
Type Classes
in CaMPL

Melika Norouzbeygi
Supervisor: Prof. Robin Cockett
July 2024

What are Type
Classes and Why Are
They Important?11 We first need to talk about overloading

Overloading

• An operator is overloaded if it has two (or more) implementations, distinguished by type of
its arguments and its output.

• In many languages, arithmetic operators (like ‘+’) have multiple distinct implementations for
different types such as Int or Double.

• The decision on what implementation to use is made at compile time.

• In a language which has type inference and polymorphism, implementing "overloading" is
more complicated:

3

o When one defines a function, one should be able to use overloaded operators in the
definition. However, this can cause the type of the overloaded operators to be
polymorphic.

Type Classes: Haskell’s Solution to Overloading

• Haskell uses type classes for implementing overloading.

• A type class declares a set of operations based on a type variable.

• An instance of a type class provides an implementation for the type class operations.

• If the type class operator is used in a function definition, the type need to be tagged with the
type class name to indicate that the compiler must convert the operator into an instance.

5

Haskell

• The benefit of type classes is not only for providing overloading.

• Type Classes can allow succinct and more understandable programs.

• One can make type classes depend on type constructors: this adds further
power to type classes ...

Type Classes: Not Only Overloading!

7

Haskell

More Examples of Higher Order Type Classes

• One can define the Monad type class. In order for a type constructor to be a
Monad it needs to be a Functor.

• One can make a type constructor (e.g List) an instance of Monad type class by
implementing the return and sequence operations for it.

8

Haskell

How are Type Classes Implemented?

• At compile time, after type inference, any usage of type class operators is
translated to the core Haskell.

• Each type class operator is an input function to the function that uses it, and
type class tags are also converted to the type of the function instance.

9

Haskell

What is CaMPL?

Categorical Message Passing Language22

CaMPL: Categorical Message Passing Language

• CaMPL is a polymorphic concurrent language with
type inference.

• Its sequential tier is an implementation of lambda-
calculus with data types.

• Its concurrent tier is an implementation of a linear
actegory (a linear actegory is given by a monoidal
category acting on a linearly distributive category).

• CaMPL was implemented by Robin Cockett,
Prashant Kumar and Jared Pon at the University of
Calgary.

12

https://campl-ucalgary.github.io/

Say “Hello World!” in CaMPL

13

CaMPL

• The helloworld process has an output channel of type StringTerminal.

• It puts the string “Hello World” on the terminal

• At the end it halts the terminal.

proc helloworld :: | => StringTerminal =

| => terminal -> do

hput StringTerminalPut on terminal

put "Hello World! press any key to exit..." on terminal

hput StringTerminalGet on terminal

get input on terminal

hput StringTerminalClose on terminal

halt terminal

proc run :: | => StringTerminal =

| => terminal -> helloworld(| => terminal)

Categorical Semantics of the Concurrent Part

14

The categorical semantics of the concurrent side of CaMPL is defined by a linearly
distributive category:

• Objects are concurrent channel types.

• Maps are concurrent processes (from input polarity to output polarity channels).

• Identity is a channel.

• Composition is given by plugging two processes to each other.

• The ⊗ and ⨁ functors allow bundling the channels together.

Categorical Semantics of the Sequential Part

15

The categorical semantics of the sequential side of CaMPL is defined by a cartesian
closed category with data types:

• Objects are sequential types

• Maps are sequential functions.

• Identity is an identity function

• Composition is given by composition of functions

As for a functional language

Categorical Semantics of Message Passing

16

The categorical semantics of the message passing is a linear actegory:

• It consists of a cartesian closed category 𝕊 (sequential part) acting on a linearly
distributive category ℂ (concurrent part).

• There are two functors for 𝕊 acting on ℂ :

(:= Put) ∶ 𝕊 × ℂ → ℂ

(:= Get) ∶ 𝕊!" × ℂ → ℂ

Proof Theory of CaMPL

17

• The concurrent side of CaMPL is
specified by the proof theory of
linear actegories.

• It is specified by inference rules for
concurrent sequents.

• Programming features of CaMPL
can also be described equivalently
by circuit diagrams.

Φ | Γ ⊩ Δ

Φ

Γ
Δ

Summary of CaMPL Concurrent Constructs

18

CaMPL

proc q ::

Phi | Gamma => Delta, Get(A|X) =

phi | gamma => delta, alpha -> do

get a on alpha

p(phi, a | gamma => delta, alpha)

CaMPL

proc q ::

A, Phi | Gamma => Delta, Put(A|X) =

a, phi | gamma => delta, alpha -> do

put a on alpha

p(phi | gamma => delta, alpha)

𝜑
𝑝

𝜓 𝑝

Γ

Γ

𝐴 𝐴 𝑋

Δ

𝜑
𝐴

𝑋

𝑋 𝑋𝐴

Δ

𝑓

Summary of CaMPL Concurrent Constructs

21

CaMPL

CaMPL

proc q ::

Phi | Gamma, X (*) Y => Delta =

phi | gamma, alpha => delta -> do

split alpha into aplpha1, alpha2

p(phi| gamma, alpha1, alpha2 => delta)

proc q ::

Phi | Gamma => Delta, X (+) Y =

phi | gamma => delta, alpha -> do

split alpha into aplpha1, alpha2

p(phi| gamma => delta, alpha1, alpha2)

𝜑

𝑋 ⊕ 𝑌
𝑋

𝑌

𝜑

𝑋⨂𝑌 𝑋

𝑌

𝑝Γ

Δ

𝑝
Δ

Γ

Summary of CaMPL Concurrent Constructs

22

CaMPL

proc q ::

Phi, Psi | Gamma1, Gamma2 => X (*) Y, Delta1, Delta2 =

phi | gamma1, gamma2 => alpha, delta1, delta2 -> do

fork alpha as

alpha1 -> p1(psi|gamma1 => delta1, alpha1)

alpha2 -> p2(phi|gamma2 => delta2, alpha2)

𝑝!

𝑝"

𝜑

𝑋⊕ 𝑌
𝑋

𝑌

𝜓

Γ"

Γ!
Δ!

Δ"

Summary of CaMPL Concurrent Constructs

23

CaMPL

proc q ::

Phi, Psi | Gamma1, Gamma2, X (+) Y => Delta1, Delta2 =

phi | gamma1, gamma2, alpha => delta1, delta2 -> do

fork alpha as

alpha1 -> p1(psi|gamma1 => delta1, alpha1)

alpha2 -> p2(phi|gamma2 => delta2, alpha2)

𝑝!

𝑝"

𝑋⨂𝑌

𝜑

𝑋

𝑌

𝜓

Γ"

Γ!

Δ!

Δ"

Summary of CaMPL Concurrent Constructs

24

proc q ::
Phi, Psi | Gamma1, Gamma2 => Delta1, Delta2 =

phi, psi | gamma1, gamma2 => delta1, delta2 ->
plug

p1(phi | gamma1 => delta1, x)
p2(psi | gamma2, x => delta2)

CaMPL

𝑝!

𝑝"

𝜑

𝜓

Γ"

Γ!

Δ!

Δ"

𝑋

𝑋

How to add type
classes to the
sequential CaMPL?

3
Inspired by Haskell

3
11..

Type Classes in Sequential CaMPL

26

CaMPL CaMPL

For the sequential side of CaMPL as it is a functional-style language one can use
the same approach to type classes as Haskell.

What about
concurrent
type classes?
As far as we know, there is no implementation for
concurrent type classes …

3
2.
3
2.

Type Classes in Concurrent CaMPL

28

• CaMPL is one of the first languages with a strongly typed concurrent side.

• CaMPL’s rich concurrent type system is a necessary basis for investigating concurrent
type classes.

• As far as we know, this is the first time that concurrent type classes have been
considered for a concurrent language.

Type Classes in Concurrent CaMPL

29

• The concurrent side of CaMPL is already higher order as:

• We can pass a process with input type A and output type B, to the other process using
the type Neg(A) (+) B.

Γ⊗ 𝐴 ⊢ 𝐵
Γ ⊢ 𝐴 ⊸ 𝐵:= 𝐴!⊕𝐵

𝐴#

𝐴

𝐵

𝐴#⊕𝐵

Example: The Kill Type Class

30

CaMPL

kill_TopBot

ch :: TopBot

Example: The Kill Type Class

31

CaMPL

kill_T

t :: T

kill_Get

ch :: Get(A | T)

Example: The Kill Type Class

32

CaMPL

kill_TopBot

t2 :: TopBot

kill_Get

t1 :: Get(B | TopBot)

kill_Get

ch :: Get (A | Get(B | TopBot))

Type Classes in Concurrent CaMPL

33

• It is also probably useful to have higher order type classes such as Functor and Monad
in the concurrent side of CaMPL.

• For example: One can define a concurrent list (list of channels) and make it a Functor.

• In our first try, we attempt to implement the Functor type class using the same way we
did for first order type classes (like the Kill type class)

• Let's see if it works!

Example: Functor Type Class

34

CaMPL

Example: Functor Type Class

35

CaMPL

fmap

𝐴!⊕𝐵𝐿𝑖𝑠𝑡(|𝐴)

𝐿𝑖𝑠𝑡(|𝐴)𝐴

𝐿𝑖𝑠𝑡(|𝐵) 𝐵

𝐿𝑖𝑠𝑡(|𝐵)

𝐴! 𝐵

Are there any
solutions? ??Hmm… There might be!

Store and Use

37

• Store is a sequential data type that takes in a
concurrent process type.

• One can store a process and make it sequential
data, then it can behave like other sequential
resources so it can be duplicated!

• One can call a stored process using the use
command.

CaMPL

Store and Use

38

CaMPL

• Store and use can help us solve the
problem we had in writing fmap for
concurrent lists.

• We can pass the stored process that
we want to call on each channel in
the list, to the fmap process and use
it as needed.

• But what is the semantics of the store
and use? We don’t know! Although it
is reminiscent of the bang of linear
logic.

Conclusion

39

§ Type Classes are important and useful.

§ CaMPL is a strongly typed concurrent language and it has the basis for adding type
classes to its sequential and concurrent side.

§ We are working on adding type classes to CaMPL: The sequential side seems to be
going well but there are some challenges in concurrent side.

§ Duplicating concurrent resources is not allowed, but one can store them in a sequential
data and duplicate them and use them.

§ We are working on providing this facility in CaMPL that enables us to implement type
classes for both sequential and concurrent sides.

References

40

1. J. R. B. Cockett and Craig Pastro. The Logic of Message Passing. Science of Computer
Programming, 74(8):498–533, 2009.

2. Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. 1996. Type
classes in Haskell. ACM Trans. Program. Lang. Syst. 18, 2 (March 1996), 109–138.
https://doi.org/10.1145/227699.227700

3. Reginald Lybbert. Progress for the Message Passing Logic. Undergraduate thesis, University of
Calgary, April 2018. Provided by the author.

4. Prashant Kumar. Implementation of Message Passing Language. 2018.
doi:10.11575/PRISM/10182. url: https://prism.ucalgary.ca/ handle/1880/106402.

5. Jared Pon. Implementation Status of CMPL. Undergraduate thesis Interim Report, University of
Calgary, December 2021. Provided by the author.

http://prism.ucalgary.ca/%20handle/1880/106402.

