA(a,a′) ≤ ρB(b,b′).
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Examples of medial LDCs

Examples of medial LDCs (cont’d)

Definition ([10])
Define Q-Coh to be the LDC of Q-coherences with

A ⊗ B = (|A| × |B|, ρA⊗B), ρA⊗B((a,b), (a′,b′)) = ρA(a,a′)⊗ ρB(b,b′)

A ⊗ B = (|A| × |B|, ρA⊕B), ρA⊕B((a,b), (a′,b′)) = ρA(a,a′)⊕ ρB(b,b′)

Theorem
Q-Coh is a medial LDC if and only if Q is a medial LD-poset, with
medial maps are relations defined by
(a,b, c,d)µA,B,C,D(a′, c′,b′,d ′) ⇐⇒ a ⊑ a′ ∧ b ⊑ b′ ∧ c ⊑ c′ ∧ d ⊑ d ′

Example
4 Q-Coh for a medial LD-poset Q

→ All distributive lattices are examples of medial LD-posets.
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Further Work

Further Work

• Complete the Fox theorem for medial LDCs
• Define medial linear functors and linear natural

transformations: 2-cat MLDC
• Determine that Bim(-) extends to a functor SMLDC → CLDC
• Prove Bim(-) is right adjoint to inclusion

• Develop examples further
• Find more examples of medial LDCs X
• What is Bim(X), in particular what is Bim(Q-Coh)?

• Develop a sequent calculus for MLL+medial
• Is there a version of cut elimination?
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