A complete equational theory for Gaussian quantum circuits

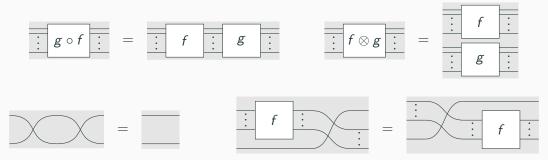
Cole Comfort Joint work with: Robert I. Booth, Titouan Carette based on: arXiv:2401.07914 and arXiv:2403.10479

July 12, 2024

We seek to formulate aspects of mathematics and physics using string diagrams.

- For mathematics, this means giving a syntactic presentation, and exhibiting and equivalence to the semantics;
- For physics, often we must also construct the semantics.

A prop is a strict symmetric monoidal category generated by a single object...



A compact prop also allows for wires to be bent/unbent:

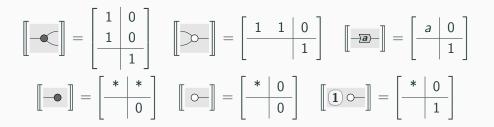
Graphical linear algebra

Affine matrices: generators

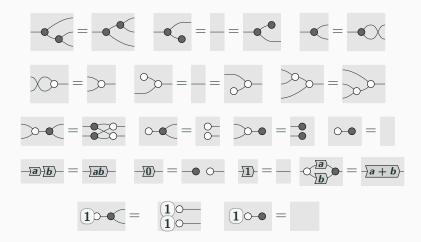
Given a field \mathbb{K} , finite dimensional affine transformations can be represented their **homogeneous coordinates matrices** (*T*, *S* are matrices, \vec{a} , \vec{b} are vectors):

$$\begin{bmatrix} T & \vec{a} \\ \hline 0 & 1 \end{bmatrix} \begin{bmatrix} S & \vec{b} \\ \hline 0 & 1 \end{bmatrix} = \begin{bmatrix} TS & T\vec{b} + \vec{a} \\ \hline 0 & 1 \end{bmatrix}$$

The prop of affine transformations between finite dimensional vector spaces is generated by the homogeneous coordinate matrices:

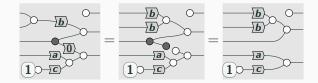


Modulo the equations:



Example of matrix multiplication

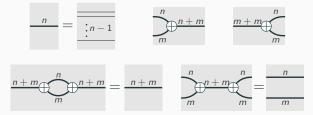
The following diagram can be simplified to a normal form:



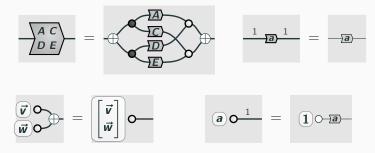
Following the paths from left to right gives us the homogeneous coordinate matrix:

Strictification and block matrices

Every prop can be strictified to an \mathbb{N} -coloured prop:



This allows us to define block matrices/vectors diagrammatically:



Affine relations (Bonchi et al. [Bon+19],Bonchi et al. [BSZ17])

Given a field $\mathbb K,$ the compact prop of $\mathbb K\text{-affine relations},$ $\mathsf{AffRel}_{\mathbb K},$ has:

- Morphisms $n \to m$ are affine subspaces $S \subseteq \mathbb{K}^n \oplus \mathbb{K}^m$.
- **Composition** relational, for $S : n \rightarrow m$, $T : m \rightarrow k$

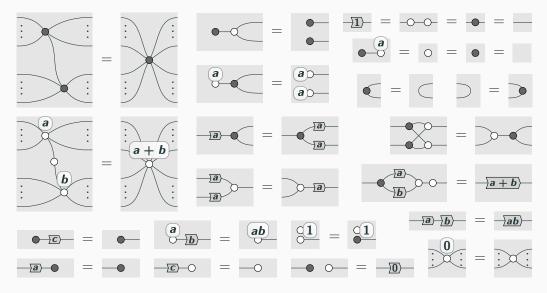
 $R \circ S := \{ (\vec{x}, \vec{z}) \in \mathbb{K}^n \oplus \mathbb{K}^k \mid \exists \vec{y} \in \mathbb{K}^m : (\vec{x}, \vec{y}) \in S \text{ and } (\vec{y}, \vec{z}) \in R \}$

- Symmetric monoidal structure given by direct sum;
- Compact structure same as Rel.

AffRel_K is generated by the following relations, for all $a \in \mathbb{K}$:

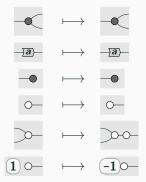
$$\begin{bmatrix} \overrightarrow{m:o:n} \end{bmatrix} \coloneqq \left\{ \left(\begin{bmatrix} a \\ \vdots \\ a \end{bmatrix}, \begin{bmatrix} a \\ \vdots \\ a \end{bmatrix} \right) \in \mathbb{K}^n \oplus \mathbb{K}^m \mid a \in \mathbb{K} \right\}$$
$$\begin{bmatrix} \overrightarrow{m:o:n} \end{bmatrix} \coloneqq \left\{ (\vec{b}, \vec{c}) \in \mathbb{K}^n \oplus \mathbb{K}^m \mid \sum_{j=0}^{n-1} b_j + \sum_{k=0}^{m-1} c_k = a \right\}$$
$$\begin{bmatrix} -\overrightarrow{a} \end{bmatrix} \coloneqq \{ (b, ab) \mid b \in \mathbb{K} \}$$

Modulo, the "spiders" $\underline{m:a:n}$ and $\underline{m:a:n}$ being commutative, undirected and,



for all $a, b \in \mathbb{K}$, $c \in \mathbb{K}^{\times}$.

The embedding AffMat_K \hookrightarrow AffRel_K taking an affine transformation $T : n \to m$ to it's graph $\{(\vec{x}, T\vec{x}) \mid \vec{x} \in \mathbb{K}^m\}$ sends:



Classical mechanics and symplectic geometry

The extensional behaviour of an electrical circuits is characterised by how it transforms current and voltage;

- **Ohm's law:** The voltage around the node in a circuit is equal to the current multiplied by the resistance.
- **Kirchhoff's current law:** The sum of currents flowing into a node is equal to the sum of currents flowing out of the node.

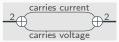
Example

Given a linear resistor with resistance $r \in \mathbb{R}^{>0}$ on a wire with incoming current/votage (z_0, x_0) and outgoing current/voltage (z_1, x_1) :

- by KCL, currents equalize: $z_0 = z_1$;
- by OL, the outgoing current becomes: $x_1 = x_0 + z_0 r$.

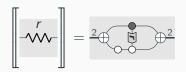
Following Baez et al. [BCR18] and Baez and Fong [BF18], we can represent electrical circuit components as real affine relations.

Using the string diagrams from Bonchi et al. [Bon+19], decompose a wire into a current and voltage



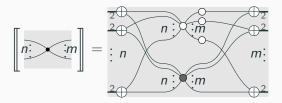
...the resistor is represented as follows:

Example



Example

Ideal wire junctions sum currents, and equalize voltages:



Example

Constant voltage source does nothing to current and adds to the voltage:

$$\begin{bmatrix} - \begin{pmatrix} \mathbf{v} \\ - \end{pmatrix} \end{bmatrix} = \frac{2}{\mathbf{v}} \underbrace{\mathbf{v}}^2$$

What is the more conceptual picture?

Classical mechanical systems can be represented by the configurations of abstract **positions** Z and **momenta** X:

Classical mechanics	Z	dZ/dt	X	dX/dt
Translation	position	velocity	momentum	force
Electronic	charge	current	flux linkage	voltage
Hydraulic	volume	flow	pressure momentum	pressure
Thermal	entropy	entropy flow	temperature momentum	temperature

For *n*-particles in Euclidean space, the space of possible configurations of positions/momenta $\mathbb{R}^{2n} \cong \mathbb{R}^n_Z \oplus \mathbb{R}^n_X$ is the **phase space**.

Table adapted from Smith [Smi93, page 23, table 2.1] and Baez and Fong [BF18]

Affine Lagrangian subspaces

Definition

Two configurations $(\vec{z}, \vec{x}), (\vec{q}, \vec{p}) \in \mathbb{K}^{2n}$ of phase-space are **compatible** when:

$$\vec{z}\cdot\vec{p}-\vec{x}\cdot\vec{q}=0$$

The bilinear map

$$\omega_n: \mathbb{K}^{2n} \oplus \mathbb{K}^{2n} \to \mathbb{K} \quad ((\vec{z}, \vec{x}), (\vec{q}, \vec{p})) \mapsto \vec{z} \cdot \vec{p} - \vec{x} \cdot \vec{q}$$

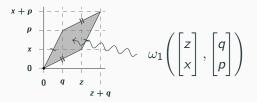
is a symplectic form, and the phase space $(\mathbb{K}^{2n}, \omega_n)$ is a symplectic vector space.

An **affine Lagrangian subspace** is a *maximally compatible* affine subspace of a symplectic vector space.

Remark (Baez and Fong [BF18], Baez et al. [BCR18]) *Resistors, voltages sources and junctions of wires are affine Lagrangian subspaces.*

Example

In the phase-space of a single particle, (\mathbb{K}^2, ω_1) , the symplectic form measures area:



Compatible points are colinear, so affine Lagrangian subspaces are lines.

An affine Lagrangian subspaces don't represent single particle; but an ensemble of particles *flowing along a trajectory*.

Definition (Guillemin and Sternberg [GS79], Weinstein [Wei82]) The compact prop of affine Lagrangian relations $AffLagRel_{\mathbb{K}}$ has:

- Morphisms n → m, given by (possibly empty) affine Lagrangian subspaces of (K²ⁿ ⊕ K^{2m}, ω_n − ω_m : K^{2(n+m)} ⊕ K^{2(n+m)} → K).
- Composition is given by relational composition.
- Symmetric monoidal structure is given by the direct sum.

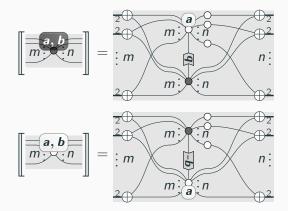
Lemma

There is an embedding $AffRel_{\mathbb{K}} \rightarrow AffLagRel_{\mathbb{K}}$ given

- on objects by: $n \mapsto 2n$;
- on morphisms by: $(S + \vec{a}) \mapsto S^{\perp} \oplus (S + \vec{a})$.

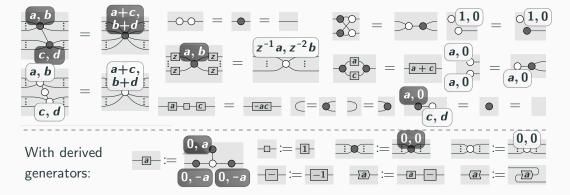
For the geometrically inclined, this is induced by the embedding of a vector space $\mathbb{R}^n \hookrightarrow \mathcal{T}^*(\mathbb{R}^n) \cong (\mathbb{R}^n)^* \oplus \mathbb{R}^n \cong \mathbb{R}^{2n}$ into its cotangent bundle.

 $AffLagRel_{\mathbb{K}}$ is generated by two spiders decorated by \mathbb{K}^2 ; interpreted in $AffRel_{\mathbb{K}}$ as:



Modulo both spiders, being commutative, undirected nodes,

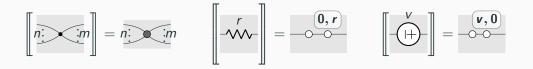
as well as for all $a, b, c, d \in \mathbb{K}$ and $z \in \mathbb{K}^{\times}$:



The embedding $\mathsf{AffRel}_{\mathbb{K}} \hookrightarrow \mathsf{AffLagRel}_{\mathbb{K}}$ takes:

$$\underline{m: \bullet: n} \longmapsto \underline{m: \bullet: n} \longmapsto \underline{m: \bullet: n} \longmapsto \underline{m: \bullet: n} \longrightarrow \underline{a} \longrightarrow \underline{a}$$

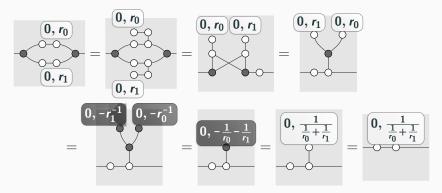
Now that the position/momentum wires are bundled together, we have a more concise description of electrical circuit components:



 $\mathsf{AffLagRel}_{\mathbb{R}}$ allows us to cleanly compose electrical circuits:

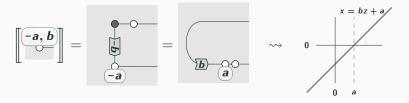
Example

Consider two resistors with resistances $r_0, r_1 \in \mathbb{R}^{>0}$ composed in parallel.

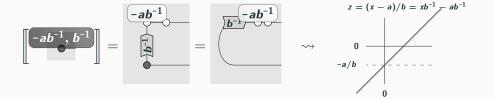


Electrons nondeterministically flow through both resistors, where they are impeded. They extensionally behave like a resistor with resistance $1/(1/r_0 + 1/r_1)$. This colour-swap rule corresponds to a change of refrence frame.

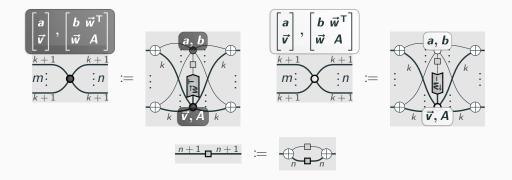
Where configurations of phase space can be represented as functions of position:



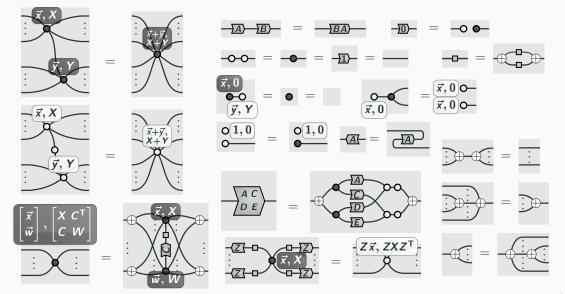
...or of momentum:



We can define higher-dimensional spiders by induction on the number of wires $k \in \mathbb{N}$. Take $n, m \in \mathbb{N}$, $a, b \in \mathbb{K}$, $\vec{v}, \vec{w} \in \mathbb{K}^k$ and $A \in \text{Sym}_k(\mathbb{K})$.



Scalable identities



Consider a network of resistors/voltage sources acting on n wires.

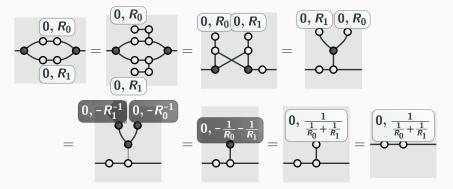
The extensional behaviour can be represented by a positive-definite $0 \prec R \in \text{Sym}_n(\mathbb{R})$ called the **impedance matrix**, and a voltage $\vec{v} \in (\mathbb{R}^{>0})^n$

$$\begin{bmatrix} \vec{v}, \vec{R}_n \\ \vec{v}, \vec{O} \end{bmatrix} = \left\{ \left(\begin{bmatrix} \vec{z} \\ \vec{x} \end{bmatrix}, \begin{bmatrix} \vec{z} \\ \vec{x} + R\vec{z} + \vec{v} \end{bmatrix} \right) \mid \forall \vec{z}, \vec{x} \in \mathbb{R}^n \right\}$$

The resistance between the *j*th and *k*th wire is $r_{j,k} = r_{k,j} \in \mathbb{R}$.

The change in voltage on wire j is $v_j \in \mathbb{R}$.

Black-boxed networks of resistors compose in parallel in the same way as single resistors composed in parallel:



We don't know the internal structure of the two networks, but we still can compute their extensional behaviour in parallel.

Quantized phase-space

Recall that the phase-space on *n* particles in Euclidean space is the symplectic vector spaces $(\mathbb{R}^{2n} \cong (\mathbb{R}^n)_Z \oplus (\mathbb{R}^n)_X, \omega_n)$:

Classical mechanics	Z	dZ/dt	X	dX/dt
Translation	position	velocity	momentum	force
Electronic	charge	current	flux linkage	voltage
Hydraulic	volume	flow	pressure mom'um	pressure
Thermal	entropy	entropy flow	temperature mom'um	temperature

Where idealized flows are morphisms in $AffLagRel_{\mathbb{R}}$.

"Quantized fragments" of quantum mechanics admit similar phase-space semantics:

• Stabiliser quantum mechanics

- discrete, finite
- nondeterministic

• Unconstrained Gaussian quantum mechanics

- continuous, infinite
- nondeterministic+probabilistic

Stabiliser quantum mechanics

Finite dimensional quantum mechanics "lives in" (FVect $_{\mathbb{C}}, \otimes, \mathbb{C}$)...

Definition

Fix some odd prime p. The state space of a **quopit** is the p-dimensional vector space:

$$\mathcal{H}_d\coloneqq \ell^2(\mathbb{Z}/d\mathbb{Z})\cong \mathbb{C}[\mathbb{Z}/d\mathbb{Z}]=\mathsf{span}_{\mathbb{C}}\{\ket{0},\cdots,\ket{d-1}\}$$

Definition

The *n*-quopit **Pauli group** $\mathcal{P}_p^{\otimes n} \subset U(p^n)$ is generated under tensor product and composition by:

$$\mathcal{X} \ket{k} \coloneqq \ket{k+1}$$
 and $\mathcal{Z} \ket{k} \coloneqq e^{irac{2\pi}{p}k} \ket{k}$

Lemma

Because $\mathcal{XZ} = e^{-i\frac{2\pi}{p}}\mathcal{ZX}$ every element of $\mathcal{P}_p^{\otimes n}$ has the following form, $\chi(a)\mathcal{W}(\vec{z},\vec{x}) \coloneqq e^{i\frac{2\pi}{p}a} \bigotimes_{j=0}^{n-1} \mathcal{Z}^{z_j}\mathcal{X}^{x_j}$ for some $a \in \mathbb{F}_p$, $\vec{z}, \vec{x} \in \mathbb{F}_p^n$.

Lemma

Up to scalars, a maximal Abelian subgroups $S \subseteq \mathcal{P}_p^{\otimes n}$ uniquely determines a normalised state $|S\rangle : \mathcal{H}_p^{\otimes n}$ such that for all $P \in S$, $P|S\rangle = |S\rangle$.

Such states are called stabiliser states.

Remark

Two n-quopit Pauli operators $\chi(a)\mathcal{W}(\vec{z},\vec{x})$ and $\chi(b)\mathcal{W}(\vec{q},\vec{p})$ commute if and only if $\omega_n((\vec{z},\vec{x}), (\vec{q},\vec{p})) = 0.$

Corollary (Gross [Gro06]) *There is a bijection:*

 $\{ \text{Maximal Abelian subgroups } S \subseteq \mathcal{P}_p^{\otimes n} \} \cong \{ \text{affine Lagrangian subspaces of } \hat{S} \subseteq (\mathbb{F}_p^{2n}, \omega_n) \} \\ \cong \{ \text{stabiliser states } |S\rangle : \mathcal{H}_p^{\otimes n} \}$

Given a Pauli $\chi(a)W(\vec{z},\vec{x}) \in S$:

• \vec{z} are the positions; • \vec{x} are the momenta; • a is determined by the affine shift.

Using the compact-closed structure of (FVect_{\mathbb{C}}, \otimes , \mathbb{C}):

Definition

The compact prop of quopit **stabiliser circuits** is generated under tensor and composition of the linear operators:

- All quopit stabiliser states $0 \rightarrow n$;
- Caps $|j\rangle\otimes|k
 angle\mapsto\delta_{i,j}$ of type 2 ightarrow 0;
- The cup $\sum_{j=0}^{p-1} |j\rangle \otimes |j\rangle$ is already a stabiliser state of type $0 \to 2$.

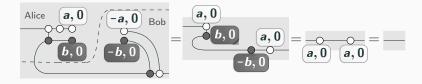
The composition of AffLagRel_{\mathbb{F}_p} agrees with that of in FVect_{\mathbb{C}}:

Theorem (Comfort and Kissinger [CK22]) AffLagRel_{\mathbb{R}_p} isomorphic to quopit stabiliser circuits, modulo scalars.

Remark

The presentation of AffLagRel_{\mathbb{F}_p} is the stabiliser ZX-calculus of Poór et al. [Poó+23], modulo scalars.

This is powerful enough to do quantum teleportation à la Abramsky and Coecke [AC04] and Coecke and Kissinger [CK18]:



Gaussian quantum mechanics

Definition

The continuous-variable 1-D quantum state space is the Hilbert space:

$$L^2(\mathbb{R}) := \left\{ arphi : \mathbb{R} o \mathbb{C} \ \Big| \ \int_{\mathbb{R}} |arphi(x)|^2 \, \mathrm{d}x < \infty
ight\}$$

The morphisms are bounded linear maps $(L^2(\mathbb{R}))^{\otimes n} \to (L^2(\mathbb{R}))^{\otimes m}$.

Definition

The **displacement** operators $\hat{Z}, \hat{X} : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ are the CV-version of Paulis:

$$\hat{Z}(s)\circ\varphi(r)\coloneqq e^{i2\pi rs}\varphi(r)\quad\text{and}\quad\hat{X}(s)\circ\varphi(r)\coloneqq\varphi(r-s)\quad\text{for all}\quad r,s\in\mathbb{R},\;\varphi\in L^2(\mathbb{R})$$

The *n*-qumode **Heisenberg-Weyl group** $\mathcal{HW}^{\otimes n}$ is generated by displacement operators by tensor product and composition, where every Heisenberg-Weyl operator has the form:

$$\chi(a)\mathcal{W}(\vec{z},\vec{x}) \coloneqq e^{i2\pi a} \bigotimes_{j=0}^{n-1} \hat{Z}(z_j)\hat{X}(x_j)$$
33

Lemma

Affine Lagrangian subspaces of $(\mathbb{R}^{2n}, \omega_n)$ are in bijection with maximally Abelian subgroups of $\mathcal{HW}^{\otimes n}$, modulo scalars.

Problem: Given an affine Lagrangian subspace $S \subseteq (\mathbb{R}, \omega_n)$, there is no non-zero state $|S\rangle : (L^2(\mathbb{R}))^{\otimes n}$ such that $\mathcal{W}(\vec{z}, \vec{x}) |S\rangle$ for all $(\vec{z}, \vec{x}) \in \mathbb{R}^n$!

None of the states in $AffLagRel_{\mathbb{R}}$ can be represented in Hilbert spaces!!!

{Maximal Abelian subgroups $S \subseteq \mathcal{HW}^{\otimes n}$ } \cong {affine Lagrangian subspaces of $\hat{S} \subseteq (\mathbb{R}^{2n}, \omega_n)$ } \ncong {stabiliser states $|S\rangle : (L^2(\mathbb{R}))^{\otimes n}$ }

Definition

An *n*-variate **Gaussian distribution** $\mathcal{N}(\Sigma, \vec{\mu})$ consists of a positive semidefinite covariance matrix $\Sigma \in \text{Sym}_n(\mathbb{R})$ and a **mean** vector $\vec{\mu} \in \mathbb{R}^n$.

When Σ is positive-definite, $\mathcal{N}(\Sigma, \vec{\mu})$ admits a probability density function.

Proposition

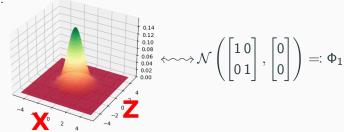
A 2n-variate Gaussian probability distribution $\mathcal{N}(\Sigma, \vec{\mu})$ on phase-space $(\mathbb{R}^{2n}, \omega_n)$ corresponds to a bounded state on $(L^2(\mathbb{R}))^{\otimes n}$ if and only if:

- Σ is positive definite; $det(\Sigma) = 1;$ $\Sigma + i \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$ is positive semidefinite. $\Sigma + i \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$ is positive semidefinite. $\Sigma + i \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$ is positive semidefinite.

Call this a **guantum Gaussian distribution**.

Example

The **quantum vacuum state** $|0\rangle : L^2(\mathbb{R})$ is represented by the Gaussian distribution Φ_1 on (\mathbb{R}^2, ω_1) :



 Φ_1 is the unique quantum Gaussian distribution on (\mathbb{R}^2, ω_1) invariant under rotation. The Quantum Gaussian distribution for $|0\rangle^{\otimes n}$ has the universal property of being invariant under symplectic rotations: $SO(\mathbb{R}, 2n) \cap Sp(\mathbb{R}, 2n)$.

Phase-space diagrams generated by Strawberry Fields/matplotlib

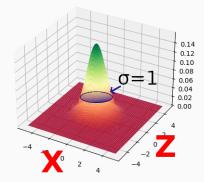
Lemma

Quantum Gaussian states are vacuum states acted on by affine symplectomorphisms.

Example

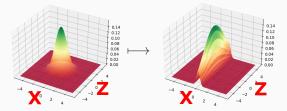
For n = 1, recall that $\omega_1 : \mathbb{R}^2 \oplus \mathbb{R}^2 \to \mathbb{R}$ measures area in \mathbb{R}^2 .

Symplectomorphisms preserve the area of the unital covariance elipse:

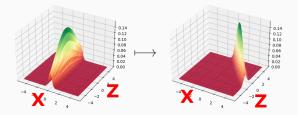


Picturing area-preservation

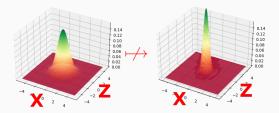
For example, we can squeeze the Gaussian distribution for the vacuum state state:



Changing the mean and rotating still is allowed.



But we can not make Φ_1 more concentrated:

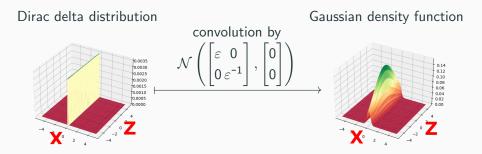


This violates Heisenberg's uncertainty principle.

In phase-space CV stabiliser states do not have strictly positive definite covariance.

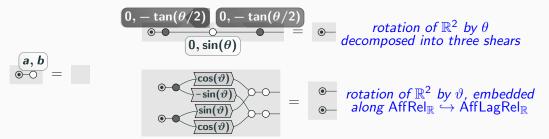
So they are not quantum Gaussian states.

However, they can be approximated with quantum Gaussian states:



Because the vacuum state is the unique permissible Gaussian distribution in phase-space distribution invariant under rotation:

Theorem (Booth et al. [BCC24a]) The Gaussian state can be freely added to $AffLagRel_{\mathbb{R}}$ as a generator \bullet , such that for all $\vartheta \in [0, 2\pi)$ and $\theta \in (-\pi, \pi)$:



This contains both quantum Gaussian states and formal CV stabilisers.

There is an equivalent formulation using the complex numbers

Proposition

Quantum Gaussian states/CV stabilisers can be represented by affine Lagrangian subspaces $S + \vec{a} \subseteq (\mathbb{C}^{2n}, \omega_n)$, where:

- *ā* is real;
- for all $\vec{x} \in S$, $i\omega_n(\vec{x}, \vec{x}) \ge 0$.

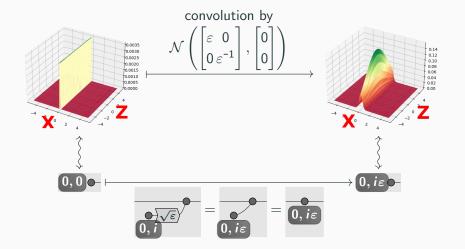
In other, words, we can represent the vacuum state as follows:

Theorem (Booth et al. [BCC24a])

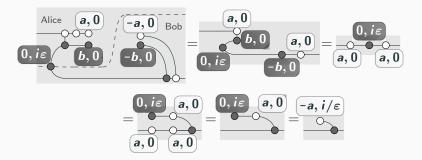
The Gaussian ZX-calculus is equivalent to adding the state $[0, i] \bullet$ to the image of the embedding $AffLagRel_{\mathbb{R}} \hookrightarrow AffLagRel_{\mathbb{C}}$.

Dirac delta distribution

Gaussian density function



We can interpret the continuous-variable quantum teleportation algorithm of Braunstein and Kimble [BK98]:



Fin

References

- [AC04] S. Abramsky and B. Coecke. "A categorical semantics of quantum protocols". In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004. 2004, pp. 415–425.
- [BCR18] John C. Baez, Brandon Coya, and Franciscus Rebro. "Props in network theory". In: Theory and Applications of Categories 33.25 (2018), pp. 727–783.
- [BF18] John C. Baez and Brendan Fong. "A compositional framework for passive linear networks". In: Theory and Applications of Categories 33.38 (2018), pp 1158–1222.
- [Bon+19] Filippo Bonchi, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi. "Graphical affine algebra". In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE. 2019, pp. 1–12.
- [BSZ17] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. "Interacting Hopf algebras". In: Journal of Pure and Applied Algebra 221.1 (2017), pp. 144–184.

- [BCC24a] Robert I. Booth, Titouan Carette, and Cole Comfort. *Complete equational* theories for classical and quantum Gaussian relations. 2024.
- [BCC24b] Robert I. Booth, Titouan Carette, and Cole Comfort. *Graphical Symplectic Algebra*. 2024.
- [BK98] Samuel L Braunstein and H J Kimble. "Teleportation of Continuous Quantum Variables". In: *Physical Review Letters* 80.4 (1998), p. 4.
- [CK18] Bob Coecke and Aleks Kissinger. "Picturing Quantum Processes: A First Course on Quantum Theory and Diagrammatic Reasoning". In: Lecture Notes in Computer Science. Springer International Publishing, 2018, pp. 28–31.
- [CK22] Cole Comfort and Aleks Kissinger. "A Graphical Calculus for Lagrangian Relations". In: Electronic Proceedings in Theoretical Computer Science 372 (Nov. 2022), pp. 338–351.
- [Gro06] D. Gross. "Hudson's theorem for finite-dimensional quantum systems". In: Journal of Mathematical Physics 47.12 (Dec. 2006).

- [GS79] Victor Guillemin and Shlomo Sternberg. "Some Problems in Integral Geometry and Some Related Problems in Micro-Local Analysis". In: American Journal of Mathematics 101.4 (Aug. 1979), p. 915.
- [Poó+23] Boldizsár Poór, Robert I. Booth, Titouan Carette, John Van De Wetering, and Lia Yeh. "The Qupit Stabiliser ZX-travaganza: Simplified Axioms, Normal Forms and Graph-Theoretic Simplification". In: *Electronic Proceedings in Theoretical Computer Science*. Twentieth International Conference on Quantum Physics and Logic. Vol. 384. Paris, France, Aug. 29, 2023, pp. 220–264.
- [Smi93] Lorcan Stuart Peter Stillwell Smith. "Bond Graph Modelling of Physical Systems". PhD thesis. University of Glasgow, 1993.
- [Wei82] Alan Weinstein. "The symplectic "category"". In: ed. by Heinz-Dietrich Doebner, Stig I. Andersson, and Herbert Rainer Petry. Red. by A. Dold and B. Eckmann. Vol. 905. Book Title: Differential Geometric Methods in Mathematical Physics Series Title: Lecture Notes in

Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982, pp. 45–51.