

Differential bundles in tangent (infinity) categories

Florian Schwarz, work with Kristine Bauer, idea by Michael Ching

FMCS 2024

 QQ 4 D F メスラメ

[Differential bundles in tangent \(infinity\) categories](#page-22-0)

QQ イロト イ押ト イヨト イヨト

イロメ イ部メ イヨメ イヨメ 重 2990

[Tangent categories](#page-4-0) [Differential bundles](#page-10-0) [Classification](#page-15-0) [Outlook towards infinity](#page-19-0)

[Differential bundles in tangent \(infinity\) categories](#page-0-0)

Tangent categories

- A tangent category is a category X with:
	- A tangent functor $T : \mathbb{X} \to \mathbb{X}$
	- A projection natural transformation $p: T \rightarrow 1$ with pullback powers T_nM preserved by T.
	- A addition natural transformation $+ : T_2 \rightarrow T$
	- A zero natural transformation $0:1\to T$
	- A vertical lift natural transformation $\ell:\mathcal{T}\rightarrow\mathcal{T}^2$
	- A canonical flip natural transformation $\,c:\,T^2\rightarrow\,T^2$

 QQ

÷

∢ ロ ▶ 《 御 ▶ 《 君 ▶ 《 君 ▶ 》

and some conditions

Example: N[•]

Let \mathbb{N}^{\bullet} be the category with

- The free f.g. $\mathbb{N}\text{-modules }\mathbb{N}^k, k \in \mathbb{N}$ as objects
- N-linear maps as morphisms

There is a tangent structure on \mathbb{N}^{\bullet} given by

Tangent functors

A lax tangent functor between tangent categories (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) is a pair (F, α) of a functor $F : \mathbb{X} \to \mathbb{Y}$ and a natural transformation α : $F \circ T_{\mathbb{X}} \to T_{\mathbb{Y}} \circ F$ compatible with the tangent structure, e.g.

$$
\begin{array}{ccc}\nF\circ T_{\mathbb{X}} \xrightarrow{\alpha} T_{\mathbb{Y}} \circ F & F \circ (T_{\mathbb{X}})_2 \xrightarrow{\alpha_2} (T_{\mathbb{Y}})_2 \circ F \\
& & F \circ T_{\mathbb{X}} \xrightarrow{} & F \circ T_{\mathbb{X}} \xrightarrow{} T_{\mathbb{Y}} \circ F \\
& & F \circ T_{\mathbb{X}} \xrightarrow{} T_{\mathbb{Y}} \circ F\n\end{array}
$$

It is called a strong tangent functor if α is an isomorphisms and F preserves the pullbacks that are part of the definition of a tangent structure.

 QQQ

イロト イ母 トイヨ トイヨ ト

Tangent natural transformations

Let $(\mathbb{X},\mathcal{T}_{\mathbb{X}})$ and $(\mathbb{Y},\mathcal{T}_{\mathbb{Y}})$ be tangent categories and $(\mathcal{F},\alpha),(\mathcal{F}',\alpha')$: $(\mathbb{X}, T_{\mathbb{X}}) \rightarrow (\mathbb{Y}, T_{\mathbb{Y}})$ be lax tangent functors. A **tangent natural transformation** $(F, \alpha) \Rightarrow (F', \alpha')$ is a natural transformation

$$
\varphi : F \Rightarrow F'.
$$

It is called linear if

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 』 ◇ Q Q @

commutes.

メロトメ 伊 トメ 君 トメ 君 トー

 QQ

÷

Biategories of tangent Categories

We can now look at

- **E** lax tangent functors with tangent natural transformations,
- \blacksquare lax tangent functors with linear tangent natural transformations,
- strong tangent functors with tangent natural transformations, or
- strong tangent functors with linear tangent natural transformations.

This gives us *four variants of bicategories* of tangent categories, e.g. $TANG_{lax}$, the bicategory with

- Tangent categories as objects
- Lax tangent functors as 1-morphisms
- Tangent natural transformations as 2-morphisms.

Given two tangent categories $(X, \mathcal{T}_{X}), (Y, \mathcal{T}_{Y})$ there are 1-categories of lax tangent functors $(\mathbb{X},\mathcal{T}_{\mathbb{X}})\to (\mathbb{Y},\mathcal{T}_{\mathbb{Y}})$

 $LaxFun(\mathbb{X}, \mathbb{Y})$ $LaxFun_{lin}(\mathbb{X}, \mathbb{Y})$

[Tangent categories](#page-4-0) **[Differential bundles](#page-10-0)** [Classification](#page-15-0) **[Outlook towards infinity](#page-19-0)**
000000 00000 0000 0000 0000

Differential bundles

Differential bundles

In a tangent category one can define a **differential bundle** E over M :

such that finite pullback powers of q exist and are preserved by T^n ,

is a pullback and some additional conditions hol[d.](#page-10-0) 重 QQ

The tangent bundle $\mathcal{T}M \stackrel{p}{\rightarrow} M$ is a differential bundle.

Ben MacAdam showed that differential bundles in SmMan are exactly vector bundles. For example $\mathbb{R} \times \mathbb{R}$ over \mathbb{R} :

$$
E_2 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}
$$
\n
$$
\zeta = 1_{\mathbb{R}} \times 0
$$
\n
$$
\downarrow \sigma = 1_{\mathbb{R}} \times \text{add}
$$
\n
$$
M = \mathbb{R}
$$
\n
$$
q = \pi_0
$$
\n
$$
E = \mathbb{R} \times \mathbb{R}
$$
\n
$$
\lambda = 1_{\mathbb{R}} \times 0 \times 0 \times 1_{\mathbb{R}} T(E) = \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}
$$

メロトメ 伊 トメ 君 トメ 君 トー 活 Ω

Example: $\mathbb{N}^1 \to \mathbb{N}^0$

In the tangent category \mathbb{N}^{\bullet} , the following is a differential bundle:

$$
E_2 = \mathbb{N}^2
$$

\n
$$
\begin{array}{c}\n\zeta = 0 \\
\downarrow \sigma = \text{add} \\
\downarrow \sigma = \text{add} \\
\downarrow \sigma = \text{add} \\
\downarrow \Delta = \langle 0, 1 \rangle\n\end{array}
$$

\n
$$
H = \mathbb{N}^0 \xrightarrow{q=!} E = \mathbb{N}^1 \xrightarrow{\lambda = \langle 0, 1 \rangle} T(E) = \mathbb{N}^2
$$

A differential bundle over the terminal object is called a differential object.

 \Box

凸

 QQ

Proposition (Differential bundles as differential objects)

A differential bundle is a differential object in th[e s](#page-12-0)l[ice](#page-14-0)[cat](#page-13-0)[e](#page-14-0)[g](#page-9-0)[o](#page-10-0)[r](#page-14-0)[y.](#page-15-0)

Morphisms of differential bundles

A morphism of differential bundles from $(E, M, q, \sigma, \zeta, \lambda)$ to $(E', M', q', \sigma', \zeta', \lambda')$ in $\mathbb X$ is a pair of morphisms $f:E\rightarrow E', g:M\rightarrow M'$ such that

commutes. It is called additive if the first two diagrams commute and linear if the third diagram commutes.

$$
\begin{array}{ccc}\nE_2 \stackrel{f_2}{\longrightarrow} E_2' & M \stackrel{g}{\longrightarrow} M' & E \stackrel{f}{\longrightarrow} E' \\
\sigma \downarrow & \downarrow \sigma' & \zeta \downarrow & \downarrow \zeta' & \lambda \downarrow & \downarrow \vee \\
E \stackrel{f}{\longrightarrow} E' & E \stackrel{f}{\longrightarrow} E' & T(E) \stackrel{f}{T(f)} T(E')\n\end{array}
$$

メロメ (御) メミンメミンド

÷

 Ω

[Tangent categories](#page-4-0) [Differential bundles](#page-10-0) [Classification](#page-15-0) [Outlook towards infinity](#page-19-0)

Classification of differential bundles

Differential functors

A lax tangent functor (F, α) between tangent categories (X, \mathcal{T}_X) and $(\mathbb{Y},\mathcal{T}_{\mathbb{Y}})$ is called lax differential if it

- $T^n \circ F$ preserves pullbacks over the terminal object $\forall n \in \mathbb{N}$, and
- $\blacksquare \alpha : F \circ T_{\mathbb{X}} \Rightarrow T_{\mathbb{Y}} \circ F$ is Cartesian, i.e. its naturality squares are pullbacks.

It is called strong differential if it also preserves the terminal object.

Proposition (preservation)

Strong differential functors send differential objects to differential objects. Lax differential functors send differential objects to differential bundles.

Classification

Proposition (Induced functor)

For any differential bundle $E\stackrel{q}{\rightarrow}M$ in any tangent category $\mathbb X$ there is a lax differential functor from \mathbb{N}^{\bullet} .

 $F_E : \mathbb{N}^\bullet \to \mathbb{X}$

$$
\mathbb{N}^0 \mapsto M \qquad \mathbb{N}^1 \mapsto E \qquad \mathbb{N}^k \mapsto E_k
$$

$$
(n \cdot (-) : \mathbb{N} \to \mathbb{N}) \mapsto (\sigma_n \circ \Delta_n : E \to E)
$$

The natural transformation $\alpha_F : F_F \circ T_{\mathbb{N}^{\bullet}} \Rightarrow T_{\mathbb{X}} \circ F_F$ is

$$
(\alpha_E)_{\mathbb{N}^1} := \mathcal{T}(\sigma) \circ \langle 0 \circ \pi_0, \lambda \circ \pi_1 \rangle : E_2 \to \mathcal{T}(E), \quad (\alpha_E)_{\mathbb{N}^k} := ((\alpha_E)_{\mathbb{N}^1})_k.
$$

イロト イ部 トイヨ トイヨ トー 造 QQ

Equivalence of Categories

Theorem

```
There is an equivalence of categories
```

```
\mathrm{DiffFun}_{\mathrm{lin}}(\mathbb{N}^\bullet, \mathbb{X}) \simeq \mathrm{DiffBun}_{\mathrm{lin}}(\mathbb{X})
```
 $\mathrm{DiffFun}(\mathbb{N}^\bullet, \mathbb{X}) \simeq \mathrm{DiffBun}_{\mathrm{add}}(\mathbb{X})$

where $DiffFun and DiffFun_{lin}$ are the full subcategory of differential functors in $LaxFun$ and $LaxFun_{lin}$.

An additive morphism $f:E\to E', g:M\to M'$ between differential bundles $E \stackrel{q}{\rightarrow} M, E' \stackrel{q'}{\rightarrow} M'$ induces

$$
\varphi : F_E \Rightarrow F_{E'} \qquad \varphi_{\mathbb{N}^k} : F(\mathbb{N}^k) = E_k \mapsto E'_k
$$

additivity \leftrightarrow naturality (ζ and σ are images of maps in $\mathbb{N}^\bullet)$ linearity \leftrightarrow compatibility with $\alpha_{\pmb{E}}$ and $\alpha'_{\pmb{E}}$ イロト イ部 トイ ヨ トイ ヨ トー

 QQ

[Tangent categories](#page-4-0) [Differential bundles](#page-10-0) [Classification](#page-15-0) [Outlook towards infinity](#page-19-0)

 299

Outlook towards infinity

What about \mathbb{N}^{\bullet}

N • encodes commutative monoids

$$
\mathrm{Mon}(\mathbb{X})\simeq \mathrm{Fun}_\times(\mathbb{N}^\bullet,\mathbb{X})
$$

James Cranch showed that the Duskin-Nerve of the bicategory Span(FinSet) encodes homotopy commutative monoids.

$$
E_{\infty} := N(\mathrm{Span}(\mathrm{FinSet}))
$$

 QQ

э

イロト イ母ト イヨト イヨト

So E_{∞} is the ∞ -version of \mathbb{N}^{\bullet} .

In tangent ∞-categories

Make this equivalence a definition

Definition

The category of **differential bundles** in a tangent infinity Category X is the category of lax tangent functors $E_{\infty} \to \mathbb{X}$ preserving pullbacks over the terminal object with cartesian natural transformations.

What properties do such differential bundles have? Is the tangent bundle still a differential bundle? Yes (Michael Ching) Are the differential objects in the slice category still the differential bundles?

Even in the 1-category case

Can one understand connections through this perspective? How does this relate to Michael Ching's $E \cong M \times_{TM} TE \times_F M$?

- **1** Kristine Bauer, Matthew Burke, and Michael Ching, Tangent infinity-categories and Goodwillie calculus, arXiv, 2021.
- 2 Benjamin MacAdam, Vector bundles and differential bundles in the category of smooth manifolds, Appl. Categ. Structures 29 (2021), no. 2, 285–310. MR 4228458
- **3** J. R. B. Cockett and G. S. H. Cruttwell, *Differential bundles and* fibrations for tangent categories, arXiv, 2016.
- ⁴ J. R. B. Cockett and G. S. H. Cruttwell, Differential structure, tangent structure, and sdg, Applied Categorical Structures 22 (2014), 331–417.
- **5** James Cranch, Algebraic theories and $(\infty,1)$ -categories. PhD thesis (2009)
- ⁶ J. Rosický, Abstract tangent functors. Diagrammes 12 (1984), JR1–JR11.

All figures were made with Bing Image Creator, Qui[ver](#page-21-0) [an](#page-22-0)[d](#page-21-0) [Gim](#page-22-0)[p](#page-18-0) $\rightarrow \pm +$ QQ

References