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Chapter 1

Basic Category Theory

This chapter contains the basic elements of category theory.

1.1 The definition of a category

A category is a mathematical object and as such has a precise definition: one can therefore
establish whether something is or is not a category. There are, however, various ways to define a
category which are “morally” equivalent. We shall start with the most common presentation of
a category which is as a directed graph with composition. Another important presentation of a
category is as an enriched category: we shall concentrate on Set-enriched categories. Later we shall
also consider Cat-enriched categories when we discuss natural transformations.

1.1.1 Categories as graphs with composition

A category, C consists of a directed graph, that is a collection of objects, C0, and a collection of
maps, C1, such that each map f ∈ C1 has an associated object D0(f) ∈ C0 which is its domain
and an associated object D1(f) ∈ C0 which is its codomain. We shall indicate that f has domain
A and codomain B by writing f : A −→ B.

The maps of a category can be composed: that is given any pair of maps f, g ∈ C1 with the
codomain of f being the same as the domain of g, that is they are a composable pair of the form
f : A −→ B and g : B −→ C, then there is an associated composite fg : A −→ C.1 The operation
of forming composites is called composition. Categories are required to have identity maps for
the composition. Thus, given any object C ∈ C there is associated to it an identity map, denoted
by 1C : C −→ C. This data must then satisfy the following axioms:

[C.1] (Identity laws) if f : A −→ B then 1Af = f = f1B,

[C.2] (Associative law) if f : A −→ B, g : B −→ C, and h : C −→ D.

Now when checking that something is actually a category one must first establish that all the
data is present. Thus, one must first identify a collection of objects. It will often be the case that

1Please note that “diagrammatic” as opposed to “applicative” order will be used in this text. Applicative order
is particularly common in many of the more mathematical text books on category theory so you should be able to
read both.
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6 CHAPTER 1. BASIC CATEGORY THEORY

the objects will be known by some other name such as nodes, types, sets, or algebras. Next one
must have a collection of maps. Again the maps will often be known by some other name such as
arrows, terms, functions, or homomorphisms. Finally one must have a notion of composition for
these maps: this involves not only having the operation which allows the formation of composites
for maps which juxtapose but also the presence of identities.

We remark that having identities is a property rather than extra structure as an identity (if it
exists at an object) is uniquely determined by the composition. This is because if 1A and 1′A are
identities on A then 1A = 1A1′A = 1′A; so there can be at most one identity map.

The identity map is an example of a map which starts and ends at the same place: these we
call endo-maps. A category can have – and often will have – many endo-maps.

A subcategory C′ of a category C is given by any subcollection of the objects and maps which
is “closed” to the domain, codomain, identity, and composition structure.

Please notice that it has not been required that the objects or arrows of a category should form
a set: this is because some categories are too large for either their objects or their arrows to form
sets. A typical ”big” category is the category of sets Set itself: Russell’s paradox2 informs us that
the set of all sets cannot possibly be a set. These issues have given rise to much philosophical and
mathematical work which, here we will not discuss. Suffice it to say that one way of retrieving
the situation is to allow for a hierarchy of set theories (a class system) each one containing the
previous set theory and the “class” of all sets of the previous set theory. This allows one to view
the category of sets to be a category in the next set theory up in the hierarchy.

1.1.2 Categories as partial semigroups

Another way to view a category is as collection of maps which have a partial associative multipli-
cation and a system of units. This view is interesting as it indicates that the objects are actually
redundant structure and their role can be replaced by the identity maps. However, the cost of
making them redundant is that one needs some additional axioms.

This time a category C just consists of a collection of maps on which there is a partial associative
composition and two assignments of arrows to arrows D0 and D1 such that:

[C’.1] D0(f)f is always defined and is f ,

[C’.2] fD1(f) is always defined and is f ,

[C’.3] fg defined if and only if D1(f) = D0(g) and D0(fg) = D0(f) and D1(fg) = D1(g),

[C’.4] (Associative) (fg)h = f(hg) whenever each side is defined,

[C’.5] Dj(Di(x)) = Di(x), for i, j = 0, 1.

To return to the definition above it is necessary to provide the collection of objects: these are
the maps for which D0(x) = x = D1(x) which are also the identity maps.

2Russell’s paradox concerns the set of all sets: this should be a set because as one can define sets by properties
(such as being a set) but consider the set of all sets which are not members of themselves - a subset of the set of all
sets. If it were a member of itself then it could not be a member of itself; on the other hand if it were not a member of
itself then it would be a member of itself! This paradox forced set theorists to declare that the set of all sets cannot
be a set. As one can hardly deny the existence of this collection of all sets, the awkward question then arises: what
is the set of all sets?
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1.1.3 Categories as enriched categories

It is useful to introduce the following notation, which also leads naturally into our third view of
what a category is: if C is a category then by C(A,B) will be denoted the collection of all arrows
with domain A and codomain B. These are called the hom-objects of the category. If these
collections are actually sets then we call these “hom-sets” and say that the category is enriched
in Set.

Notice that when a category is enriched in Set, the composition can be described as a family of
maps, one for each triple of objects in C:

mA,B,C : C(A,B)× C(B,C) −→ C(A,C)

(where m is for multiplication). In addition, there must be an identity map 1A : 1 −→ C(A,A),
where 1 as an object represents a generic one element set 1 = {∗}. These maps must now satisfy
the two requirements imposed on a category (associativity and the identity laws):

C(A,B)× C(B,C)× C(C,D)
mABC×1 //

1×mBCD
��

C(A,C)× C(C,D)

mACD
��

C(A,B)× C(B,D) mABD
// C(A,D)

1× C(A,B)
1A×1//

π1 ))RRRRRRRRRRRRRR
C(A,A)× C(A,B)

mAAB
��

C(A,B)

C(A,B)× 1
1×1A//

π0 ))RRRRRRRRRRRRRR
C(A,B)× C(B,B)

mABB
��

C(A,B)

.

These requirements I have expressed as commuting diagrams - a style which we shall see much
more of as we progress.

This enriched category style of expressing the structure of a category is important as often
the hom-objects of categories are not simply unstructured collections of maps but themselves have
structure (e.g. Abelian categories, poset enriched categories, Cat-enriched categories, etc.). By
regarding a category in this manner we will be able to explain how the additional structure of the
hom-objects must interact with the composition of the category itself.

For enriched categories a very natural notion of subcategory is determined by taking a subcol-
lection of the objects and leaving the hom-objects and composition structure the same. This is
called a full-subcategory.

1.1.4 The opposite category and duality

Category theory is full of symmetries which are called dualities. The basic source of symmetry is
the ability to reverse arrows. Thus, given any category we may obtain a new category by keeping
everything the same except to switch the direction of the arrows. If we start with a category C and
flip the direction of the arrows we obtain a new category Cop. Observe now that anything which is
true of C now holds in the dual form in Cop. Thus, when we prove a result there is always another
result, obtained by reversing the sense, of the arrows which will also be true. This principle of
duality allows us to get double the bang for our buck!
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Often the prefix “co” (as in colimit, coequalizer, coproduct) is an indication that this is the
dual concept to that with this prefix removed.

Some categories are actually self-dual, thus Cop is in some sense the same as C. In this case
there is often an explicit translation (actually this is an example of a contravariant functor see
section 1.5.1) ( )∗ : C −→ Cop this has the following properties:

(i) If f : A −→ B then f∗ : B∗ −→ A∗;

(ii) If f : A −→ B and g : B −→ C then (fg)∗ = g∗f∗ and 1∗A = 1A∗ .

We shall say that such a translation is an involution in case (f∗)∗ = f for each arrow. Sometimes
it is the case that for objects A = A∗ in this case we shall refer to the involution as a converse.3

1.1.5 Examples of categories

Below we outline a series of sources of examples of categories.

Preorders

Categories enriched in sets of cardinality at most 1 are called preorders. They are important as
they account for both equivalence relations and partially ordered sets. There is a considerable body
of knowledge about partially ordered sets and this provides an important sources of examples and,
often, a pattern to follow when developing categorical structures.

Notice when there is at most one arrow between any two objects the value of the composite of
any two maps is forced. Thus, it is simply a matter of whether maps exists between objects or not.
Thus we may view such a category as a relation on the objects.

A preorder may also be viewed as a category enriched in Set1, the category of sets with at most
one element (in other words the category containing, as objects, the empty set and the one element
set, and, as maps, all set maps between these objects).

A preordered set is set with a reflexive, transitive relation . A relation is reflexive on a set X
in case whenever x ∈ X we require (x, x) to be in the relation: one may think of this categorically
as giving the identity map on that object. A relation is transitive in case whenever (x, y) and
(y, z) are in the relation then (x, z) must be in the relation: one may view this categorically as
giving the composition.

A relation is an equivalence relation in case in addition it is symmetric that is whenever
(x, y) is in the relation (y, x) is also in the relation. This is equivalent to asking that every arrow
is an isomorphism (see section 1.2.1: a category in which all the maps are isomorphisms is called a
groupoid).

Clearly an equivalence relation viewed as a category has a converse involution.
A partially order set is a preorder with the addition anti-symmetry property that whenever

(x, y) and (y, x) are in the relation then x = y. This is equivalent categorically to asking either
that the only isomorphisms are the identity maps or, less stringently, that all isomorphisms are
endo-maps. This is a small illustration of how one notion for a poset can be generalized in different
ways for arbitrary categories.

3Notice that an involution cannot in general be stationary on maps. If an involution is stationary on maps one can
easily show that there is only one object in each connected component of the category and that the endomorphism
monoid on each object is a commutative monoid.
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Finite categories

The simplest category of all has no objects and no maps. This is called (for reasons which will be
explained later) the initial category. The initial category is certainly finite and there is not much
else one can say about it!

The next most simple category is the category with one object and exactly one arrow. This is
called the final category: it is also finite and there is not so very much more one can say about
it either. The one arrow is actually forced to be the identity map on the one object.

A finite category must have both a finite number of objects and a finite number of arrows. All
finite categories are necessarily enriched over finite sets (i.e. have finite hom-sets).

Before we leave finite categories let us look at how we may present them. A finite category as a
directed graph together with a multiplication tables for each object: each table will represent the
arrows which juxtapose at that object.

We may view a finite category F as having an underlying directed graph such as the one below:

A1A
&&

x1
11

x2

$$

B

1B

��
e1gg

y2

yy

y3

yy

y1qq

C

z1

ee

z2

99

z3

99

1B
dd

f1

MM
f2

11

We may then arrange the composition tables by the objects at which the arrows meet. For each
such table we may arrange the arrows coming in to the object (along the vertical axis) according
to the object from which they come. Similarly, along the horizontal axis we may arrange the maps
according to the object at which they end. The result of the composition (minimally) must then
be an arrow with the correct domain and codomain. One then must check that the composition
satisfies the identity and associative laws. The latter law is quite arduous to check as one must
consider triples of composable maps and check that the two possible compositions are in fact equal.

Finite categories are a great source of examples and counter-examples for simple categorical
facts. Notice also that there are two simple ways of constructing new finite categories from old
ones. Given two categories C and D one can form the disjoint union of their arrows and objects to
form a new category C + D, the coproduct, where the composition(s) are unchanged. Alternately
one can put the compositions in parallel to form C×D the product category. Here one takes the
cartesian product of the objects and of the arrows and define the composition pointwise, that is
if f : C1 −→ C2 in C and g : D1 −→ D2 in D then in C × D there is the maps (f, g) : (C1, D1)
−→ (C2, D2) and (f, g)(f ′, g′) = (ff ′, gg′).

Categories enriched in finite sets

A category all of whose homsets are finite is a category enriched in finite sets. Every finite category
is a finite set enriched category. However, as the category of finite sets, Setf , is certainly finite set
enriched not every fiite set enrched category is a finite category.
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A B C

A 1A x1 x2

A 1A 1A x1 x2

B y1 y1 e1 y3

C z1 z1 z3 f2

A B C

B y1 1B e1 y2 y3

A x1 1A x1 x1 x2 x2

B 1B y1 1B e1 y2 y3

e1 y1 e1 e1 y3 y3

C z2 z1 z2 z3 f1 f2

z3 z1 z3 z3 f2 f2

A B C

C z1 z2 z3 1C f1 f2

A x2 1A x1 x1 x2 x2 x2

B y2 y1 1B e1 y2 y2 y3

y3 y1 e1 e1 y3 y3 y3

C 1C z1 z2 z3 1C f1 f2

f1 z1 z2 z3 f1 f1 f2

f2 z1 z3 z3 f2 f2 f2

Figure 1.1: Composition tables for F

Another example of a finite set enriched category is the category of finite interference graphs,
Intff . This category has object finite sets with a symmetric, anti-reflexive relation (S, ./). Explicitly
the relation satisfies:

• x ./ y ⇔ y ./ x,

• x ./ y ⇒ x 6= y.

A map between two objects in this category

f : (X, ./X) −→ (Y, ./Y )

is a map between the underlying finite sets such that

x ./ x′ ⇒ f(x) ./ f(x′).

Here is an example of a map which collapses the four cycle C4 onto the completely separated graph
S2:

•

NNNNNNNNNNNNN ppppppppppppp

•

• •

• •

g

��
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As we shall discover this category, and its brother Intf which allows infinite interference graphs,
has alot of interesting structure.

Sets

There are various categories we may form from the category of sets. The primary category, denoted
by Set, is the category of sets and functions. However, there are two other variants which we shall
want to use as examples: the category of relations, Rel, and the category of partial maps, Par.

The category of relations Rel is given by the following data:

Objects: Sets;

Maps: Relations R : X −→ Y ;

Composition: RS = {(x, z)|∃y.(x, y) ∈ R ∧ (y, z) ∈ S};

Identities: 1X = {(x, x)|x ∈ X}.

The category of sets and partial maps, Par, and the category of sets and functions, Set, itself,
can be seen as subcategories of this category. The category of partial maps is the subcategory with
the same objects but only those relations which are definite, that is (x, y) and (x, y′) imply y = y′.
The category of functions is a further subcategory of the category of partial maps Par with the
same objects but with the maps restricted to those definite relations which are total. A relation
R : X −→ Y is total in case for every x ∈ X there is a y ∈ Y such that (x, y) ∈ R.

Notice that neither of these subcategories are full-subcategories as we are strictly reducing the
set of maps between objects (in most cases!).

The category of relations has a converse ( )o : Relop −→ Rel obtained by reversing the ordered
pairs. This converse operation, however, is not inherited by either the category Par or Set. The
relations in Rel may also be ordered by inclusion: this makes the category poset enriched. This
enrichment is inherited by Par: for Set this partial order is discrete (in the sense that two things
are related only if they are the same).

Monoids

A category which has one object and a set of maps is a monoid in Set. Monoids have been
extensively studied in their own right. For example group theory is the study of monoids all of
whose maps are isomorphisms (see section 1.2.1) and these besides being monoids are examples of
categories.

There are large numbers of finite groups, larger numbers of finite monoids and, thus, by impli-
cation there are even larger numbers of finite categories!

Vector spaces

Let R be any rig (this a ring without the “n” for negatives), that is a set with an addition
(a commutative associate operation x + y with an identity 0) and a multiplication (that is an
associative not necessarily commutative operation x · y with a unit 1) such that

x · (y + z) = x · y + x · z and (y + z) · x = y · x+ z · x,
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x · (y · z) = (x · y) · z and x · 1 = x = 1 · x

x · 0 = 0 = 0 · y

then we may form Mat(R) the category of R–matrices. This category has objects the natural
numbers and maps n×m–matrices with the usual multiplication.

Somewhat unusually we also allow 0×n and n×0 matrices. The composites with these “empty”
matrices are themselves empty.

Notice that Mat(R) has a converse involution given by transposition.

A special example of this category which is very well-studied is Mat(K) where K is a field (such
as R).

Path categories

Given a directed graph G we may form a category from it which we call the path category of G,
denoted Path(G). The objects are the same as those of G but the arrows are sequences of arrows
in G which juxtapose. The composition is, as might be expected, given by concatenation.

More formally, the arrows in Path(G) are given by triples (A, [g0, .., gn], B) where, when the list
of maps is non-empty, A = D0(g0), B = D1(gn), and D1(gi) = D0(gi+1) for i = 0, ..., n− 1. When
the list is empty we insist that A = B which gives us maps of the form (A, [], A) for each object
A: these will serve as the identity maps. We define D0(A, l, B) = A and D1(A, l, B) = B and set
(A, l1, B)(B, l2, C) = (A, l1@l2, C), where @ is the usual concatenation operation.

Path(G) is an important category as we shall learnt it is the free category on a graph. However,
there are also some important modification of this example which are of traditional importance in
Computer Science: as a preview of things to come, we briefly outline these modifications.

The first modification is to allow the arrows from A to B to be (regular) subsets of the set of
all paths from A to B. This means that besides concatenation we need to allow the formation of
unions of sets of paths and of the Kleene star of all endo-path sets. The composition of one set of
paths with another is given by taking the composite of all possible pairs.

In this category f(g ∪ h) = fg ∪ fh and (f ∪ g)h = fh ∪ gh. This allows us to do a matrix
construction and to form Reg(G):

Objects: Lists of objects of G, e.g. [G1, .., Gn]

Maps: Matrices of regular subsets

[ai,j ] : [G1, .., Gn] −→ [G′1, .., G
′
m]

where ai,j : Gi −→ G′j .

Composition: Matrix multiplication where multiplication is composition and addition is union:

[ai,j ][bj,k] = [
⋃
j

ai,jbj,k]

Identities: Identity matrices with the singleton set consisting of the identity path on the diagonal
and empty sets off diagonal.
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Those familiar with the translation from a finite automaton into a regular language will know
there is an interesting additional operation (expressed using the Kleene star) on these matrices
which allows one to reduce the dimension across a common input and output state: essentially this
operation allows “feedback” and makes that state “internal” to the matrix.

For a 2-dimensional matrix this operation works as follows:

traceX

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 : [A1, A2, X] −→ [B1, B2, X]


=

[
a11 ∪ a13a

∗
33a31 a12 ∪ a13a

∗
33a32

a21 ∪ a23a
∗
33a31 a22 ∪ a23a

∗
33a32

]
: [A1, A2] −→ [B1, B2]

where ( )∗ is the Kleene star operation. This operation is the basis of the translation of finite state
machines into regular languages. The idea is to view a finite state machine (with ε-transitions)
as a matrix in this category: the domain is arranged to consist of a distinguished start state and
the internal states while the codomain is a distinguished final state and the internal states. The
operation of removing states can then be used to eliminate rows and columns until one obtains a
regular expression from start state to final state.

We shall see the Kleene star is equivalent to having the categorical structure of a trace (see
Chapter ??).

Programming languages

We may think of a programming language as being a given by a collection of types which have
programs defined between them. The ability to compose programs and the presence of the “do
nothing” program together with the expectation that these will satisfy the basic axioms of a category
means that programming languages may be modeled by categories.

Given a programming language there then is the question of which category precisely it de-
scribes. Given that many programming languages have grown in an ad hoc way this is likely, in
general, to be a messy question. However, one might expect that for simple programming languages
this would be an easy question to answer. Now there is always the “term model” to fall back on,
that is the programming language itself with the equalities that should hold. However, this is
regarded, rightly, as a less than satisfactory answer: instead an answer which allows the language
to be modelled in some other well-understood mathematical structure is sought.

These are are generally known as semantic issues: formally one is seeking a functor with certain
properties from the programming language into a category (the “semantics”) which is independently
constructed and understood. One usually would require the functor to be full or faithful: sometimes
as program equality is not well-understood one takes equality to be “semantic equality” and, thus,
the main concern becomes the fullness.

Surprisingly this task turns out to be far from simple. In fact, it has only been with the advent
of game theoretic models that solutions to these semantic issues have even begun to emerge. These
semantics based in game theory are actually very subtle combinatorial models and they reflect
programming constructs in a surprisingly faithful manner. Furthermore, it is clear that game
theoretic models provide a rich source of material for providing constructions of free categories
with various constructs.
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More sceptically, these game theoretic models may also be viewed as simply a combinatorial
re-expression of syntax. Thus, it might be argued, that the, perhaps Platonically inspired, task of
providing a completely independent semantics has not really been fulfilled. To a mathematician –
and particularly a category theorist, these philosophical issues, of course, have an extremely hollow
ring. Mathematics is after all about finding connections between concepts: necessarily things which
are close together are connected!

The pursuit of semantics is a major theoretical direction in programming languages. However,
there is another direction which is considerably less traditional but, nonetheless, of greater practical
importance. One can ask which constructs should be present in a good programming language.
This is a seemingly rather vague question, however, one can give a reasonable answer to such
a question if one understands the theory of programming constructs. Category theory provides
a powerful mathematical tool for addressing this sort of question: it gives a landscape view of
the constructs involved in programming and how they can be fit together to make reasonable
programming environments.

1.1.6 Exercises

(1) Prove that the first two definitions of a category are equivalent. Explain why the third is not
quite equivalent (i.e. what precisely is the effect of being enriched over Set).

(2) Provide an example of a preorder which has an involution which is not a converse.

(3) Check that the finite category F is really a category. Is Fop the “same” category as F (if indeed
F is a category!).

(4) The category 2 is

A1A
&& a // B 1Bff

What do the categories 2 + 2 and 2× 2 look like?

(5) Write a program to find all (non-isomorphic) categories with n-objects and m-arrows. How
many categories are there with 1,2,3,4, and 5 arrows?

(6) Show that Path(C) is a category.

(7) Prove carefully that Reg(G) is a category.

(8) Provide an example of a category enriched over finite sets which is not a finite category.

(9) Here is an illustration of how two categories can have the same objects and maps but a com-
pletely different composition structure. Consider sets with relations but alter the composition
to be:

RS = {(x, z)|∀y.(x, y) ∈ R ∨ (y, z) ∈ S}.
Prove that this forms a category (hint: what are the identities).

(10) Do the total relations form a subcategory of Rel?

(11) Prove that Mat(R) is a category as defined and that transposition is really a converse involution.
If you are ambitious show that Mat(R) is a category in which transposition is a converse
whenever R is a rig.
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(12) (Harder) Show that Setop is the category of atomic Boolean algebras with (arbitrary) meet and
join preserving maps.
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1.2 Basic properties of maps

A map in a category can have a number of properties. The most basic of these are outlined in this
section. In this section we also begin to see value of the dualities which are present in category
theory.

1.2.1 Epics, monics, retractions, and sections

A map f : A −→ B in a category C is monic (short for a monomorphic map – sometimes abbreviated
to “mono”) in case whenever k1f = k2f then k1 = k2. Dual to the notion of a monic map is that
of an epic map: a map f : A −→ B in a category C is epic (short for epimorphic map – sometimes
abbreviated to epi) in case whenever fh1 = fh2 then h1 = h2. The fact that a map is monic does
not stop it from being epic as well: a map that is both epic and monic we shall refer to as being
bijic.

A map f : A −→ B is a section in case there is a map f ′ : B −→ A such that ff ′ = 1A. Dual to
a section is a retraction: a map g : A −→ B is a retraction in case there is a map g′ : B −→ A such
that g′g = 1B. It is quite possible for a map to be both a section and a retraction: such a map is
called an isomorphism. Clearly identity maps are always isomorphisms.

The following gives some basic facts concerning these properties:

Lemma 1.2.1 In any category C it is the case that:

(i) The composition of monics is monic;

(ii) The composition of epics is epic;

(iii) If fg is monic then f is monic;

(iv) If fg is epic then g is epic;

(v) All sections are monic;

(vi) All retractions are epic;

(vii) The compositions of sections is a section;

(viii) The composition of retractions is a retraction;

(ix) If fg is a section then f is a section;

(x) If fg is a retraction then g is a retraction.

Isomorphisms are rather special: if f : A −→ B is a map we shall refer to a map g : B −→ A such
that fg = 1A as the right inverse of f . Similarly a map h : B −→ A such that hf = 1B will be
referred to as the left inverse of f . A section has a right inverse and is itself a left inverse, while
a retraction is a right inverse and has a left inverse. An isomorphism has both a left inverse and a
right inverse:

Lemma 1.2.2 If f : A −→ B has a left inverse h and a right inverse g then h = g.
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Proof: Observe f is both epic and monic as it is both a section and a retraction. Thus, fh =
fh1A = fhfg = f1Bg = fg = 1A so that h is also a right inverse of f . But then fh = fg and as f
is epic h = g. �

As the inverse of an isomorphism f is unique we shall denote it f−1. We have the following
alternative characterizations of isomorphisms:

Lemma 1.2.3 The following are equivalent:

(i) f is an isomorphism;

(ii) f is an epic section;

(iii) f is a monic retraction.

Proof: If f is an isomorphism then the remaining characterizations are immediate. As these
characterizations are dual it suffices to complete the proof to show that an epic section is an
isomorphism. It suffices to show that f is a retraction: let f ′ be a right inverse of f then ff ′f = f
now, as f is epic, this implies f ′f = 1B showing f is a retraction. �

1.2.2 Idempotents

An endo-map e : A −→ A is an idempotent if ee = e. Notice that if h : A −→ B is a retraction
with left inverse h′ : B −→ A then hh′ is an idempotent as hh′hh′ = h1Bh

′ = hh′. We shall say
that an idempotent e is split if there is a retraction h with left inverse h′ such that e = hh′. While
an idempotent may be split in many different ways there is an important a sense in which there is
essentially just one splitting:

Lemma 1.2.4 Suppose e : A −→ A is an idempotent and h1 : A −→ B1 has left inverse h′1 and
h2 : A −→ B2 has left inverse h′2, with e = h1h

′
1 = h2h

′
2 then there is a unique isomorphism k : B1

−→ B2 such that h1k = h2 and kh′2 = h′1.

Proof: Set k = h′1h2 then the required identities hold. Furthermore k is an isomorphism as
k−1 = h′2h1 (as h′1h2h

′
2h1 = h′1eh1 = h′1h1h

′
1h1 = 1B1 and similarly for the other composite

h′2h1h
′
1h2 = 1B2). Suppose k′ also satisfies h1k

′ = h2 then h1k
′ = h1k and as h1 is a retraction and

therefore epic it follows that k = k′. �

We shall say that the splitting of an idempotent is unique up to unique isomorphism. It is
certainly not the case that idempotents will generally split in a category, however, there is an
important construction which allows one to freely split idempotents.

Let C be any category. Let Split(C) be the following category:

Objects: Idempotents e of C;

Maps: (e1, f, e2) : e1 −→ e2 where e1 : A −→ A and e2 : B −→ B is a map f : A −→ B in C such
that e1fe2 = f ;

Compositions As in C on the middle coordinate: (e1, f, e2)(e2, g; e3) = (e1, fg, e3).
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Identities: the identity for an idempotent is that idempotent (e, e, e) : e −→ e.

Now it is not hard to show that this is a category. What is interesting about this category is
that all the idempotents in it split:

Proposition 1.2.5 Let C be any category then C is a full subcategory of Split(C) and all idempo-
tents split in Split(C).

Proof: We may regard C as a full subcategory of Split by letting the identity maps (which are
certainly idempotent) represent the objects of C in Split(C).

Suppose (e, k, e) : e −→ e is an idempotent in Split(C) then k is an idempotent in C. But then
we have maps (e, k, k) : e −→ k and (k, k, e) : k −→ e in Split(C) and it is easy to check that these
provide a splitting for (e, k, e). �

To motivate why this construction may be of more than passing interest consider the category of
partial recursive functions on the natural numbers, Rec. Each enumerable set may be characterized
by an idempotent which is the computation which returns the element unchanged when it is in the
recursively enumerable set but simply does not terminate on elements outside. In Split(Rec) there
is an object or type for each enumerable set. Thus, this gives an example of a unityped system
from which can be constructed a very rich type system.

1.3 Finite set enriched categories and full retractions

Categories enriched in finite sets have a number of rather special properties: a notable one is that
they always have a “fully retracted skeleton”. An object is fully retracted in case its only idempotent
endomorphism is the identity map. In a finitely enriched category – in which idempotents split –
every object has, up to isomorphism, a unique full retract. The full subcategory of fully retracted
object is the fully retracted skeleton of the category. This skeleton has no non-isomorphic sections
or retractions.

Recall that a category is enriched in finite sets in case it is an ordinary (Set-enriched) category
in which all the homsets are finite sets. This does not mean the number of objects is finite as the
category of finite sets, Setf , is certainly finite set enriched – yet by no means has a finite number
of objects. Indeed, any Setf -concrete category (i.e. a category with a faithful functor to finite sets)
will be finite set enriched so that the category of finite groups, rings, or fields are all examples of
finite set enriched categories.

A peculiar property that finite set enriched categories have is that the iterates It(f) = {f0, f1, f2, ...}
of any endomap f form a finite set. This allows a map f� to be associated to each endomap f which
makes f a (regular) inverter of f�, that is f�ff� = f� and provides an idempotent 〈f〉 = f�f = ff�.
A category in which one can associate to each endomap, f , an endomap f� satisfying, in particular,
these properties is said to be retractive. In a retractive category if an object has a retractions to
fully retracted object (i.e. has a full retraction) then that object is, up to isomorphism, unique. A
retractive category in which each object has a full retraction is said to be fully retractive.

1.3.1 Regular inverters and absorbers

A (regular) inverter of a map g : A −→ B, is a map f : B −→ A such that gfg = g. Conversely,
we call g a (regular) absorber for f when gfg = g. Inverters and absorbers arise whenever one
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has two retractions r and r′:
A

r−−→ R
r′←−− B

Let s and s′ be the left inverses of r and r′ respectively, then rs′ is an inverter for r′s as as
r′srs′r′s = r′s and similarly r′s is an inverter for rs′. Thus, whenever two objects have a retract
in common they will be connected by maps which invert each other.

Conversely, when idempotents split, being connected by a map with a inverter implies that the
domain and codomain of the map have a common retract. To see this first note that if g has an
inverter f then both fg and gf are idempotents and in the idempotent splitting

g : gf −→ fg and fgf : fg −→ gf

but also g(fgf) = gf and (fgf)g = fg so that these idempotents are isomorphic. This means we
have, as above, a pair of retractions

1A
fg−−→ fg

fg←−− 1B

exhibiting a common retract of the objects.
Notice that if f is an inverter for g then g need not be an inverter for f . However g will be an

inverter for fgf as (fgf)g(fgf) = fgf , and fgf will be an inverter for g as g(fgf)g = g. Thus
whenever f is an inverter for g then g and fgf are mutual inverters.

If g is an absorber for an endomap h : A −→ A (so h is an inverter for g with ghg = g) we shall
say g is centrally absorbs h in case gh = hg: this says that is the two idempotents generated by
the inversion are the same. Clearly, in a retractive category h� is a central absorber of h in this
sense. When g centrally absorbs h then this means gnhn = (gh)n = gh and hngn = (hg)n = hg. A
consequence is that if g and g′ centrally absorb h with gn = g′n for some n ≥ 1 then g = g′ as:

g = ghg = (gh)ng = gnhng = g′nhng = (g′h)ng = g′hg

= g′(hg)n = g′hngn = g′hng′n = g′(hg′)n = g′hg′ = g′

The endomaps which centrally absorb h can be ordered: suppose g1 and g2 are absorb h, then say
g1 ≤ g2 if g1hg2 = g2 = g2hg1. This is clearly a reflexive relation. It is transitive as if g1 ≤ g2 and
g2 ≤ g3 then

g1hg3 = g1h(g2hg3) = g2hg3 = g3 and g3hg1 = (g3hg2)hg1 = g3hg2 = g3.

Furthermore, it is antisymmetric as, if g1 ≤ g2 and g2 ≤ g1 then g1 = g1hg2 = g2.
A g is a minimal central absorber of h : A −→ A in case for any other g′ which centrally

absorbs h we have g ≤ g′ (that is g′hg = g′ = ghg′). Clearly if h has a minimal central absorber it
must be unique.

A category is retractive in case each endomap h has a minimal central absorber h� such that

whenever A
f−−→ B

g−−→ A then (fg)�f = f(gf)�. Notice that being retractive is a property of the
category, thus a category is either retractive or not: the structure on endomaps given by f 7→ f� is
uniquely determined.

Example 1.3.1

(1) Posets are always retractive categories (indeed every object is fully retracted – see below).
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(2) Finite sets is Setf a retractive category.

(3) Clearly an inverse always is a minimal central absorber, thus, every groupoid is an example of
a retractive category.

(4) An arbitrary product of retractive categories is retractive with (fi)
�
i∈I = (f�i )i∈I .

The canonical source of retractive categories, however, is categories which are enriched in finite
sets. However, we shall use a slightly more general class of categories to develop the next few
results.

A category has finite iterates in case for each endomap f the set It(f) := {fn|n ∈ N} is finite:

Proposition 1.3.2 Any category with finite iterates is retractive.

Proof: Suppose f : A −→ A then there are smallest numbers k, h, h′,m > 0 such that fk = fk+h

and m · h = k + h′. Set f� = f2·m·h−1 = fk+h′+m·h−1 = fk+h′−1 then certainly ff� = f�f .
Furthermore,

f�ff� = f2·m·h−1ff2·m·h−1

= f2·m·hfk+h′−1

= fk+2·m·hfh
′−1

= fk+h′−1

= f�

To show f� is a minimal central absorber for f we suppose we have another central absorber g
for f we must show that f�fg = g = gff�. As f and g commute it follows that f� and g commute
so we immediately have f�fg = gff�, thus it suffices to show f�fg = g. For this we have:

g = gfg = (gf)2·m·hg

= g2·m·hf�fg

= g2·m·hf�ff�fg

= (gf)2·m·hf�fg

= gff�fg

= f�fg.

It remains to show that (fg)�f = f(gf)�. For this we observe:

(fg)2·m·h−1f = f(gf)2·m·h−1

so that if (gf)� = (gf)2·m·h−1 we are done.

Lemma 1.3.3 In any category if fg repeats with cycle length h after step k (i.e. we have (fg)k =
(fg)k+h) then gf repeats with cycle length h as well and it starts repeating at or before k+ 1 steps.
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Proof: If fg starts repeating at k then for any k′ > 1 we have

(gf)k+k′+h = f(fg)k+h+(k′−1)g = f(fg)k+(k′−1)g = (gf)k+k′ .

As this works for all k′ > 1 it follows gf repeats no later than k + 1. �

Now (gf)2·m·h−1 = (gf)2·(k+h′)−1 if the cycle length of gf is less or equal to k (that is k or k−1)
we are done. If the cycle length is k + 1 however and h′ = 1 we must use the fact that

(gf)2·(k+h′)−1 = (gf)2·((k+1)+h)−1 = rgf .

This completes the proof of proposition 1.3.2. �

Corollary 1.3.4 All finite set enriched categories are retractive.

1.3.2 Fully retracted objects

An object is fully retracted in case its only idempotent endomap is the identity map.

Lemma 1.3.5 In a retractive category:

(i) If two fully retracted objects are connected (that is there are maps both ways between them)
then all maps between them are isomorphisms.

(ii) The endomorphisms of a fully retracted object form a group.

(iii) Any two fully retracted objects which are retracts of the same object are isomorphic.

Proof: Suppose A and B are fully retracted and f : A −→ B and g : B −→ A then (fg)�fg =
fg(fg)� = 1A so fg is an isomorphism. This means f is a section. But similarly gf is an isomor-
phism so f is a retraction as well and so is an isomorphism.

Two fully retracted objects which are retractions of the same object are connected so isomorphic.
�

We shall call a category fully retractive in case the category is retractive and every object
can be fully retracted.

Lemma 1.3.6 An object in a retractive category has a full retraction if and only if there is an
idempotent, e, on that object which splits such that any other idempotent e′ with ee′ = e′ = e′e has
e′ = e.

Proof: The splitting of e gives a full retracted object as any idempotent on that object would
induces an idempotent e′ on the original object such that e′e = e′ = e′e and is would imply e′ = e
making the idempotent the identity. �

Corollary 1.3.7 Every category with finite iterates – in particular any finite set enriched category
– in which idempotents split is fully retractive.
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Proof: The number of idempotents on an object is finite. Define a preorder on idempotents by
e ≤ e′ if ee′ = e. This is clearly reflexive and it is transitive as e ≤ e′ ≤ e′′ means ee′ = e and
e′e′′ = e′ so that ee′′ = (ee′)e′′ = e(e′e′′) = ee′ = e. This preorder must have least elements: pick
such a least element e0. Now suppose there is an idempotent e : e0 −→ e0 then is ee0 = e = e0e and
so e ≤ e0, as e0 is minimal e0 ≤ e so e0 = e0e = ee0 = e. Thus e0 exhibits the property required by
lemma 1.3.6 to produce when split a fully retracted object. �

In a retractive category X which has binary products we shall say that a full-subcategory, F, is
down-closed in case: whenever X ∈ F and there is a map X −→ Y then Y ∈ F. A down-closed
full subcategory is principal, if it is generated by one object (so is all full subcategory determined
by all the objects which have a map to that object).

Proposition 1.3.8 In a fully retracted category the principal down-closed full subcategories are in
bijective correspondence to the isomorphism classes of fully retracted objects.

Proof: If a down-closed full subcategory is generated by an object A then the filter must contain
and be generated by any retraction of A. Therefore, one can use a fully retracted subobject to
generate the filter. On the other hand, suppose two different fully retracted objects generate a filter
then they must be connected and, therefore, be isomorphic. �

The principal filters of a fully retractive category are partially ordered and this gives a par-
tial ordering on the fully retracted objects which corresponding to the partial order given by the
existence of morphisms between them.

Remark 1.3.9 The intersection of two principal filters is principal, provided the category has
coproducts, see the chapter 3 on limits, as it is generated by the full retraction of the coproduct of
the two generating fully retracted objects. Similarly the join of the two filters is generated by the
full retraction of the product of the two fully retracted objects.

1.3.3 Exercises

(1) Show that in Set

(a) a map f is monic if an only if it is injective (f(x) = f(y) implies x = y);

(b) a maps f is epic if and only if it is surjective (for every y in the codomain there is an x
such that f(x) = y);

(c) all epics are retractions;

(d) not all monics are sections (hint: consider the empty set);

(e) all bijics are isomorphisms.

(2) Give example(s) of finite categories in which:

(a) Not all monics are sections;

(b) Not all epics are retractions;

(c) Not all bijics are isomorphisms;

(d) Not all idempotents are split.
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(3) Prove lemma 1.2.1.

(4) Describe the epics, monics, sections, and retractions in Rel.

(5) Describe the epics, monics, sections, and retractions in Par.

(6) Describe the epics, monics, sections, and retractions in Path(G).

(7) (Hard!) Describe the epics, monics, sections, and retractions in Reg(G).

(8) Prove that if an idempotent is either epic or monic then it is the identity map.

(9) Prove that Sub(A), the category of subobjects of A, defined for an object A ∈ C as the category:

Objects: monics m : A′ −→ A;

Maps: f : m1 −→ m2 maps in C such that fm2 = m1;

Identities: 1A′ : m −→ m as in C;

Composition: As in C.

is a preorder.

(10) Given an example of two idempotents e1 and e2 such that neither e1e2 nor e2e1 are idempotents.
Show that if e1e2 = e2e1 (the idempotents commute) then the composite e1e2 is an idempotent.

(11) A monoid M is commutative if for every element x and y it is the case that xy = yx. A monoid
is a semilattice if, in addition, every element is idempotent. Describe the maps of Split(M)
when M is a semilattice.

(12) Do all idempotents split in Rel? (Hard: give a description of the category Split(Rel) - hint:
what is a completely distributive lattice! Look this up!).

(13) (Hard!) What do the idempotents in Reg(G) look like? (Open problem!) Give a description of
Split(Reg(G)).

(14) Find some (or all) of the fully retracted objects in:

(a) Finite sets and maps?

(b) Finite G-sets for a group?

(c) Finite groups and homomorphisms?

(15) The category of finite interference graphs is fully retractive by the results proven in this section.
Recall that an interference graph is n-colorable if and only if it has a map to the “chaotic” in-
terference graph on n-elements. Thus to decide n-colorability amounts to deciding the presence
of such a map.

A well-known (solved) problem is the four color theorem. Show that one can reduce the problem
to showing that there are no planar complete fully retracted planar graphs with five nodes or
more by the following steps:

(a) Prove that an interference graph is n-colorable if and only if it’s full retraction is.
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(b) The four color problem is concerned only with planar graphs: prove that a full retraction
of a planar graph is always planar.

(c) It suffices therefore to consider the four colorability of fully retracted planar graphs. If
these where finite in number the four color problem would be easy! Show that this is not
the case by considering family of interference graphs:

• •

@@@@@@@

~~~~~~~
•

• • •

• •

@@@@@@@

~~~~~~~
• •

@@@@@@@

~~~~~~~
•

• • • • •

...

(d) Say that a planar graph is planar complete in case there is no edge which can be added
without destroying the property of being planar. Are the above graphs planar complete?

(e) Prove that planar graphs are four colorable if and only if planar complete graphs are
four colorable. Conclude that planar graphs are four colourable if and only if no planar
complete graphs with more than five elements is fully retracted!

1.4 Orthogonality and Factorization

In the category of Set a fundamental property is the ability to factorize each map into an epic
(surjective) map followed by a monic (injective) map. This, in fact, is a property which is enjoyed
by many categories “built” from Set. Our objective in this section is to develop the theory of
factorization systems.

In general, for a factorization system, it is not necessary for the classes of maps to have any
special relationship to epics and monics. A crucial property that they must satisfy is the orthogonal
condition and this is where we start with our development.

1.4.1 Orthogonal classes of maps

A map f : A −→ B is left orthogonal to a map g : C −→ D (or equivalently g : C −→ D is right
orthogonal to f : A −→ B) if for all maps h1 and h2, such that the outer square below commutes,
there is a unique k : B −→ C such that the two triangles below commute:

A
f //

h1

��

B

h2

��
k

��
C g

// D

Notice that left orthogonal and right orthogonal are dual notions
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Remark 1.4.1 The requirement that the cross arrow k is unique is sometimes too strong. We
shall say that f is weakly left orthogonal to g in case the cross map exists but is not necessarily
unique. Many of the results we shall prove generalize to this weaker notion. Furthermore, as
various notions of (process) simulation may be described using this notion it is of some importance
in computer science: in algebraic topology weak factorization systems play a fundamental role in
Quillen model structures.

Consider the following examples: :

(1) In Set the maps which are right orthogonal to the map

k : {0, 1} −→ {∗}; 0 7→ ∗
1 7→ ∗

are precisely the monomorphisms (injections).

(2) In Set the maps which are weakly right orthogonal to the initial map

z1 : {} −→ {∗}

are precisely the epimorphisms (surjections).

Let A be an arbitrary collection of maps in C then we may form the set of maps which are
right orthogonal to all the maps in A, we shall call this collection A⊥. Similarly we may form the
collection of maps which are left orthogonal to A which we shall denote ⊥A:

Lemma 1.4.2 If C is any category and A is any collection of maps then

(i) A⊥ contains all isomorphism;

(ii) Any x : X −→ Y which is in both A and A⊥ is an isomorphism;

(iii) A⊥ is closed to composition;

(iv) If gh is in A⊥ and h is monic then g is in A⊥;

(v) If gh and h are in A⊥ then g is in A⊥.

Proof:

(i) An isomorphism is obviously right and left orthogonal to all maps.

(ii) The trivial commuting square

X
x // Y

X x
// Y

has a reverse diagonal which gives the inverse of x.
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(iii) Suppose g1 and g2 are orthogonal to f and there is a commuting square

A

h1

��

f // B

h2

��
X g1

// Y g2

// Z

then viewing it slightly differently we obtain a cross map k2 as follows:

A

h1g1

��

f // B

h2

��k2~~
Y g2

// Z

Now as g1 is orthogonal to f , there is a unique cross maps k1 in

A

h1

��

f // B

k2

��k1~~
X g1

// Y

which has the desired property of a cross map for the original square.

(iv) We must show that g is orthogonal to f , so suppose k1g = fk2 then this happens if and only
if k1gh = fk2h. However, this square has a unique cross map v where fv = k1 and vgh = k2h,
now as h is monic we have vg = k2.

(v) We must show that g is right orthogonal to f . As above, suppose k1g = fk2 then as k1gh =
fk2h we have a unique cross map v such that fv = k1 and vgh = k2h:

A

k1

��

f // B

k2

��

v

~~

D

h
��

C g
// D

h
// E

Now consider the following square:

A

k1

��

f // B

k2

��

��

C

g

��

D

h
��

D
h

// E

as h ∈ A⊥ it follows that there is a unique cross map for the square. However, both vg and
k2 will serve, thus they are equal.
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�

There is a dual result for the maps which are right orthogonal to a class A of maps whose
statement we leave to the reader.

This means that if we start with some class A we may form A⊥ and we can then form ⊥(A⊥)
. Notice that A ⊆ ⊥(A⊥) and one might think that one can continue in this manner to enlarge A,
by

A ⊆ ⊥(A⊥) ⊆ ⊥(( ⊥(A⊥))⊥) ⊆ ....
however, this sequence stops after the first step once one has the largest class of maps orthogonal
to all the maps orthogonal to A.

The argument which show this is deceptively simple and uses standard facts about Galois
connections. We know that A ⊆ ⊥(A⊥) for any A and similarly that B ⊆ ( ⊥B)⊥: substituting A⊥
for B we obtain A⊥ ⊆ ( ⊥(A⊥))⊥. However, applying ( )⊥ to A ⊆ ⊥(A⊥) reverses the inequality
to give A⊥ ⊇ ( ⊥(A⊥))⊥. This means A⊥ = ( ⊥(A⊥))⊥ which in turn shows that the sequence
becomes stationary.

Lemma 1.4.3 Given a class A of maps there is a largest class of maps containing A, namely

⊥(A⊥), which is left orthogonal to the largest class which is right orthogonal to A, namely A⊥.

We shall call A⊥ and ⊥(A⊥) the maximal orthogonal classes of maps generated by A.

1.4.2 Introduction to factorization systems

We are now ready to introduce the general notion of factorization systems and establish some of
their basic properties.

A factorization system (E ,M) on a category C consists of two classes of maps E andM such
that:

[F.1] E and M contain all the isomorphisms,

[F.2] E and M are closed to composition,

[F.3] Every map f : A −→ B can be factorized into f = efmf where ef : A −→ Ef is in E and
mf : Ef −→ B is in M,

[F.4] If f = em = e′m′ where e, e′ ∈ E and m,m′ ∈M then there is a unique isomorphism k such
that ek = e′ and km = m′.

The following are some basic consequences of this definition:

Lemma 1.4.4 If X is a category with an (E ,M)-factorization system then

(i) E is left orthogonal to M;

(ii) Commutative squares fh2 = h1g have unique factorizations that is

A

h1

��

ef // Ef

k
��

mf // B

h2

��
C eg

// Eg mg
// D
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there is a unique map k making the smaller squares commute.

Proof:

(i) For M to be orthogonal to E there must be a unique cross map k for any square with upper
horizonal map in E and lower horizontal map in M:

A

f
��

e // B

g

��

k

~~
C m

// D

By factorizing the two vertical maps we obtain an isomorphism α by uniqueness of factoriza-
tion:

A

e(f)
��

e // B

e(g)
��

E

m(f)
��

α E′

m(g)
��

C m
// D

So we may set k = e(g)α−1m(f). It remain to show this k is unique. Suppose that if k′ is
an alternative map then we may factorize these maps to obtain a unique isomorphism β such
that ee(k)β = ee(k′) and βm(k′)m = m(k)m. Also, as km = g and k′m = g there is also
a unique isomorphism β1 such that e(k)β1 = e(k′) and m(k)m = β1m(k′)m. Now observe
that β1 = β as it also serves also as a comparison for the first factorization. Similarly, as
ek = f and ek′ = f there is also a unique isomorphism β2 such that β2m(k′) = m(k) and
ee(k)β2 = e(k′). However, as before we may argue β2 = β. This gives k = e(k)m(k) =
e(k)βm(k′) = e(k′)m(k′) = k′, as desired.

(ii) This is a straightforward application of the orthogonality.

�

There are various different ways to formulate a factorization system: an important way involves
specifying just one of the classes of maps. For a given class of maps, E , a map f has a maximal
E-factorization in case it can be factored as f = ef ′ where e ∈ E and so that the following
(modified orthoginality) property holds: in any commutative square

X
g //

h1

��

Y

h2

����
A e

// E
f ′
// B

with g ∈ E there is a unique cross map. We shall say a category has a maximal E-factorization
if every maps has a maximal E-factorization.

Dually we shall speak of a category having a maximal M-cofactorization.
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Proposition 1.4.5 The following are equivalent for a category C:

(i) There are two classes of maps E and M such that:

(a) Each E-map is left-orthogonal to each M-map;

(b) The E-maps are closed to composition on the right with isomorphisms (that is when α is
an isomorphism and f ∈ E then, when defined, the composite fα ∈ E);

(c) The M-maps are closed to composition on the left with isomorphisms;

(d) Each map can be factorized as f = em where e ∈ E and m ∈M;

(ii) (E ,M) are a maximally orthogonal pair of classes of maps which allows each map f : A −→ B
to be factorized into f = em with e ∈ E and m ∈M;

(iii) E is a class of maps containing all isomorphisms and closed to composition such that each
map f : A −→ B has a maximal E-factorization f = ef ′.

(iv) M is a class of maps containing all isomorphisms and closed to composition such that each
map f : A −→ B has a maximal M-cofactorization f = f ′m.

(v) (E ,M) is a factorization system.

Proof: Notice first that (iii) and (iv) are dual so it suffices to prove the equivalence with just one
of these: we shall choose the first.

(i) ⇒ (ii) We must show that under these conditions (E ,M) are maximally orthogonal. By
symmetry it suffices to show that if g is left-orthogonal to M then g ∈ E . Toward this
factorize such a g as g = em then we have

A
g //

e
��

B
k

~~
E m

// B

showing that m is a retraction. But also now the following commutes:

A

e
��

e // E

m
��

mk

~~~~~~~~~~

E m
// B

which, by uniqueness of cross maps, means mk = 1E , showing m is an isomorphism. But now
it follows g = em ∈ E , as e ∈ E and m is an isomorphism, completing the proof.

(ii) ⇒ (iii) Using lemma 1.4.2 we know E is closed to composition and contains all isomorphisms.
We also know we can factorize each map: it only remains to show that this is a maximal
E-factorization. However, this follows immediately from orthogonality.
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We notice, in this case, that if f = e′f ′ where e′ ∈ E then by orthogonality we have a unique
k such that

A
e′ //

e
��

E′

f ′

��

k

~~
E m

// B

and by the dual of lemma 1.4.2 (v) it follows that k ∈ E . Thus, all E-factorizations of maps
factor by an E-map through the maximal factorization.

(iii) ⇒ (v) We set M to be the maps which when E-maximally factorized have their E-factor an
isomorphism.

[F.1] It suffices to prove thatM contain all isomorphisms. Let g : A −→ B be an isomorphism
then g has a maximal factorization as g = eg′ but this means, as g is an E-map, we have

A
g // B

k~~
A e

// E m
// B

a k such that km = 1B and gk = e. But this means that mk is the identity as it mediates
between the maximal factorization and itself:

A
e // E

m
��

mk

~~
A e

// E m
// B

This, in turn, makes m and k isomorphisms and thus e = gm−1 is an isomorphism.
Thus, [F.1] holds.

[F.2] Suppose now that m1 and m2 are M-maps consider the maximal E-factorization of
m1m2, m1m2 = em, then we have unique k2 and k1 such that:

A
e // E

m
��

k1

ww
k2~~

A m1

// B m2

// C

induced by the maximal factorizations of m2 = 1Mm2 and m11Am1 respectively. How-
ever, it is easy to see that k1 is not only a retract but also a section using the fact that
e ∈ E and m1m2 = em is a maximal factorization and

A.
e // E
k1e

~~
m
��

A e
// E m

// C

commutes it follows that k1e = 1E .

Thus, e is an isomorphism and M is closed to composition. This means [F.2] holds.
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[F.3] The fact that maps can be factorized E-maximally as f = ef ′ is assumed: it suffices to
show that f ′ is in M: that is if f ′ is maximally factorized as f ′ = e′f ′′ then e′ must be
as isomorphism. To see this consider the two cross maps obtained from:

A
e //

e
��

E

f ′

��

v

~~
E

e′
// E′

f ′′
// B

A
e // E

e′ // E′

f ′′

��w
~~

A e
// E

f ′
// B

where note that ee′ ∈ E as it is closed to composition. It is clear that w is inverse to v
and so they are isomorphisms. However, clearly also in the first diagram e′ also serves
as a cross map, whence v = e′ and e′ is an isomorphism.

[F.4] The property of being a maximal E-factorization for M-maps amounts now to the re-
quirement of orthogonality.

(v) ⇒ (i) Immediate.

�

We shall say that a system of mapsM is left factor closed if whenever fg ∈M then f ∈M.
Similarly a system of maps E is right factor closed if whenever fg in E then g ∈ E . Thus,
the monics and the sections are left factor closed while the epics and retractions are right factor
closed. It is important to realize that the M-maps of a factorization system need not necessarily
be left-factor closed. Indeed this is a rather special condition upon which we shall improve when
we have discussed limits. In the meantime we have the following rather technical observations for
arbitrary factorization systems:

Lemma 1.4.6 If (E ,M) is a factorization system then

(i) If fg ∈M and g ∈M then f ∈M,

(ii) If fg ∈ E and f ∈ E then g ∈ E,

(iii) M is left factor closed if and only if all E-maps which are sections are isomorphisms (i.e. M
contains all sections);

(iv) E is right factor closed if and only if all M maps which are retractions are isomorphisms (i.e.
E contains all retractions).

Proof: The first two parts are dual and follow immediately from lemma 1.4.2 (v).
It suffices to prove one of the latter two statements as they are dual. Suppose therefore that

M is left factor closed and s ∈ E has a right inverse then this right inverse makes s a left factor of
an M-map (the identity) and so s is in M as well. Thus, s is an isomorphism.

Conversely, if fg ∈M and yet f = em where e ∈ E then the square:

A
e // B

k

��

mg

��
A

fg
// D
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has a unique cross map making e a section and, thus, by assumption e is an isomorphism. Whence
em = f ∈M. �

Consider the following examples:

1. Set has a factorization system of maps into surjections followed by injections. This factoriza-
tion clearly has the M-maps left factor closed and the E-maps right factor closed.

2. Consider the category of interference graphs, Intf. It is clear that maps between interference
graphs can be factorized into epimorphisms generated by equivalence relations on the finite
sets which are disjoint from the interference. Two equivalence classes interfere precisely when
any two of their elements interfere. And monics, that is maps which are injective on the
underlying sets.

However, we are interested in some other more unusual factorization systems. Let 2 be the
graph consisting of two isolated points and S2 the graph of two points, x and y, which interfere
x ./ y. There is an obvious map k : 2 −→ S2 which picks out the two points of S2.

• •

• •

k

��

The maps, R, orthogonal to k are exactly the maps f which reflect the interference (that is
such that f(x) ./ f(y)⇒ x ./ y). Maps which are orthogonal to interference reflecting maps,
S, are those which are isomorphism on the underlying sets but which increase the amount of
interference or separation. It is not hard to see that (S,R) provides a factorization system
on Intf.

3. Consider again the category of interference graphs, Intf. Let p be the map which picks out a
point in S2:

•

• •

p

�� 
  

  
  

  
  

Then the maps orthogonal to this are the maps which preserve the degree of each node. We
shall call this class C, the class of cover maps. The degree of a node in an interference graph
is the number of other points which are connected to it.

Can you characterize the maps which are left orthogonal to the cover maps? Do these maps
and covers provide a factorization system on the category of infinite interference graphs?

1.4.3 Exercises

(1) Verify that the maps which are left orthogonal to the injections in Set are the surjections.
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(2) Describe what a maximal orthogonal pair is in a poset.

(3) Let Set2 be the category whose objects are maps of Set and whose maps are commutative
squares. Thus, (h1, h2) : f −→ g is a map if and only if

A

h1

��

f // B

f
��

C g
// D

Composition is by pasting of squares. Let D0 be the collection of maps which have h1 an iso-
morphism then prove that D0 is a maximal right orthogonal class. Describe the left orthogonal
class (D0)⊥. Show that this gives a factorization system.

(4) A category is completely orthogonal in case every square has a unique cross-map. Show that
groupoids are always completely orthogonal. Show that the path category on a directed graph
is completely orthogonal.

(5) (The Zappa-Szép product) Sometimes a category X has a strict factorization system this consist
two classes of maps E andM which are closed to composition and are such that each map has
a unique factorization as an E-map followed by a M-map. We may regard the two classes, E
andM, as two categories in their own right on the same set of objects. The composition in the
whole category can then be viewed as producing a pair (f, g) with f ∈ E and g ∈ M so that
∂1(f) = ∂0(g). The composition can then be broken down: (f, g)(f ′, g′) = (f(g / f ′), (g . f ′)g)
where if f : A −→ B, g : B −→ C, f ′ : C −→ D, g′ : D −→ E then g / f ′ : B −→ g ./ f ′

g . f ′ : g ./ f ′ −→ D so that we have:

C
f ′

##GGGGGGGGG

B

g/f ′ ""FFFFFFFF

g
;;wwwwwwwww

D

g ./ f ′
g.f ′

<<xxxxxxxx

There are thus three induced functions starting at the arrow set ME = {(g, f)|g ∈ M, f ∈
E , ∂1(g) = ∂0f}

/ : ME −→ E . : ME −→M ./ : ME −→ Xobj

these must satisfy:

[ZS.1] ∂0(g / f) = ∂0(g), ∂1(g / f) = g ./ f , ∂0(g . f) = g ./ f , and ∂1(g . f) = ∂1(f);

[ZS.2] (gh) / f = g / (h / f) and 1 / f = f ;

[ZS.3] (gh) . f = (g . (h / f))(h . f) and 1 . f = 1;

[ZS.4] g . (uv) = (g . u) . v and g . 1 = g

[ZS.5] g / (uv) = (g / u)((g . u) / v) and g . 1 = 1.
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The data for a Zappa-Szép product of E and M, two categories on the same objects, is given
by three functions as above which satisfy the conditions [ZS.1]–[ZS.5].

(a) Show that a strict factorization can be equivalently given by having two orthogonal classes
E⊥M, so that E is right factor closed (f, fg ∈ E implies g ∈ E), M is left factor closed
(g, fg ∈M implies f ∈M) and every map can be uniquely factorized.

(b) Show that any category with a strict factorization produces the data for a Zappa-Szép
product on the E-maps and the M-maps.

(c) Show that given the data for a Zappa-Szép product one can define a composition on pairs
(f, g)(f ′, g′) := (f(g/f ′), (g.f ′)g) to produce a category, E ./M, with a strict factorization
with E-maps being of the form (g, 1) and M-maps being of the form (1, f). This category
is called the Zappa-Szép product of E and M.

(d) Show the induced Zappa-Szép product of the two classes of a strict factorization system
produces a category which is isomorphic (in a factorization preserving manner) to the
original category. Conversely show that the induced Zappa-Szép data of the two classes of
the strict factorization of a Zappa-Szép product is isomorphic to the original Zappa-Szép
data.
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1.5 Functors and natural transformations

It is natural to consider maps between categories, otherwise known as functors, and it is no surprise
to discover that these organize themselves into a category Cat. What is a little more surprising is
that there are also maps which can be defined between functors. This means that Cat is in fact a
category which is enriched in categories.

1.5.1 Functors

A functor is a map of categories F : C1 −→ C2 which consists of a map F0 of the objects and a
map F1 of the maps (we shall consistently drop these subscripts when the intended domain is clear)
such that

• ∂0(F1(f)) = F0(∂0(f)) and ∂1(F1(f)) = F0(∂1(f));

• F1(1A) = 1F0(A);

• F1(fg) = F1(f)F1(g);

Clearly every category has an identity functor and the composition of functors is associative so
that the following is immediate.

Lemma 1.5.1 Categories and functors form a category Cat.

If F : C −→ D is a functor then F op : Cop −→ Dop is a functor. A functor from the opposite
of a category, Cop, is often called a contravariant functor from C as the maps get reversed (the
contra- prefix). An ordinary functor (with domain C) is sometimes called a covariant functor to
emphasize that there is no twisting of maps involved.

A diagram in a category is a collection of arrows and objects satisfying certain composability
relations. Suppose that P is a property involving a relationship between the maps and objects of
a diagram. Examples of such properties, for the diagram consisting of a single map, that we have
met so far are

• P (f : A −→ B) = ∃g : B −→ A.fg = 1A, which says f is a section,

• P (f : A −→ B) = ∀h, h′ : X −→ A.hf = h′f ⇒ h = h′ which says f is monic.

We shall say a functor F preserves a property P if whenever P holds of the arrows f1, .., fn and
objects A1, .., An then P holds of the arrows F (f1), .., F (fn) and objects F (A1), .., F (An) in the
codomain category.

Thus, a functor always preserves sections (and isomorphisms) but does not, in general, preserve
monics (or epics). While functors may not preserve a property we are often interested in restriction
attention to those functors which do preserve that property. Thus, while functors do not in general
preserve monics but we may well be interested in functors which do preserve monics.

We say that a functor reflects a property P of a diagram if whenever the property holds of the
image under F of the diagram then the property must have held for the original arrows. (Notice
that as functors do not in general even reflect composability, the requirement that composability
already holds in the domain is now important).
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Thus, for example while functors always preserves isomorphisms they do not in general reflect
isomorphisms.

The enriched view of a category gives another important view of a functor F : C −→ D as being
provided by a family of maps

FAB : C(A,B) −→ D(F0(A), F0(B))

which must satisfy the following two diagrams:

C(A,B)× C(B,C)
mABC //

FAB×FBC
��

C(A,C)

FAC
��

D(F0(A), F0(B))× D(F0(B), F0(C)) mF0(A)F0(B)F0(C)

// D(F0(A), f0(C))

1

1F0(A) ))RRRRRRRRRRRRRRRRR
1A // C(A,A)

FAA
��

D(F0(A), F0(A))

Using this point of view the idea of a faithful functor can be easily explained: it is a functor
all of whose maps FAB are injective. Similarly a full functor is one all of whose maps FAB are
surjective.

Notice that a category has a faithful functor to the final category (one object one map) if and
only if it is a preorder! As we shall see in a moment, every (small) category has a full functor to a
preorder.

Congruences

Given a category C a congruence is a given by an equivalence relation on each hom-set satisfying
f ∼ g and then hfk ∼ hgk. Given a congruence we may form a new category with the same objects
C/ ∼ whose hom-sets are the ∼–equivalence classes: C(A,B)/ ∼AB. This is called the quotient
category for the congruence ∼:

Objects: Those of C;

Maps: Equivalence classes of maps under ∼ we may write these as [f ] : A −→ B where f : A −→ B
is a representative member of the equivalence class.

Identities: [1A] : A −→ A;

Composition: [f ][g] = [fg].

Now it is not immediate that this is indeed a category. It is clear that the identities have the
correct properties but what is not clear is that composition so defined is even a function. Specifically
it is not clear that if we have [f1] = [f2] and [g1] = [g2] (in other words f1 ∼ f2 and g1 ∼ g2) that
necessarily f1g1 and f2g2 are even related! Of course this is exactly where we must use the special
property of a congruence, here is the argument:
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f1 ∼ f2

f1g1 ∼ f2g1
Compose 1 g1

g1 ∼ g2

f2g1 ∼ f2g2
Compose f2 1

f1g1 ∼ f2g2
Transitive

There is an obvious functor Q∼ : C −→ C/ ∼ which is the identity on objects and carries a map
f to its ∼–equivalence class [f ]. This is clearly always a full functor.

There is an important way in which conguences arise:

Lemma 1.5.2 If F : X −→ Y is a functor then the relation on parallel arrows f ∼F g ⇔ F (f) =
F (g) is a congruence. Furthermore F can be factorized as Q∼FF

′ where Q∼F full and the identity
on objects and F ′ is faithful.

Proof: We must show that hfk ∼F hgk but F (hfk) = F (h)f(f)F (k) = F (h)F (g)F (k) = F (hgk).

We may define a functor F ′ : X/∼F −→ Y by F ′([f ]) = F (f). This is clearly well-defined and,
furthermore, a faithful functor as if F ′([f ]) = F ′([g]) then F (f) = F (g). �

It is reasonable to wonder whether this is a factorization system on functors: and, indeed, this
is the case. The two classes of functors are

• Q the quotient functors, these are full functors which are an isomorphisms on the objects (that
is F such that F0 : X0 −→ Y0 is an isomorphism and each FA,B1 : X(A,B) −→ Y(F (A), F (B))
is a surjection). Note that all quotient functors are, as functors, epic as both their object
part and their map parts are surjections.

• F the faithful functors (that is F such that each FA,B1 : X(A,B) −→ Y(F (A), F (B)) is an
injection).

To show this is a factorization system first note that we have already obtained the factorization
of a functors in lemma 1.5.2: it remains to check the other conditions of part (i) of proposition
1.4.5. Note that composing either class with functors which are isomorphisms keeps one in the
class so the only problem is to show that quotient functors are orthogonal to faithful functors. For
this consider:

X

G
��

Q // Y

H
��

V

xxX′
F

// Y′

where Q is a quotent functor, F is faithful, and we need to define V . On objects we are forced to
define V as V (A) = G(Q−1(A)) as Q is an isomorphism on objects. Consider, therefore, V (f) for
f : A −→ B: as Q is full f = Q(x) for some x : Q−1(A) −→ Q−1(B): we then define V (f) = G(x).
This is well-defined as if Q(x) = Q(y) for some parallel arrow y then G(y) = G(x) as F (G(x)) =
F (G(y)) and F is faithful. It is then easy to check that V so defined is a functor: it preserves
identities as V (1A) = G(1Q−1(A)), it preserves composition as, suppose f = Q(x) and g = Q(y)
then V (fg) = G(xy) = G(x)G(y) = V (f)V (g). This immediately makes the triangle commute
Q;V = G commute by the way we defined V . The other triangle also must commute as clearly
Q;H = G;F = Q;V ;F and as Q is epic as a functor it follows H = V ;F .

This gives:
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Proposition 1.5.3 For the category of categories (Q,F), the quotient functors and the faithful
functors, give a factorization system.

Note that faithful functors need not, as functors, be monic by any means.

Functors of many variables

Often functors will have their domain a product of two or more categories. This means the functor
will have more than one argument. Consider a functor F : A × B −→ C then, clearly, fixing either
argument of F at an object of A or B induces functors:

FA = F (A, ) : B −→ C and FB = F ( , B) : A −→ C

conversely given a family of such functors FA and FB we may reconstruct F :

Proposition 1.5.4 To give a functor F : A× B −→ C is to have a family of functors FA : B −→ C
for each A ∈ A and FB : A −→ C for each B ∈ B such that FA(B) = FB(A) and for any g : A
−→ A′ ∈ A and f : B −→ B′ ∈ B the following equality FA(f)FB′(g) = FB(g)FA′(f).

Proof: Clearly if F is a functor then we have FA and FB with these properties the content of
the result is in the reverse direction. Define F (f, g) = FA(f)FB′(g) = FB(g)FA′(f): we must show
that this is a functor.

First notice that this definition ensures that the identity maps are preserved. For composition
we have

F (f, g)F (f ′, g′) = FA1(g)FB2(f)FA2(g′)FB3(f ′)

= FA1(g)FA1(g′)FB3(f)FB3(f ′)

= FA1(gg′)FB3(ff ′)

= F (ff ′, gg′).

�

1.5.2 Natural transformations

Given two functors F,G : C −→ D a natural transformation (or just a transformation) α : F ⇒ G
is a family of maps αC : F (C) −→ G(C), indexed by the objects of C, in D such that for every map
f : C1 −→ C2 in D the following diagram commutes:

F (C1)
F (f) //

αC1

��

F (C2)

αC2

��
G(C1)

G(f)
// G(C2)

Our first observation is that this means that Cat(C,D), which often written DC, can be given the
structure of a category. Ultimately this means that Cat is a Cat-enriched category – these are also
known as 2-categories.
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Proposition 1.5.5 Cat(C,D) is a category with objects functors and maps natural transformations.

Proof: First notice that every functor has an identity transformation given by 1F (A) : F (A)
−→ F (A). To compose natural transformations we simply define (αβ)A = αAβA: if this composition
works then it is associative. It remains to check that the above requirement on the composite
transformation holds: this can be seen by pasting the transformation squares together.

F (C1)
F (f) //

αC1

��

F (C2)

αC2

��
G(C1)

G(f)
//

βC1

��

G(C2)

βC1

��
H(C1)

H(f)
// H(C2)

�

In order to conveniently manipulate functors and natural transformations it is useful to develop
the 2-categorical view of them. As there are many levels of activity in a general 2-category it is
useful to introduce a special notation: the objects of a 2-category (in Cat these are categories)
are often called 0-cells while the maps (or functors) are called 1-cells and the transformations
between the 1-cells are called 2-cells.

In this enriched view of Cat there are two sorts of composition: the composition of natural
transformations, αβ, written by juxtaposition and the composition of functors written which we
shall write with a semicolon, F ;G.

Proposition 1.5.6 Cat is a Cat–enriched category.

Proof: The main difficulty is to prove that functor composition

; : Cat(A,B)× Cat(B,C) −→ Cat(A,C)

is a functor of two arguments. To show this we describe the functors F ; and ;G and then argue,
using proposition 1.5.4, that from these we can reconstruct a functor in two arguments.

If α : F ⇒ G then define (H;α)A = αH(A): this is a natural transformation as α is. Furthermore,
it is clear that this is a functorial assignment as it clearly preserves composition.

Define (α;K)A = K(αA): this is a natural transformation also as α is and K is a functor. This
also is clearly a functorial assignment.

In establishing that this is a bifunctor it remains to check that (α;H)(G;β) = (F ;β)(α;K) this
is provided by the following commutative diagram which relies on the naturality of β:

H(F (A))
H(αA)//

βF (A)

��

H(G(A))

βG(A)

��
K(F (A))

K(αA)
// K(F (A))
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It remains to check that the associative and identity laws hold for the 1-cell composition ; . Asso-
ciativity of these functors applied to natural transformations is given by the following commutative
diagram where each face commutes by naturality (we already know that functor composition is
associative):

J(H(F (A)))

J(βF (A))

��

J(H(αA)) //

γH(F (A))

%%LLLLLLLLLLLLLLLLLLLLLL
J(H(G(A)))

γH(G(A))

yyrrrrrrrrrrrrrrrrrrrrrr

J(βG(A))

��

L(H(F (A)))
L(H(αA))

//

L(βF (A))

��

L(H(G(A)))

L(βG(A))

��
L(K(F (A)))

L(K(αA)) // L(K(G(A)))

J(K(F (A)))

γK(F (A))

99rrrrrrrrrrrrrrrrrrrrrr

J(K(αA))
// J(K(G(A)))

γK(G(A))

eeLLLLLLLLLLLLLLLLLLLLLL

It is straightforward to check the identity laws: we take the product with the final category and
the functor which picks out the identity functor and identity transformation. We must check that
this composition has no effect which is immediate. �

As the double semicolon is an enriched composition we may apply it to the natural transforma-
tions as well as to the functors so that if α : F −→ G and α′ : I −→ J then

α;α′ : F ; I −→ G; J

As a consequence of the enrichment one will then have the equation, which is called the interchange
law which is a direct consequence of the fact that the composition is a functor of two arguments.

(α;β)(α′;β′) = (αα′); (ββ′)

In order to represent these compositions we shall use pasting diagrams: these diagrams are very
useful as interchange and associativity laws become graphical equalities. This means that one can
immediately “see” that two composites are equal with a minimal amount of manipulation. Below
is the representation of the interchange law:

A G //

F

""

H

<<
B J //

I

""

K

<<
C

α
��

β
��

α′��

β′��
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Pasting diagrams may be translated back into 2-categorical notation but not in an unambigu-
ous way as there are many ways of representing a given pasting diagram as in the 2-categorical
“combinator” notation we have introduced. For example the above interchange can also be written:

(α; J)(β;α′)(H;β′)

(α; (α′β′))(β;K)

(F ;α′)(α;β′)(β;K)

....

It is important to realize that not every pasting diagram is legal. Here are a description of the
conditions to ensure that it is legal:

(a) The diagram must be planar with nodes labeled by objects (0-cells) arrows by functors (1-cells)
and regions by (2-cells);

(b) There must be a start node (object or 0-cell) and an end node (object or 0-cell);

(c) The maps (functors or 1-cell) must form an acyclic directed graph;

(d) Every map (functor or 1-cell) must be on a path from the start node to the end node, which
we will call a trip.

(e) For the transformations (2-cells) there must be a starting trip (path from start node to end
node) and an ending trip.

(f) Every arrow must be either on the end trip or in the domain of exactly one transformation
(but not both);

(g) Every arrow must be either on the start trip or in the codomain of exactly one transformation
(but not both).

Notice that the conditions (b), (c), and (d) must already be true of commuting diagrams.
These systems are actually familiar in computer science: they occur as formal languages. The

rules of a context free language may be seen as 2-cells. The system above allows us a notation for
describing the derivations in the language.

1.5.3 The Yoneda lemma

Many categories we shall consider have a natural enrichment in Set and for such categories there
are some rather natural functors, the so-called hom-functors. The Yoneda lemma characterizes the
natural transformations between hom-functors completely and has the consequence that any set
enriched category C embeds fully and faithfully in SetC

op
.

Given a Set-enriched category C we may consider for each object A ∈ C the functor:

C( , A) : Cop −→ Set;X 7→ C(X,A)

and if f : X −→ Y then C(f,A) : C(Y,A) −→ C(X,A); g 7→ fg. That this is a functor is not hard to
check. Yoneda made the following crucial observation:
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Lemma 1.5.7 The natural transformations α : C( , A) ⇒ F : Cop −→ Set are in bijective corre-
spondence to the elements of F (A).

Proof: The trick to to set up a correspondence. If α is such a natural transformation define
α̂ = αA(1A) ∈ F (A). Conversely, if x ∈ F (A) define Y(x)X(g) = F (g)(x). Now it is immediate

that (̂Y(x)) = Y(x)A(1A) = F (1A)(x) = x. For the reverse we have

Y(α̂)X(g) = F (g)(α̂)

= F (g)(αA(1A))

= αX(C(g,A)(1A))

= αX(g)

So provided Y(x) is a natural transformation the proof will be complete! To show this we must
verify that

C(Y,A)
C(f,A)//

Y(x)Y
��

C(X,A)

Y(x)X
��

F (Y )
F (f)

// F (X)

To show this is the case we take an element g ∈ C(Y,A) and follow it round the diagram each
way:

Y(x)X(C(f,A)(g)) = Y(x)X(fg)

= F (fg)(x)

= F (f)(F (g)(x))

= F (f)(Y(x)Y (g)).

�

The Yoneda lemma has the following important consequence:

Corollary 1.5.8 There is a full and faithful embedding Y : C −→ SetC
op

which has Y(A) = C( , A)
and Y(f) = C(f,A) as defined above.

Proof: A natural transformation α : C( , A)⇒ C( , B) is Y(αA(1A)) where αA(1A) is some map
f : A −→ B. So that this gives a bijection between C(A,B) and SetC

op
(C( , A),C( , B)).

It remains to check that this gives a functor: in particular we must show Y(1A) = 1C(,A) and
Y(f)Y(g) = Y(fg). For the former we have:

Y(1A)X(g) = C(g,A)(1A) = g.

While for the latter we have:

Y(fg)X(k) = C(k,C)(fg) = kfg = Y(g)X(kf) = Y(g)X(Y(f)X(k)) = (Y(f)Y(g))X(k).

�
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1.5.4 Exercises

(1) Prove that functors do not in general preserve monics or epics but that they do preserve sections
and retractions.

(2) Prove that ×A : Set −→ Sets;X 7→ X×A is a functor and the family of projections π1 : X×A
−→ X give a natural transformation.

(3) Prove that list : Set −→ Set, the process of forming lists, is functorial. Prove that the process
of reversing a list is an endo-natural transformation on the list functor.

(4) Show that the only functor of a category C into the final category 1 is faithful if and only if C
is a preorder.

(5) Show that directed graphs and directed graph homomorphisms are exactly the functor category
Set22 where 22 is the category:

A1A
&& a0

++

a1

33 B 1Bff

in which the composition structure is forced.

(6) Construct a finite category whose functors into sets are “reflective symmetric graphs.” That is

graphs with an specified loop ιa at each node a and for each arrow a
f−−→ b a specified arrow b

f̂−−→ a such that
̂̂
f = f and ι̂a = ιa.

(7) A forest (F, β, α) is a graded set β : F −→ N together with an action

α : {(n, x) ∈ N× F |n ≤ β(x)} −→ F

such that β(α(n, x)) = n, α(n, α(m,x)) = α(n, x), and α(β(x), x) = x. A morphism of
forests f : (F, β, α) −→ (F ′, β′, α′) is a set maps f : F −→ F ′ such that β′(f(x)) = β(x)
and α′(n, f(x)) = f(α(n, x)).

Prove that forests form a category Forest.

Provide a functor H : Forest −→ SetN
op

where N is regarded as a poset with respect to the usual
ordering.

(8) Write down a 2-categorical combinator form for the following 2-cell

B

G

��@@@@@@@@@@@@@
L

%%

G

��@@@@@@@@@@@@@

A

H

��@@@@@@@@@@@@@

F

??~~~~~~~~~~~~~
D

N // E
O

// F

C

K

??~~~~~~~~~~~~~ M

??
α

�"
>>>>>>>>>>>>

>>>>>>>>>>>>
β~� �������

�������

γ

��
"""""

"""""
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(9) If F : C −→ D show that the relation on the hom-sets induced by f ∼ g if and only if
F (f) = F (g) is a congruence.

(10) Prove carefully that C/ ∼ is a category whenever ∼ is a congruence and that Q∼ is a functor
as advertised.

(11) Show that every functor may be factorized into a full (identity on objects) functor followed by
faithful functor. (Hint: you can use the notion of a congruence.)

(12) Given any category C prove that if α : F ⇒ G : C −→ D is a natural transformation then there
is a natural transformation

Split(α) : Split(F )⇒ Split(G) : Split(C) −→ Split(D).

(13) If M is a monoid an M -set is given by a set S together with an action α : M × S −→ S such
that α(1, s) = s and α(m1m2, s) = α(m1, α(m2, s)). A homomorphism f : (S, α) −→ (S′.α′) is
a map f : S −→ S′ between the sets such that f(α(s,m)) = α′(f(s′),m).

Show that M -sets form a category M − Set. Prove that there is an isomorphism of categories
V : M − Set −→ SetM

op
.

An M -set (S, α) is freely generate by an element s ∈ S in case given a choice of element y ∈ S′
for any other M -set (S′, α′) there is a unique homomorpism of M -sets y∗ : (S, α) −→ (S′, α′)
such that y∗(x) = x. Prove that such an M -set exists. (Hint: use the Yoneda lemma!)



Chapter 2

Adjoints and Monad

The purpose of this chapter is to introduce one of the most important concepts of category theory:
an adjunction. We have coupled this with the introduction of limits and colimits because these, of
course, provide immediate examples of adjunctions and, through the adjoint functor theorems, are
linked to limits and colimits.

However, we start with a brief discussion of some very basic constructions of categories. We
have already met one very basic construction: the construction of the functor category DC. This,
however, is just one of many useful constructions.

2.1 Basic constructions on categories

Perhaps the most basic construction on categories (and many other structures) is the formation of
the product of two categories. Recall that the product is formed by taking the cartesian product
of both the objects and the maps and defining the composition coordinate-wise.

Slightly less usual is the “coproduct” of two categories. Rather like directed graphs one can
simply disjointly union two categories together. Thus, as in graph theory, we can talk about
connected components of a category. For example, every finite category can always be decomposed
uniquely into a sum of connected components.

Most categories we shall consider will be connected and, in fact, most of the constructions
we will consider preserve connectedness. Notice that, in particular, the product of two connected
categories is always guaranteed to be connected.

2.1.1 Slice categories

If C is any category and X ∈ C we may form the slice category C/X. This has the following
structure:

Objects: Maps of C to X, f : C −→ X;

Maps: Triples (f1, g, f2) : f1 −→ f2 which are commutative triangles:

C1

f1   AAAAAAA
f // C2

f2~~}}}}}}}

X

45
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Identities: (f, 1C , f) : f −→ f .

Composition: (f1, g, f2)(f2, h, f3) = (f1, gh, f3) which is well-defined as ghf3 = gf2 = f1.

Now one must, in fact, check that this is a category which amounts to checking that we have a
composition which satisfies the required axioms. However, this structure is directly inherited from
C so the proof is straightforward.

Slice categories will become important when we discuss type theories and fibrations. They
are important to us immediately as they are a warm up for a more general construction. Before
considering this more general construction it is, however, worth noting some peculiar things about
the slice categories over Set:

Set/0 ∼= 1

Set/1 ∼= Set

Set/2 ∼= Set× Set

Set/3 ∼= Set× Set× Set

...

In fact, we may regard Set/I as the I-indexed product of the category of sets with itself. This is
because a map C −→ I in Set is “the same thing” as the I-indexed collection of sets (Ci = {c ∈
C|f(c) = i})i∈I . A map in the slice category k : f −→ f ′ can then be viewed as an indexed collection
of maps (ki : Ci −→ C ′i).

This view of a slice category is rather special to sets. However, the properties of these slice
categories of Set have also been the inspiration for trying to capture abstractly the special properties
of Set.

2.1.2 Comma categories

Let F : A −→ C and G : B −→ C be functors then we may form the comma category1 of F over
G which is denoted F/G as follows:

Objects: Triples (A,F (A)
f−−→ G(B), B);

Maps: Quadruples ((A, f,B), a : A −→ A′, b : B −→ B′, (A′, f ′, B′)) where (A, f,B) and (A′, f ′, B′)
are objects as above and a and b are maps which render

F (A)

F (a)
��

f // G(B)

G(b)
��

F (A′)
f ′
// G(B′)

commutative.

Identities: ((A, f,B), 1A, 1B, (A, f,B));

1This is a bit of a misnomer considering the notation chosen here! The original notation for this construction
involved a comma.
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Composition: With ((A1, f1, B1), a, b, (A2, f2, B2))((A2, f2, B2), a′, b′, (A3, f3, B3)) defined to be
((A1, f1, B1), aa′, bb′, (A3, f3, B3)) where the required commutativity is provided by:

F (A1)

F (a)

��

f1 // G(B1)

G(b)

��
F (A2)

F (a′)
��

f2

// G(B2)

G(b′)
��

F (A3)
f3

// G(B3)

Again the fact that this is a category must be checked although it follows easily from the fact
that F and G are functors and that A and B are categories.

Let us first observe that, indeed, the slice category construction is a special case of this con-
struction. First notice that an object in a category corresponds precisely to a functor from the
final category 1. Thus C/A can be read as the comma category using the identity functor on C,
C = 1C : C −→ C and the functor from the final category A : 1 −→ C. It is easy now to see that this
comma category is just the slice category.

The comma category F/G has some obvious associated functors

Π0 : F/G −→ A; ((A, f,B), a, b, (A′, f ′, B′)) 7→ a

Π1 : F/G −→ B; ((A, f,B), a, b, (A′, f ′, B′)) 7→ b

There is also a canonical natural transformation

α : Π0;F −→ Π1;G

where α(A,f,B) = f : F (A) −→ G(B). Thus, the comma category gives a pasting square:

F/G
Π0 //

Π1

��

A

F
��α

y� {{{{{{{{

{{{{{{{{

B
G
// C

This construction is actually a “weighted limit”(as are inserters) and has some rather special
properties which are described in the exercises.

2.1.3 Inserters

If F,G : X −→ Y are functors then we may form the inserter category of F over G which is
denoted F//G as the category:

Objects: Pairs (A,F (A)
f−−→ G(A));
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Maps: Triples ((A, f), a : A −→ A′, (A′, f ′)) where (A, f) and (A′, f ′) are objects as above and a is
a maps which render

F (A)

F (a)
��

f // G(A)

G(a)
��

F (A′)
f ′
// G(A′)

commutative.

Identities: ((A, f), 1A, (A, f));

Composition: ((A1, f1), a, (A2, f2))((A2, f2), a′, (A3, f3)) = ((A1, f1), aa′, (A3, f3)) where the re-
quired commutativity is provided by:

F (A1)

F (a)
��

f1 // G(A1)

G(a)
��

F (A2)

F (a′)
��

f2

// G(A2)

G(a′)
��

F (A3)
f3

// G(A3)

Clearly there is a functor U : F//G −→ X and it is easy to see that there is a natural transfor-
mation α : U ;F ⇒ U ;G whose value at (A, f) is f : F (A) −→ G(A).

Inserters are useful in the description of inductive and coinductive datatypes. Examples of
inductive datatypes include the natural numbers, lists, binary trees, rose trees, etc. Coinductive
datatypes include streams, conumbers, possibly infinite lists, and simple objects (in the object
oriented sense). The datatype for an endo functor F can be defined by adjunction from an inserters
of the form F//X (or X//F ) which may also be viewed as the category of algebras (respectively
coalgebras) for that functor. This topic is discussed in the next chapter.

2.1.4 Exercises

(1) The signature of an algebra is a specification, for each operation symbol, of the number of
arguments it has. The category of signatures of algebras is Sets/N. Justify this claim and
explain the morphisms of signatures.

(2) A comulti-graph is part of the structure of a context free grammar. The category of comulti-
graphs (in Set) is Set/〈Set, list〉. Explain this claim and explain the morphisms of these multi-
graphs.

(3) The category of “magma” – sets with one binary operation is called a magma (a term due
Bourbaki)– is 〈Set, Set〉//Set. Justify this claim and describe the morphisms of magma.

(4) There is an obvious functor U : C/X −→ C; (x, f, x′) 7→ f prove that this functor

(a) Reflect isomorphisms
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(b) Preserve monics

(c) Reflects monics

(Harder!) Does the functor reflect and preserve epics: provide a counter-example.

(5) If f : X −→ Y prove that there is a functor

f∗ : C/X −→ C/Y ; (x, g, x′) 7→ (xf, g, x′f).

Does this functor preserve and reflect monics and isomorphisms?

(6) The (1-dimensional) special property of the comma category: suppose β : H;F ⇒ J ;G : X
−→ Z then prove there is a unique functor K : X −→ F/G such that K; Π0 = H and K; Π1 = J
and that β = K;α where α is the canonical 2-cell α : Π0;F ⇒ Π1;G.

(7) The (1-dimensional) special property of the inserter: Suppose β : H;F ⇒ H;G : X −→ Z then
show that there is a unique functor K : X −→ F//G such that K;U = H and β = K;α where
α : U ;F ⇒ U ;: G is the canonical 2-cell.

(8) Suppose f : P1 −→ P and g : P2 −→ P are order preserving maps of posets describe the poset
f/g. Now if P1 = P2 describe f//g.

2.2 Adjoints

In this section we introduce one of the most important concepts of basic category theory: the notion
of an adjunction. This notion occurs all over mathematics and plays an absolutely fundamental
role in understanding how abstract settings, such as a programming languages, are constructed.

2.2.1 The universal property

Let G : Y −→ X be a functor and X an object of X, then an object U ∈ Y together with a map
ηX : X −→ G(U) is a universal pair for the functor G at the object X if for any f : X −→ G(Y )
there is a unique f ] : U −→ Y such that

X
ηX //

f !!DDDDDDDDD G(U)

G(f])
��

G(Y )

commutes.

It is useful to have in mind a particular instance of this universal property. A nice example
is as follows: let X be the category of directed graphs and Y the category of categories, let the
functor G be the “underlying functor” which forgets the compositional structure of a category, that
is regards a category as no more than the “underlying” directed graph. The map which takes a
directed graph and embeds it into the graph underlying the path category as the singleton paths
(paths of length one) has the universal property for this “underlying” functor.
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Consider a map of directed graphs into the graph underlying a category, h : G −→ U(C), we can
extend it uniquely to a functor from the path category to the category as follows. Let h] : Path(G)
−→ C be defined on arrows by

h](A, [a1, .., an], B) = h(a1)..h(an) : h(A) −→ h(B)

then it is easy to check that this is a functor and that is uniquely determined by h. Before
proceeding, it is well worth doing the exercise to check that this does really work.

In the next section on limits and colimits we shall be discussing another important situation
in which these universal properties hold. However, we shall continue here to develop the theory of
these universal properties first. The reader who needs more concrete motivation may like to start
reading the section on limits and colimits in parallel.

We first make the simple but crucial observation:

Lemma 2.2.1 If (ηX , U) and (η′X , U
′) are universal at X for G : Y −→ X then there is a unique

isomorphism α : U −→ U ′ such that ηXG(α) = η′X .

Proof: We may define α as the unique map (η′X)]:

X
ηX //

η′X ""DDDDDDDDD G(U)

G(α)
��

G(U ′)

and by swapping the role of U and U ′ we obtain a β : U ′ −→ U using the universal property of
(U ′, η′X). However, now

ηXG(αβ) = ηXG(α)G(β) = η′XG(β) = ηX

so αβ = η]X and η]X = 1U so αβ = 1U and by a similar argument βα = 1U ′ . �

Thus a universal pair (U, η) for a functor G at an object X is determined upto a unique
isomorphism.

We may also use the Yoneda lemma to re-express this property: if F : Y −→ Set and there is a
natural isomorphism α : Y(U, )→ F then F is said to be representable with universal element
αU (1U ) ∈ F (U). In this case we have:

α : Y(U, )⇒ X(X,G( )) : Y −→ Set

where αY (h) = ηXG(h) and the inverse maps sends f to f ]. Thus the universal property above
can be re-expressed by saying that X(X,G( )) is a representable functor with universal element
ηX ∈ X(X,G(U)). This reminds us that specifying the map ηX actually suffices to determine the
situation.

Now it is certainly not always the case that, for a functor G there will be universal pairs
(F (X), ηX) at each object X, however, if this is the case we have:

Proposition 2.2.2 Let G : Y −→ X be a functor such that for each X ∈ X there is a universal pair
(F (X), ηX) then:
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• F is a functor with F (g) = (gη)];

• ηX : X −→ G(F (X)) is a natural transformation;

• εY = 1]G(Y ) : F (G(Y )) −→ Y is a natural transformation;

• The triangle equalities ηG(Y )G(εY ) = 1G(Y ) and F (ηX)εF (X) = 1F (X) hold.

Conversely given functors F and G with transformations η and ε, as above, which satisfy the triangle
identities, then each (F (X), ηX) is universal for G at X.

Proof: We start by verifying that F so defined is a functor it will then be immediate that η is a
natural transformation. We must verify that F preserves identities, which is the observation that
(ηX)] = 1, and that F (f)F (g) = F (fg). For the latter we have that, as

ηXG((fηY )](gηZ)]) = ηXG((fηY )])G((gηZ)]) = fηYG((gηZ)]) = fgηZ

that (fηY )](gηZ)] = (fgηZ)].

It remains to prove that εY = 1]G(Y ) is a natural transformation and that the second triangle
equality holds – the first is immediate from the definition of ε. For the naturality of ε we have for
a map f : Y −→ Y ′ that

G(f) = ηG(Y )G((1G(Y ))
])G(f) = ηG(Y )G(εY )G(f)

so that G(f)] = εY f . Similarly,

G(f) = G(f)ηG(Y ′)G((1G(Y ′))
]) = ηG(Y )G(F (G(f))G((1G(Y ′))

]) = ηG(Y )G(F (G(f))G(εY ′))

so that G(f)] = G(F (G(f)))εY ′ . Thus, ε is natural.
Finally, for the second triangle equality we have:

ηXG(F (ηX)εF (X)) = ηXηF (X)εF (X)) = ηX

so that F (ηX)εF (X) = 1F (X) = η]X .
For the converse, suppose we have (F,G, η, ε) and the triangle equalities then, given f : X

−→ G(Y ) we can set f ] = F (f)εY then, using the naturality of η and the first triangle equality we
have:

ηXG(f ]) = ηXG(F (f)εY ) = fηG(X)εY = f.

To show uniqueness we suppose ηXG(h) = f then

h = F (ηX)εF (X)h = F (ηX)F (G(h))εY = F (ηXG(h))εY = F (f)εY = f ].

�

We say that F is left adjoint to G (equally G is right adjoint to F : notice that this is also the
dual statement) in case, as in the proposition there are natural transformations η (called the unit
of the adjunction) and ε (called the counit of the adjunction) satisfying the triangle equalities. We
write this situation as:

(η, ε) : F ` G : X −→ Y.
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Recall there is a dual concept: let F : X −→ Y be a functor and Y an object of Y, then an object
V ∈ X together with a map εY : F (V ) −→ Y is a couniversal pair for the functor F at the object
Y if for any g : F (X) −→ Y there is a unique g[ : X −→ V such that

F (X)
g //

F (g[)
��

Y

F (V )

εY

==zzzzzzzzz

commutes.

When F has for each Y ∈ Y a couniversal pair (G(Y ), εY ) then this also gives rise to an
adjunction but this time the constructed functor G is right adjoint to F . In terms of universal
elements we now have a natural isomorphism:

α : X( , V )⇒ Y(F ( ), Y ) : Xop −→ Set.

which is determined by the couniversal element εY . The fact, that this is a dual concept is
apparent in this formulation as we have replaced X by Xop.

2.2.2 Basic properties of adjoints

There is the following characterization of an adjoints which here we state for Set–enriched categories.
The result is true more generally for categories enriched elsewhere (e.g. Cat-enriched categories for
example).

Theorem 2.2.3 The following are equivalent for Set–enriched categories and functors F : X −→ Y
and G : Y −→ X:

(i) An adjoint (η, ε) : F a G : X −→ Y;

(ii) Two combinators ( )[ and ( )] where

(g : F (A) −→ B)[ : A −→ G(B) and (f : A −→ G(B))] : F (A) −→ B

such that

• (f ])[ = f and (g[)] = g,

• (F (h)fk)[ = hf [G(k) and (k′gG(h′))] = F (k′)g]h′;

(iii) A natural isomorphism ( )[ : Y(F ( ), )⇒ X( , G( )) : Xop × Y −→ Set;

(iv) An isomorphism of categories ( )] : X/G −→ F/Y such that ( )]; Π0 = Π0 and ( )]; Π1 = Π1;

(v) For each X ∈ X there is a pair (F (X), ηX) which is universal for G at X such that F (h) =
(hη)];

(vi) For each Y ∈ Y there is a pair (G(Y ), εY ) which is couniversal for F at Y such that G(k) =
(εk)[.



2.2. ADJOINTS 53

Proof: We already know that the universal properties (and couniversal properties for that matter)
are equivalent to giving adjoints and it is clear that (iv) and (v) are dual. Thus it remains to prove
the following:

(i) ⇒ (ii) : Given the above adjunction we may define h[ = ηG(h) and g] = F (g)ε. Now these
are inverse as

(h[)] = (ηG(h))] = F (ηG(h))ε = F (η)εh = h

and the argument for (f ])[ = f is dual. Now notice that

(F (h)fk)[ = ηG(F (h)fk) = hηG(f)G(k) = hf [G(k)

and the other identity follows by the dual argument.

(ii) ⇔ (iii) : The “sharp” and “flat” now are going to be viewed as natural isomorphisms; the
announced properties of sharp and flat are exactly saying that regarded as transformations
they are natural!

(ii) ⇔ (iii) : The sharp and flat are now going to be regarded as functors. The commuting
square:

X
h //

f
��

G(Y )

G(g)
��

X ′
h′
// G(Y ′)

is a map (f, g) : h −→ h′ in X/G under the “sharp” combinator it is carried to the square:

F (X)
h] //

F (f)
��

Y

g

��
F (X ′)

(h′)]
// Y ′

which commutes as F (f)(h′)] = (fh′)] = (hG(g))] = h]g. Thus, “sharp” does indeed give
a functor which clearly has an inverse and, furthermore, this functor commutes with the
projections from the two slice categories as required.

Conversely if we are given such an isomorphism of categories then by “sharping” the following
two diagrams:

X
fh //

f
��

G(Y )

X ′
h
// G(Y )

X ′
h // G(Y )

G(k)
��

X ′
hG(k)
// G(Y ′)

we obtain:

F (X)
(fh)] //

F (f)
��

Y

F (X ′)
h]

// Y

F (X ′)
h] // Y

k
��

F (X ′)
(hG(k))]

// Y ′
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Which gives the combinator identity

(k′gG(h′))] = F (k)(gG(h))] = F (k′)g]h′

in two steps. The other required identity for the “flat” functor follows dually.

(ii) ⇒ (iv) : We must now recover the universal property from the “sharp” and “flat” combina-
tors: set ηX = (1F (X))

[ then given f : X −→ G(Y ) we have show

(1F (X))
[G(f ]) = (1F (X)f

])[ = (f ])[ = f

and it remains to show that f ] is unique. So suppose f = (1F (X))
[G(g) then

f ] = ((1F (X))
[G(g))] = ((1F (X)g)[)] = (g[)] = g.

Finally we note

(fη)] = (f(1F (X′))
[)] = F (f)((1F (X′))

[)] = F (f)1F (X′) = F (f)

So that the definition of F agrees with that given by the universal property.

�

We shall often write the two-way transformation as a two-way logical inference:

X
f = g[−−−−−−→ G(Y )

F (X) −−−−−−→
g = f ]

Y
F a G

This allows us to move from maps h : F (X) −→ Y to h[ : X −→ G(Y ) and back f : X −→ G(Y )
to f ] : F (X) −→ Y where these moves are mutually inverse and natural. This style of handling
adjoints as we shall see shortly allows a convenient way of reasoning about the effect of adjoints.

Left adjoints preserve universal pairs and dually, although we do not formally state it, right
adjoints preserve couniversal pairs:

Proposition 2.2.4 If G : Y −→ X and (η′, ε′) : H a K : Y −→ Z and (U, η′) is a universal pair for
then (H(U), ηUη

′) is a universal pair for K;G.

Proof: Suppose f : X −→ G(K(Z)) then we obtain a unique f ]
′

: U −→ K(Z) now we may use the
universal property of the adjunction to give a unique (f ]

′
)] : H(U) −→ Z such that η′G(f ]

′
)]) = f .

X
f−−→ G(K(Z))

U
f ]
′

−−−→ K(Z)

Universal

H(U) −−−−−→
(f ]
′
)]

Z
H a K



2.2. ADJOINTS 55

�

This, in particular, means that if G has a left adjoint then K;G will have a left adjoint whose
unit is ηXη

′
F (X). This gives:

Corollary 2.2.5 If F and G are left (right) adjoints then F ;G is a left (right) adjoint.

Proof: While the above remarks establish that this observation is correct we may also see this
very directly by using the inferences:

X
f−−→ G(K(Z))

F (X)
f ]
′

−−−→ K(Z)

F a G

H(F (X)) −−−−−→
(f ]
′
)]

Z
H a K

�

2.2.3 Reflections, coreflections and equivalences

As a preliminary for our next topic we observe:

Proposition 2.2.6 If (η, ε) : F a G : X −→ Y is an adjunction then

(i) Each ηX is monic if and only if F is faithful;

(ii) Each εY is epic if and only if G is faithful;

(iii) Each ηX is a retraction if and only if F is full;

(iv) Each εY is a section if and only if G is full;

(v) Each ηX is an isomorphism if and only if F is full and faithful;

(vi) Each εY is an isomorphism if and only if G is full and faithful.

Proof:

(i) If F (f) = F (g) where f, g : X −→ X ′ then fη = ηG(F (f)) = ηG(F (g)) = gη and so, as η is
monic f = g. This shows F is faithful.

Conversely if F is faithful then and fη = gη then F (f) = (fη)] = (gη)] = F (g).

(ii) This is dual to (i).

(iii) This is dual to (iv).
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(iv) Suppose that νY is right inverse to εY (note that ν is not assumed to be natural) then given
f : G(Y ) −→ G(Y ′) we obtain νY F (f)εY ′ : Y −→ Y ′ and observe:

G(νY F (f)εY ′) = (εY νY F (f)εY ′)
[ = (F (f)(1G(Y ′))

])[ = f((1G(Y ′))
])[ = f

showing that G is full.

Conversely suppose G is full then there is a k : X −→ F (G(X)) such that ηG(X) = G(k) : G(X)
−→ G(F (G(X))) but then εk = F (G(k))ε = F (ηG(X)ε = 1F (G(X)) and so ε is a section.

(v) Combine (i) and (iii).

(vi) Combine (ii) and (iv) or notice this is dual to (v).

�

We shall say that a full and faithful functor I : X′ −→ X is a reflection in case I is a right
adjoint. By the above proposition this means that if

(η, ε) : F a I : X −→ X′

is the adjunction then each εX is an isomorphism.
Dually we shall say that the full and faithful functor I : X′ −→ X is a coreflection in case I is

a left adjoint. By the above proposition this means that if

(η, ε) : I a G : X′ −→ X

is the adjunction then each ηX′ is an isomorphism.
A full and faithful functor F is said to be an equivalence of categories in case it has an (either

left or right) adjoint which is also full and faithful. This means that both the unit and counit of
the adjunction are isomorphisms. Here is a slightly different and more useful formulation of an
equivalence:

Proposition 2.2.7 The following are equivalent:

(i) (η, ε) : F a G : X −→ Y an equivalence of categories;

(ii) A full and faithful functor F : X −→ Y and for each Y ∈ Y an X ∈ X and an isomorphism
αY : Y −→ F (X).

Proof: Given the adjunction we may choose X = G(Y ) and α = ε(−1). The content is in the
reverse direction. For the converse we check the couniversal property:

F (X)

αh
��

Y
α(−1)
oo

h}}zzzzzzzzz

F (Z)

as F is full and faithful there is a unique k : X −→ A such that F (k) = αh. �
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Now a right adjoint does not necessarily reflect isomorphisms but it is important to note that
a reflection does (and dually for a coreflection) which fact is immediate as reflections are full and
faithful.

Suppose now F : X −→ Y is a reflection then consider the full subcategory Y′ of Y determined
by those objects which are isomorphic to some F (X). A subcategory which contains all isomorphic
“copies” of objects is often called a wide (or replete) subcategory. Thus, Y′ is the wide subcategory
generated by the image of F . Now clearly F restricts to F ′ : X −→ Y′ and by construction of Y′ the
functor F ′ is full and faithful and for every Y ∈ Y′ there is an F (X) which is isomorphic to it (so
modulo the ability to choose the isomorphism) F is an equivalence of categories. However, now by
composing adjoints we immediately have that Y′ ⊆ Y is a reflective subcategory.

2.2.4 Adjoints in 2-categories

There is another almost painless way of understanding the abstract properties of adjoints which
involves looking at them in a Cat–enriched category setting, that is in a 2-category.

An adjunction in a 2-category is given by (F,G, η, ε) where F : X −→ Y and G : Y −→ X are 1-
cells such that η : 1X ⇒ F ;G and ε : G;F −→ 1Y satisfying the triangle equalities (G; η)(ε;G) = 1G
and (F ; ε)(η;F ) = 1F . These identities can be drawn as pasting diagrams:

X

F ��???????? X
F

��????????

Y

G

??��������
Y

η

��
ε

�� =

X
F

��????????

Y

X

F ��???????? X

Y

G

??��������
Y

G

??��������
η

��
ε

�� =

Y

Y
G

??��������

Using these diagrams one can often surprisingly easily establish the basic properties of adjunc-
tions. For example suppose we wish to prove that adjunctions compose then we simply need to
note that we can paste the adjunction diagrams together. Thus, suppose (η, ε) : F a G : X −→ Y
and (η′, ε′) : F ′ a G′ : Y −→ Z then we have:

X

F ��???????? X
F

��????????

Y

F ′ ��@@@@@@@ Y

G

??��������
Y

F ′

��????????

Z′
G

??~~~~~~~
Y

η

��

η′

��

ε

��

ε′

��

=

X

F ��????????

Y

F ′ ��????????

Z

which together with the dual diagram shows how to compose adjoints.

We shall now use these techniques to prove:

Proposition 2.2.8 In any 2-category if F a G and F a G′ if and only if G is isomorphic to G′.
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Proof: Supposing G and G′ are right adjoints of F we must construct 2-cells G −→ G′ and G′

−→ G. These are

X

F ��???????? X

Y

G

??��������
Y

G′

??��������
η′

��
ε

��

X

F ��???????? X

Y

G′
??��������

Y
G

??��������
η

��
ε′

��

Pasting these together easily shows that they are isomorphisms. The converse we leave as an
exercise. �

2.2.5 Exercises

(1) Show in detail that the underlying functor U : Cat −→ Graph has a left adjoint given by the
path category construction.

(2) Let R be the real numbers viewed as a category by using the usual ordering; the integers may
also be regarded as a category, Z, by using the usual ordering and the usual inclusion of the
integers into the reals is a functor. Prove that this functor has a left and right adjoint.

(3) Let P be a poset. A closure operator on P is and order preserving mapping J : P −→ P
such that x ≤ J(x) and J(J(x)) = J(x). Show that closure operators correspond precisely to
coreflective subcategories of P .

(4) A Galois connection is a contravariant adjunction between posets. That is f a g : P op
1 −→ P2.

(a) Show that the relationship between classes of maps given by right orthogonal and left
orthogonal form a Galois connection.

(b) Show that g(f(g(x))) = g(x) and f(g(f(y))) = f(y) for any Galois connection and that
the full subposets determined by {x|x = g(f(x))} ⊆ P1 and {y|y = f(g(y))} ⊆ P2 are
(contra-)isomorphic.

(5) (Folklore) Call an adjunction (η, ε) : F a G : X −→ Y a Galois adjunction if all of η;F , F ; ε,
G; η, and ε;G are isomorphisms.

(a) Prove that the assumption that any one of the above is an isomorphism forces all to be
isomorphisms,

(b) Show that such an adjunction (between ordinary categories) can be factorized in to the
composite of reflection followed by a coreflection.

This is the general form for the previous question on Galois connections.

(6) We may view Rel as a 2-category – more precisely as a poset enriched category – where the
2-structure is given by inclusions between relations. Prove that a relation is a left-adjoint if
and only if it is a function. What is the right adjoint?
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(7) Given an endo-relation R on a set X we may define the following operations on the powers set
P(X):

�· α = {x|∃y ∈ α · x ∼R y}
·� α = {x|∃y ∈ α · y ∼R x}
�· α = {x|∀y ∈ α · x ∼R y}
·�α = {x|∀y ∈ α · y ∼R x}

Which operations (if any) are adjoints?

(8) Let f : X −→ Y be any map of sets then prove that this induces a chain of adjoints ∃f a f∗ a
∀f : P(X) −→ P(Y ) where

• P(X) and P(Y ) are the powersets (set of all subsets) of X and Y respectively,

• ∃f : P(X) −→ P(Y );S 7→ {y ∈ Y |∃x ∈ X · f(x) = y ∧ x ∈ S},
• f∗ : P(Y ) −→ P(X);T 7→ {x ∈ X|f(x) ∈ T},
• ∀f : P(X) −→ P(Y );S 7→ {y ∈ Y |∀x ∈ X · f(x) = y ⇒ x ∈ S}.

(9) Provide and alternative proof using the universal property that if F a G : X −→ Y and F a G′
then G is naturally isomorphic to G′.

(10) Prove that the underlying functor U : A× //Set −→ Set has a left adjoint (hint: think lists).

(11) The category of posets has an obvious inclusion into the category of preorders. Prove that this
is a reflection (hint: how do you turn a preorder into an order?).

(12) Show that in any 2-category given 2-cell isomorphisms α : 1X −→ F ;G and β : 1Y −→ G;F there
is an adjoint equivalence between F and G.

2.3 Monads and comonads

An adjunction (η, ε) : F ` G : X −→ Y generates an endofunctor both on the category X, F ;G : X
−→ X, and on the category Y, G;F : Y −→ Y, together with certain natural transformations. The
section studies these induced structures which are called, respectively, monads and comonads2 and
describes two important constructions associated with them: the Eilenberg-Moore construction and
the Kleisli construction.

2.3.1 The definition

A monad T = (T, η, µ) on a category X consists of an endofunctor T : X −→ X and two natural
transformations, the unit ηX : X −→ T (X) and the multiplication µ : T (T (X)) −→ T (X) these

2As with many important concepts these have actually enjoyed a variety of names: they are still often called
“triples”. However, the term monad (popularized by MacLane) seems to have endured: this name suggests a
relationship to monoids – and indeed there is!
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must satisfy the following equations:

T (X)

KKKKKKKKK

KKKKKKKKK

ηT (X)// T (T (X))

µ

��

T (X)
T (ηX)oo

sssssssss

sssssssss

T (X)

T (T (T (X)))

T (µ)
��

µ // T (T (A))

µ

��
T (T (X)) µ

// T (X)

A monad is, in fact, a monoid in the category of endofunctors where the “tensor product” is given
by functor composition. The first two equations are therefore referred to as the unit equations
while the last is called the associativity equation.

The dual concept is a comonad S = (S, ε, δ) where εX : S(X) −→ X and δX : S(X) −→ S(S(X))
such that the dual of the above equations hold:

S(X)

ttttttttt

ttttttttt

JJJJJJJJJ

JJJJJJJJJ

δX
��

S(X) S(S(X))
εS(X)
oo

S(εX)
// S(X)

S(X)

δX
��

δX // S(S(X))

S(δX)
��

S(S(X))
δS(X)

// S(S(S(X)))

A comonad is a comonoid in the category of endofunctors.
Our first observation is:

Proposition 2.3.1 If (η, ε) : F a G : X −→ Y is an adjoint then T = (F ;G, η, F ; ε;G) is a monad
and S = (G;F, ε,G; η;F ) is a comonad.

Proof: We shall prove that T = (F ;G, η, F ; ε;G) is a monad. To this end note that ηG(F (A)G(εF (A) =
1G(F (A)) and G(F (ηA))G(εF (A)) = 1G(F (A) by a straightforward application of the triangle equali-
ties. The associativity condition translates to become:

G(F (G(F (G(F (X))))))
G(F (G(εF (X)))) //

G(εF (G(F (X))))

��

G(F (G(F (X))))

G(εF (X))

��
G(F (G(F (X))))

G(εF (X))
// G(F (X))

which is naturality! �
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2.3.2 A presentation of monads due to Manes

There are a variety of ways of presenting monads. A rather important and economical way is due
to Ernie Manes:

Proposition 2.3.2 To give a monad on a category is to have an object map T : X0 −→ X0 a family
of maps ηX : X −→ T (X) and a “lifting” combinator

X
f−−→ T (Y )

T (X) −−−−→
#(f)

T (Y )

such that η#(f) = f , #(ηX) = 1T (X), and #(f)#(g) = #(f#(g)).

Proof: Given a monad we define #(f) = T (f)µ we must verify the equalities:

η#(f) = ηXT (f)µY = fηT (Y )µY = f

#(ηX) = T (ηX)µ = 1T (X)

#(f)#(g) = T (f)µT (g)µ = T (f)T (T (g))µµ

= T (f)T (T (g))T (µ)µ = T (fT (g)µ)µ = #(f#(g))

Conversely given this data we may define

T (f) = #(fη)

µX = #(1T (X))

Note that T (1X) = #(ηX) = 1T (X) and T (f)T (g) = #(fη)#(gη) = #(fη#(gη)) = #(fgη) =
T (fg). Thus, t is a functor. We now need to show η and µ are natural:

ηT (f) = η#(fη) = fη

T (T (f))µ = #(#(fη)η)#(1) = #(#(fη)η#(1)) = #(#(fη))

= #(1)#(fη) = µT (f)

Finally we need to verify the monad identities:

ηT (X)µ = η#(1) = 1T (X)

T (ηX)µ = #(ηη)#(1)#(ηη#(1)) = #(η) = 1T (X)

T (µ)µ = #(#(1)η)#(1) = #(#(1)η#(1))

= #(#(1)) = #(1)#(1) = µµ

�

This is a considerable simplification of the monad laws. Despite its origin, this presentation
has become known as the “Kleisli triple” presentation of a monad this is because this presentation
is very closely tied to the composition in the Kleisli category. We shall shortly meet the Kleisli
category of a monad. This presentation does allow us to outline some basic examples:
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The list monad: Consider the list construction on sets: define η(x) = [x] (the singleton list
construction) and given f : X −→ list(Y ) set

#(f) : list(X) −→ list(Y ); [x1, ..., xn] 7→ f(x1) ++...++f(xn)

the Manes identities are then easy to check.

The bag monad: Every set may be used to generate sets of bags: a bag informally is set in which
repetitions count. Thus, one way to present a bag is as a (finite) set of pairs {n1 ·a1, ..., nr ·ar}
where ni ∈ N indicates the multiplicity of the element ai. Thus, bags have a membership
function which lands in N rather than bool. More formally a bag on X is just an element
of the free commutative monoid generated by X. It is apparent, therefore, that B(X) is a
monad. The unit is given by the singleton bag and the lifting of f : X −→ B(Y ) is given by
defining the membership function as follows:

y ∈ f ]({n1.x1, ..., nr · xr}) =
∑

i=1,..,r

ni · (y ∈ f(xi))

The powerset monad: Every set may be included as singletons into the powerset on the set.
Further given f : X −→ P(Y ) we may define

#(f) : P(X) −→ P(Y );S 7→
⋃
x∈S

f(x)

it is easy to check that this also is a monad. Clearly, if we restrict this monad to finite subsets
we also obtain a monad Pf .

The exception monad: By E(X) we shall denote the set X with an extra point added. Given
f : X −→ E(Y ) there is an obvious way of extenting the map to #(f) : E(X) −→ E(Y ) by
sending the added point of E(X) to the added point of E(Y ). Again the required identities
are easily checked.

The M-set monad: Given that M is a monoid in sets set M(X) = M×X and η(x) = (e, x) given
f : X −→M ×Y define #(f) : M ×X −→M ×Y ; (m1, x) 7→ (m1m2, y) where f(x) = (m2, y).
This is easily checked to be a monad.

Closure systems: Let P be a poset a monad on P amounts to a set map J : P −→ P such that
x ≤ J(x) and x ≤ J(y) implies J(x) ≤ J(y). Such a J is often called a closure system.
Note that J(x) = J(J(x)) as J(x) ≤ J(J(X)) and as J(x) ≤ J(x) also J(J(x)) ≤ J(x) and
J is monotone.

Observe that the first three monads above (with the third being the finite powerset monad) are
clearly related!

Given that monads and comonads are generated by adjoints a reasonable question concerns
whether monads always arise through adjoints. For Set-enriched categories this is certainly true
because we can construct adjunctions with this property. Below we shall give two such constructions
which are extremal.
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2.3.3 The Kleisli construction

Given a monad T = (T, η, µ) on X the Kleisli category, XT, is constructed as follows:

Objects X ∈ X

Maps

X
f−−→ T (Y ) ∈ X

X −−→
f

Y ∈ XT

Identity

X
η−−→ T (X) ∈ X

X −−→
η
X ∈ XT

Composition

X
f−−→ Y Y

g−−→ Z ∈ XT

X
f−−→ T (Y ) Y

g−−→ T (Z) ∈ X

X
f#(g)−−−−−→ T (Z) ∈ X

X
f#(g)−−−−−→ Z ∈ XT

Proposition 2.3.3 XT is a category, furthermore, there is an adjunction FT a UT : X −→ XT
whose induced monad is T.

Proof: We must show that XT is a category and for this it suffices to show that the composition is
associative and has identities. Using the Kleisli presentation this is almost immediate. For example
associativity of the composition amounts to the fact that (f#g)#h = f#(g#h).

To verify that there is an adjunction we shall check the universal property. Define UT(f) = #(f)
then

X
η //

f ))RRRRRRRRRRRRRRRR UT(X) = T (X)

#(f)
��

UT(Y ) = T (Y )

commutes so all that is left is to check uniqueness of the map f (itself) as the solution. So suppose
g : X −→ T (Y ) is an alternative with η#(g) = f then f = η#(g) = g! �

The reader should tame this proof! A good idea in this regard is to work through the proof
without assuming the Kleisli presentation due to Manes.

This may see like a rather simple construction but it is also surprisingly powerful. This is
witnessed by the extensive use of monads (and, in particular, the Kleisli construction) in functional
programming languages (as demonstrated particularly in the programming language Haskell). To
illustrate the power of the Kleisli construction considerthe following two examples:
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The powerset monad: What is the Kleisli category of the powerset monad? A map in this Kleisli
category is of the form f : X −→ P(Y ) However such a map uniquely corresponds to a relation
R ⊆ X×Y and it is easy to see that the Kleisli composition is exactly relational composition.
Thus, the Kleisli category of the powerset monad is exacly the category of relations.

The exception monad: What is the Kleisli category of the exception monad? A map in this
Kleisli category is a map f : X −→ E(Y ) such a map can be completely described by what
it does to those elements of X which do not go to the “exceptional” point. Thus such maps
correspond to partial maps from X to Y . it is easy to see that the Kleisli composition is
partial map composition. This means that the Kleisli category of the exception monad is the
partial map category.

The Kleisli category has an important property with respect to the adjunctions which generate
the same monad:

Proposition 2.3.4 If the adjunction (η, ε) : F a U : X −→ Y induces the monad T = (T, η, µ) then
there is a unique full and faithful functor V : XT −→ Y such that FT;V = F and UT = V ;U so that
ηT = η and µT = µ.

Proof: Define V (X) = F (X) and V (f) = F (f)ε where f : X −→ T (Y ). We must check that iden-
tities and composition is peserved: for identities note V (ηX) = F (ηX)εX = 1F (X) for composition:

V (fT (g)µ) = F (fT (g)µ)ε = F (fG(F (g)))F (G(ε))ε = F (f)F (G(F (g)))εε = F (f)εF (g)ε

To show that V is full and faithful note that

V (X) −→ V (Y )

F (X) −→ F (Y )

X −→ G(F (Y ))

X −→ T (Y )

�

In general, a Kleisli category will not inherit many properties from its parent category and this
makes cases in which structure is inherited of special interest. Notably any Kleisli category does
inherits coproducts (see next chapter) from its parent but it is hard to think of any other properties
which are automatic!

2.3.4 The Eilenberg-Moore construction

The other category of importance which also generates the adjunction is the Eilenberg-Moore
category of the monad. Its object are called T-algebras and its maps are homomorphisms of these
T-algabras..

Given a monad T on X a T-algebra (X, ν) is an object X together with a structure map
ν : T (X) −→ X such that

X
η //

EEEEEEEEE

EEEEEEEEE T (X)

ν

��
X

T (T (X))

T (ν)

��

µ // T (X)

ν

��
T (X) ν

// X
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A homomorphism of T -algebras f : (X, ν) −→ (X ′, ν ′) is a map f : X −→ X ′ in X such that

T (X)

ν

��

T (f) // T (X ′)

ν′

��
X

f
// X ′

Clearly these T-algebras and their homomorphisms form a category, this category is is denoted
XT and is the category of Eilenberg-Moore algebras:

Proposition 2.3.5 The Eilenberg-Moore category of algebra XT has an underlying functor UT : XT

−→ X which has a left adjoint such that the induced monad is precisely T.

Proof: The underlying functor has UT(X, ν) = X and UT(f) = f . Given any X ∈ X the pair
(T (X), µX) is clearly a T-algebra (it is called the free T-algebra). We have:

X
η //

f ((QQQQQQQQQQQQQQQ U(T (X), µ)

U(T (f)ν′)
��

(X ′, ν ′)

where note ηT (f)ν ′ = fην ′ = f so the diagram commutes. Furthermore, T (f)ν ′ is a morphism
of algebras as

T (T (X))

T (T (f))
��

µ // T (X)

T (f)
��

T (T (X ′))

T (ν′)
��

µ // T (X ′)

ν′

��
T (X ′)

ν′
// X ′

Thus, T (f)ν ′ is a a candidate for the universal map. Suppose h also works then ηh = f and:

T (T (X))

T (h)
��

µ // T (X)

h
��

T (X ′)
ν′

// X ′

Thus, h = T (η)µh = T (η)T (h)ν ′ = T (ηh)ν ′ = T (f)ν ′.
Finally it is easy to check that the monad this induces is the orignal monad. �

As for the Kleisli category the Eilenberg-Moore category enjoys a special property:

Proposition 2.3.6 If the adjunction (η, ε) : F a U : X −→ Y generates the monad T = (T, η, µ)
then there is a unique functor W : Y −→ XT such that W ;UT = U and F ;W = FT so that ηT = η
and µT = µ.
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Proof: Define W (Y ) = (U(F (U(Y )))
U(ε)−−−−→ U(Y )). We must check that this is an algebra which

entails checking that

U(Y )

MMMMMMMMMM

MMMMMMMMMM

η // U(F (U(Y )))

U(ε)

��
U(Y )

U(F (U(F (U(Y )))))

U(F (U(ε)))

��

µ=U(ε) // U(F (U(Y )))

U(ε)

��
U(F (U(Y )))

U(ε)
// U(Y )

commute. The first is a triangle identity the second is naturality.

Given f : Y1 −→ Y2 we have U(f) : U(Y1) −→ U(Y2) and naturality supplies the fact that this
induces an algebra homomorphism between (U(Y1), U(εY1)) and (U(Y1), U(εY1)). This is therefore
a functor and the above properties are easily checked.

It remains to show that the functor is unique. So we suppose K ′ is another such functor. K ′(Y )
must land on an object with underlying object U(Y ) so that it is forced to be of an algebra of the

form T (U(Y )) = U(F (U(Y )))
ν′−−→ U(Y ).

Now K ′ carries F (U(Y )) to an algebra K ′(F (U(Y )) = FT(U(Y )) so that the algebra is actually
(T (U(Y )), µ) and the algebra homomorphism ε : F (U(Y )) −→ Y becomes a homomorphism:

T (T (U(Y )))

µ

��

T (U(ε)) // T (U(Y ))

ν′

��
T (U(Y ))

U(ε)
// U(Y )

However preceding this square with T (η) shows ν ′ = U(ε) showing K = K ′. �

What structure does the Eilenberg-Moore category of algebras inherit from its parent category?
The answer is a great deal. We shall delay a fuller discussion of this until we have discussed limits
and colimits in the next section. However, we shall discuss one example here: factorizations. If the
parent category has a factorization system (for example Set has its epic-monic factorization) and
the functor T preserves this factorization – in fact simply preserves E-maps – then the category of
algebras inherits the factorization. In the case of Set this observation turns out to be quite important
as it actually implies that all categories of algeras over sets inherit its epic-monic factorization. We
start with:

Lemma 2.3.7 If X has and E-M factorization system and T = (T, η, µ) is such that T preserves
the E-maps (that is T (e) ∈ E whenever e ∈ E) then XT inherits the E-M factorization system.

Proof: A homomorphism of algebras f : (X1, ν1) −→ (X2, ν2) is in E (respectively M) in case f
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is.We need to show that so defined these sets of maps are orthogonal in XT.

T (X1)
T (e) // //

ν1{{xxxxxxxx

T (f)

��

T (X2)

ν2{{xxxxxxxx

T (f ′)

��yy

X1
e // //

f

��

X2

f ′

��

k

yy

T (X3)
ν3

{{xxxxxxxx
//

T (m)
// T (X4)

ν3{{xxxxxxxx

X3
//

m
// X4

In the above the cross-map k is always guaranteed to exist and be unique. The difficulty is to show
that it is an algebra homomorphism: that is T (k)ν3 = ν2k. However, note that both these are
potential cross-maps for the square connecting T (e) and m. As T (e) is E this is unique and so the
desired equality holds.

Next we need to show that every map can be factorized. This means that the image can be
endowed with a T-algebra structure map. The candidate is given by the obvious cross map:

T (X1)

ν1

��

T (e(f))// // T (Im(f))
T (m(f))//

ν

��

T (X2)

ν2

��
X1

e(f)
// Im(f) //

m(f)
// X2

where we must show that the required diagrams for this to be an algebra homomorphism must
hold. However, these are easily seen to follow from the orthogonality property. �

The immediate consequence of this is that for Set all its categories of algebras inherit the epic
monic factorization because epics in Set are always retracts and so necessarily are preserved by all
functors.

Corollary 2.3.8 All Eilenberg-Moore categories over sets have an epic-monic factorization system.

Later we shall see this, in fact, is a regular epic-monic factorization. To see that this is a
non-trivial observation it is worth considering the category of compact Hausdorff spaces: this
is the Eilenberg-Moore category of algebras for the ultra-filter monad. This means that in this
category the image of a continuous map is a compact Hausdorff subspace of the codomain so is,
in particular, closed. This ensures that such homomorphisms are “proper” – these are rather
sophisticated topological properties even if they are well-known in this situation.

2.3.5 Exercises

1. Prove carefully that the (finite) powerset monad is really a monad! Describe the Kleisli
category for the (finite) powerset monad (hint: relations). What are the Eilenberg-Moore
algebras for the (finite) powerset monad? (Hint: semi-lattices).
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2. Prove carefully that the exception monad on sets is really a monad! Describe the Kleisli
category (hint: partial maps). What are the Eilenberg-Moore algebras for the exception
monad?

3. Prove carefully that the list monad on sets is a monad. Show that the Eilenberg-Moore
category is exactly the category of monoids. Provide a description of the Kleisli category.

4. Prove carefully that the bag monad is really a monad! What are the Eilenberg-Moore algebras
for the bag monad?

5. Prove that the state monad is a monad: on object it is defined as St(X) = (S ×X)S where

η : X −→ (S ×X)S ;x 7→ λs.(s, x)

and

µ : (S × (S ×X)S)S −→ (S ×X)S ; f 7→ λs.(λ(s′, f ′).f ′s′)(fs)

Give an (alternative) description of the Kleisli category. (Harder) what is an Eilenberg-Moore
algebra for the state monad?

6. (Hard) The filter monad on sets is defined as

F(X) = {U ⊆ P(X)|X ∈ U,∀u, v ∈ U.⇒ u ∩ v ∈ U,∀u ∈ U, v ∈ P(X).u ⊆ v ⇒ v ∈ U}

that is F(X) is the set of filters in the powerset of X. A filter is a set of subsets which is
upward closed, that is contains all supersets of its members, and contains the intersection of
any finite set of its members. In particular this means a filter must contain the full set as it
must contain the intersection of the empty set of its members (which is the full set). The set
of all subsets – including the empty set – is clearly a filter (a filter is said to be proper if it is
not this one). The unit of the monad is

η : X −→ F(X);x 7→ {X ′ ⊂ X|x ∈ X ′}

takes an element x to the principal filter generated by {x}. Given a map f : X −→ F(Y ) we
may construct a map f ] : F(X) −→ F(Y ) where f ](U) = {Y ′ ⊆ Y |f−1(�Y ′) ∈ U} where
�Y ′ = {V ∈ F(Y )|Y ′ ∈ V }.

Prove that this defines a monad.

(Harder) Prove that the algebras of this monad are precisely continuous lattices! A continuous
lattice has all meets (infima) and has joins (suprema) of directed sets (recall a subset of a
partially ordered set is directed in case it is nonempty and every pair of elements u and v from
the set is dominated, that is there is a z in the set with u ≤ z and v ≤ z). The morphisms
must clearly preserve this structure. Given a continuous lattice X notice that there is a
canonical structure map defined by:

ν : F(X) −→ X;U 7→
∨
u∈U

∧
x∈u

x
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7. (Hard) The ultra-filter monad on sets is defined as

U(X) = {U ⊆ P(X)|U ∈ F , ∀X ′ ⊆ X.X ′ ∈ U ∨X\X ′ ∈ U}

that is U(X) is the set of ultra filters on X. An ultra-filter is a proper filter which for each
subset contains either it or its complement. Clearly this implies that the filter is a maximal
proper filter (and actually this characterizes maximal proper filters). As for the filter monad
the unit on x picks out the principal filter containing {x}. The lifting map is defined in the
same manner as for filters.

Prove this is a monad. (Harder) Prove that the algebras of this monad are compact Hausdorff
spaces! Toward this end it is useful to realize that each compact Hausdorff space comes with
with a canonical ultra-filter structure map as each ultra-filter converges on such a space to a
unique point. Conversely, the convergence properties of such a space determine it.

8. Prove that for monads (T, ηT , µT ) and (S, ηS , µS) and their Kleisli categories the following
square of functors commute

XT
J // YS

X

FT

OO

K
// Y

FS

OO

if and only if there is a “distributive law” that is a natural transformation

α : T ;K −→ K;S

such that
(ηT ;K)α = K; ηS (µT ;K)α = (T ;α)(α;S)(K;µS).

For each of the following monads, the exception monad on sets, the list monad on sets, and
the powerset monad on sets say whether:

(a) the product functor lifts to the Kleisli category (describe it),

(b) the list functor lifts to the Kleisli category (describe it).
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Chapter 3

Limits and colimits

Perhaps the most basic and most pervasive examples of universal and couniversal pairs arise through
limits and colimits. We take time now to discuss this source of universal property.

The first section of this chapter can be read in parallel with the previous chapter as it relies
for the mostpart on having only a basic understanding of what a universal and couniversal pair is.
The last two sections, however, rely on having an understanding of adjoints. For example, one of
the main results of the last section is that all Eilenberg-Moore categories over the category of sets
are exact, complete and cocomplete.

3.1 Basic limits and colimits

We start by discussing the properties of initial and final objects, and products and coproducts.

3.1.1 Initial and final objects

An initial object in a category C is an object which has exactly one map to every object (including
itself) in the category. We shall often denote an initial object as the numeral 0 to remind us that
it is a starting point and denote the unique map as ?A : 0 −→ A.

In Set the initial object is the empty set, in vector spaces it is the 0-dimensional vector space,
and in Cat it is the empty category.

Dual to an initial object is a final object: a final object in a category C is an object to which
every object has exactly one map. We shall often denote the final object by the numeral 1 and the
unique map by !A : A −→ 1.

In Set the final object is the one element set, in vector spaces the final object is the same as the
initial object (that is the 0-dimensional vector space) and in Cat it is the category with one object
and one arrow.

A simple observation is:

Lemma 3.1.1 If K and K ′ are initial in C then there is a unique isomorphism α : K −→ K ′.

Proof: As K is initial there is exactly one map α : K −→ K ′. Conversely, as K ′ is initial there is
a unique map α′ : K ′ −→ K. This map is the inverse of α as αα′ : K −→ K is the unique endo-map
on K namely the identity and similarly we obtain α′α = 1′K . �

71
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Thus initial objects (and by duality final objects) are unique up to unique isomorphism.

While there can only be one map to a final object there can be many maps from a final object
to a given object (consider Set for example). These maps are often called elements and we make
the following observation:

Lemma 3.1.2 Elements in any category are sections.

Proof: An element is a map a : 1 −→ A and has a right inverse ! : A −→ 1. �

One way to view an object in a category is as a functor from the final category.

Proposition 3.1.3 An object K in a category C is an initial object if and only if K a! : 1 −→ C.

Proof: Consider the universal diagram

?
1? //

1?   AAAAAAAA !(K)

!(1]?)
��

!(X)

As the final category only has one map each object must have a unique map from the initial object.

It is also clear that the counit is an isomorphism as it is the only map of the final category.
This means that K, the functor, is full and faithful. �

3.1.2 Binary products and coproducts

Perhaps one of the most fundamental structures a category can have is a product. In fact, it is so
fundamental we have already assumed several times that the reader knew what a product was in
order to facilitate the development. Let A and B be any two objects in a category then a product of
A and B is an object, often written A×B equipped with two maps π0 : A×B −→ A and π1 : A×B
−→ B such that given any object W with two maps f : W −→ A and g : W −→ B there is a unique
map, often written 〈f, g〉 : W −→ A×B, such that 〈f, g〉π0 = f and 〈f, g〉π1 = g.

The maps π0 and π1 are called projections.

This can be depicted graphically as

A

W

f

44hhhhhhhhhhhhhhhhhhhhhhhh

g

**VVVVVVVVVVVVVVVVVVVVVVVV
〈f,g〉 // A×B

π0

;;wwwwwwwww

π1

##GGGGGGGGG

B

The product in Set is the cartesian product, in vector spaces is what is often called the “direct
sum” (the dimensions of the vector spaces are added), and in Cat is the product of categories.

This time we shall start by describing the couniversal property which characterizes the product
from this we can then interpret the sense in which products are unique. To state the universal
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property we need to consider the diagonal functor ∆ : C −→ C × C : f −→ (f, f) and the meaning
of a couniversal object at (A,B) for ∆:

∆(C)

∆(〈f,g〉)
��

(f,g)

&&MMMMMMMMMM

∆(A×B)
(π0,π1)

// (A,B).

This gives us immediately that:

Lemma 3.1.4 The product of A and B is the couniversal pair at (A,B) for the diagonal functor.

The uniqueness of couniversal pairs tells us the sense in which a product is unique up to a
unique isomorphism. It is worth unwinding this statement more explicitly to give a direct proof.
The result very closely follows the proof style given for the initial object:

Suppose (K, (a0, a1)) and (K ′, (a′0, a
′
1)) are both products of A and B then there is a unique

map α : K −→ K ′ such that αa′0 = a0 and αa′1 = a1 as K ′ is a product. But similarly there is a
unique map α′ : K ′ −→ K such that α′a0 = a′0 and α′a1 = a′1. The composite αα′ : K −→ K has
αα′a0 = αa′0 = a0 and αα′a1 = αa′1 = a1. However 1K : K −→ K also has this property so we must
conclude αα′ = 1K and similarly α′α = 1K′ .

A product has a number maps associated with it. The first map we consider is the diagonal
map ∆ = 〈1A, 1A〉 : A −→ A × A this is the unit of the adjunction implied by the existence of all
couniversal pairs.

Observe that 〈1A, 1A〉π0 = 1A this gives:

Lemma 3.1.5 The diagonal map if it exists for an object in any category is a section and therefore
monic.

On might think that the projections must be epimorphisms: this is clearly so for cartesian
powers (A × A, A × A × A, ..) but is definitely not the case in general. Even in Set there is a
counterexample to this: A× 0 −−→

π 0
A for nonempty A is not surjective and thus not epic.

Of course × is a functor f × g is define to be 〈π0f, π1g〉 as illustrated by:

A
f // A′

A×B

π0

99sssssssssss

π1

%%KKKKKKKKKKK
f×g // A′ ×B′

π0

;;vvvvvvvvv

π1

##HHHHHHHHH

A′ g
// B′

Next for any binary product there is a symmetry map:

A

A×B

π0

33hhhhhhhhhhhhhhhhhhhhhhhh

π1
++VVVVVVVVVVVVVVVVVVVVVVVV

cAB // B ×A
π1

;;wwwwwwwww

π0

##GGGGGGGGG

B
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It is not hard to check that cABcBA = 1A×B and therefore we have:

Lemma 3.1.6 The symmetry map for any product is an isomorphism.

and ∆AcAA = ∆A: the trick is to break the maps into their components by post-composing
them with the projections.

Lastly there is an important map which allows one to re-associate products:

aABC : (A×B)× C −→ A× (B × C)

this map is the unique map determined by the equations

aABCπ0 = π0π0 aABCπ1π0 = π0π1 aABCπ1π1 = π1.

This map has an obvious inverse:

a−1
ABC : A× (B × C) −→ (A×B)× C

determined by the equations

a−1
ABCπ0π0 = π0 a−1

ABCπ0π1 = π0π0 a−1
ABCπ1 = π1π1.

Lemma 3.1.7 The associativity map for any product is an isomorphism.

In many structures which are “product like” these isomorphisms are present even though the
projections or diagonals are absent. The “coherence” diagrams satisfied by these isomorphisms
then becomes significant.

We shall say that a category C has binary products if every pair of objects has a product:

Proposition 3.1.8 The following are equivalent:

(i) A category C has binary products;

(ii) The diagonal functor is a left adjoint:

(∆, (π0, π1)) : ∆ a × : C −→ C× C;

(iii) There is and object operation (A,B) 7→ A× B on C with two families of maps πA,B0 : A× B
−→ A and πA,B1 : A×B −→ B together with a pairing combinator:

f : X −→ A g : X −→ B

〈f, g〉 : X −→ A×B

such that

〈f, g〉π0 = f 〈f, g〉π1 = g 〈π0, π1〉 = 1A×B h〈f, g〉 = 〈hf, hg〉.
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Proof: The first two formulations given the view of products as a couniversal pair are clearly
equivalent. For the final formulation it is straightforward to check that a product satisfies these
identities but less obvious that these define a product. To establish this we show that the pairing
map is unique: suppose that k has kπ0 = f and kπ1 = g then

k = k1A×B = k〈π0, π1〉 = 〈kπ0, kπ1〉 = 〈f, g〉.

�

The equality 〈π0, π1〉 = 1A×B is called to surjective pairing requirement. It is this identity
which often is the most difficult to secure. For example, while it is possible in the lambda calculus
to define many pairing combinators (satisfying everything but this last identity) it is provably
impossible to produce a surjective pairing.

We should also note here that the formation of pairs can be reversed (which is the content of
the surjective pairing condition, thus the inference rule may be written as a two-way inference:

hπ0 = f : X −→ A hπ1 = g : X −→ B

h = 〈f, g〉 : X −→ A×B

Dual to the notion of a product is the notion of a coproduct. Let A and B be any two objects
in a category then a coproduct of A and B is an object, often written A+B equipped with two
maps ι0 : A −→ A+B and ι1 : B −→ A+B such that given any object V with two maps h : A −→ V
and k : W −→ B there is a unique map, often written 〈h|k〉 : W −→ A × B, such that ι0〈h|k〉 = h
and ι1〈h|k〉 = k.

The maps ι0 and ι1 are called the coprojections.
We express this universal property diagrammatically as follows:

A

ι0 ##GGGGGGGGG
h

**VVVVVVVVVVVVVVVVVVVVVVVV

A+B
〈h|k〉 // V

B

ι1
;;wwwwwwwww h

44hhhhhhhhhhhhhhhhhhhhhhhh

Now it is interesting to note that the coproduct in Set is entirely different from the product. It
is the disjoint union of the two sets the coprojections are the embeddings of the components into
the disjoint union. In vector spaces the product and coproduct coincide — when this happens, in
a nice way, we shall say that we have biproducts (see later). In Cat the coproduct is the disjoint
union of the categories much as for sets.

The analogue to the diagonal maps is called the codiagonal and is the map

∇ = 〈1A|1A〉 : A+A −→ A.

We say a category has coproducts if every pair of objects has a coproduct. We therefore have:

Proposition 3.1.9 The following are equivalent:

(i) A category C has binary coproducts;
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(ii) The diagonal functor is a right adjoint:

((ι0, ι1),∇) : + a ∆ : C× C −→ C;

(iii) There is and object operation (A,B) 7→ A + B on C with two families of maps ιA,B0 : A

−→ A+B and ιA,B1 : B −→ A+B together with a copairing combinator:

f : A −→ X g : B −→ X

〈f |g〉 : A+B −→ X

such that

ι0〈f |g〉 = f ι1〈f |g〉 = g 〈ι0|ι1〉 = 1A+B 〈f |g〉h = 〈fh|gh〉.

This actually gives us a basic example of a functor which is both a left and right adjoint because
we know Set has products and coproducts so ∆ : Set −→ Set × Set must be both a left and right
adjoint.

In the next chapter we shall discover that often the product and coproduct interact as they do
in Set and obey a distributive law which states that the map

〈1× ι0|1× ι1〉 : A×B +A× C −→ A× (B + C)

which always exists, is an isomorphism. In general, however, it is not the case that we can expect
such an interaction in general. In particular, notice that this makes for an arithmetic of objects
which parallels the better known one for numbers. We would not therefore allow that A×B = A+B
but, of course, this does happen for the product and coproduct in vector spaces.

3.1.3 Limits and colimits of diagrams

There is a general notion of the limit and colimit of a “diagram” which we now introduce. This
leads to the notion of a complete category, that is a category in which the limits of all (small)
diagrams exist. Of course, certain limits (e.g. equalizers and products) imply the presence of all
other limits so that completeness can be reduced to having all equalizers and all (small) products.

A diagram is, concretely a morphism of a directed graph into a category. Occasionally this
notion of a diagram is too restrictive as we may also want to say that certain composites in the
diagram must be equal. A directed graph together with the specification that certain composites
are equal is just a presentation of a category. We may construct an actual category from such a
presentation by moving to the path category generated by the graph and “forcing” the equalities
we wish to hold to be true. This we may do by generating the smallest congruence on the path
category which includes the desired equalities. The category we want is then the quotient category
with respect to this congruence and the diagrams are then functors from this category.

In this section we shall be ambivalent about whether we are working with functors from cate-
gories, presentations of categories, or just diagrams. The results we prove rely only on the directed
graph structure and not on any overlying commuting constraints.

Thus, a diagram D : G −→ U(C) is a map of directed graphs into the underlying directed graph
of C (we know this corresponds to a functor D] : Path(G) −→ C) then a D–cone over this diagram
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consists of an object A, called the apex of the cone together with for each node N of G a map
αN : A −→ D(N) such that for each arrow of G, a : N1 −→ N2, we have αN1G(a) = αN2 .

A morphism of cones (α, h, β) : α −→ β is given by a map in C, h : A −→ B between the apexes
of the cones such that αN = hβN for all the nodes of the diagram. We observe:

Lemma 3.1.10 The cones over D : G −→ C form a category, ConeD(C), with objects the cones
and maps the morphisms of cones.

This is straightforward to check and we leave it to the reader.

A limit of a diagram is a final object in the category ConeD(C). We often write the apex of
this cone as lim← (D) with projections πN : lim← (D) −→ G(N).

We may display diagrammatically the concept of a limit of a diagram as follows:

A //

αN1

��)
))))))))))))))))))))))))))))))

αN2

  AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

αN3

��1
1111111111111111111111111111111111111111111 lim(D)

πN1

}}{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

πN2

		�������������������������������

πN3

����������������������������������������������

D(N1)
D(a) // D(N2)

D(N3)

D(b)

::ttttttttt

First we note that this notion of limit subsumes both the definition of a final object (take G
to be the empty graph) and the definition of the product (take G to be the discrete graph – with
no arrows – with two nodes). Furthermore it suggests what should be the definition of an n-ary
product: namely, the limit of a discrete diagram with n nodes. However, as illustrated above there
are many more shapes diagrams may take and, thus, a whole variety of limits of which we should
develop some understanding.

Before doing so, however, it is useful to relate this notion of limit to that of a universal pair.
To do this, as is often the case, it is a matter of choosing ones category and functors carefully.

Let Dgrm(G,C) be the category of G-shaped diagrams in C having objects morphisms of
directed graphs D : G −→ U(C) and maps natural transformations (equivalently natural transfor-
mations between functors D] : Path(G) −→ C). From general principles we know that this is a
category.

There is also a diagonal functor ∆ : C −→ Dgrm(G,C) which takes an object C to the degenerate
diagram on that object where all the nodes of G become the object C itself and the arrows of G
become the identity map 1C . We now have:
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Proposition 3.1.11 Dgrm(G,C) is a category with a diagonal functor ∆ : C −→ Dgrm(G,C).
Furthermore a couniversal pair at diagram D for ∆ is exactly a limit of D, (lim←D,π).

Proof: This is more a matter of translation than of proof! The first thing to realize is that a
natural transformation h : ∆(A) −→ D is exactly a cone. Thus, the couniversal diagram:

∆(A)

∆(〈f〉)
��

f

$$HHHHHHHHHH

∆(lim← (D)) π
// D.

also ensures that (lim← (D), π) is final in the category of cones. �

We shall say that a category is complete in case ∆ : C −→ Dgrm(G,C) has a right adjoint for
each graph G. Here the size of the directed graphs is important: we are tacitly assuming that the
directed graphs we are talking about are “small” in the sense that both the nodes and arrows form
sets. However, we could assume that both the node and arrow sets must be finite: we will say the
category is finitely complete if for any finite G the functor ∆ has a right adjoint.

Dual to the notion of limit is that of colimit. A colimit of a diagram D is a universal pair, often
written (lim→D, ι), at D for the functor ∆.

We may display a colimit diagrammatically as:

D(N1)
D(a) //

βN1

��;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

ιN1



���������������������������������������
D(N2)

βN2

��'
'''''''''''''''''''''''''''''''''''''

ιN2

����������������������������������������������������

D(N3)

D(b)
ddJJJJJJJJJ

βN3

��55555555555555555555555555555555555

ιN3

��������������������������������������

limD // A

We shall say that a category is cocomplete in case ∆ : C −→ Dgrm(G,C) has a left adjoint for
each small graph G. We will say the category is finitely cocomplete if for any finite G the functor
∆ has a left adjoint.

A useful fact is:

Lemma 3.1.12 Left adjoints preserve colimits and right adjoints preserve limits.

Proof: A colimit is a universal pair: universal pairs are preserved by left adjoints. �
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3.1.4 Special limits: equalizers and pullbacks

There are many shapes for diagrams and in this section we start by focusing on two special shapes:
equalizer diagrams and pullback diagrams. We show how the existence of limits for various shapes
of diagrams imply the existence of limits for others, culminating in proving that all limits exist
when products and equalizers are present.

An equalizer diagram is a parallel pair of arrows:

A
f−−→−−→
g

B

a cone for the above equalizer diagram is called an equalizer of f and g and is given by an object
Q together with a map q : Q −→ A such that qf = qg (this map is the map Q −→ B required to
make a cone). A limit (E, e) is called the equalizer even though it is not unique and satisfies the
following couniversal property

Q

k ��

q

''OOOOOOOOOOOOOOO

E e
// A

f //

g
// B

that there is a unique k such that ke = q.
We shall often write the equalizer of f and g as the object couniversal pair πf=g : f = g −→ A.

We observe:

Lemma 3.1.13 Suppose (E, e) is the equalizer of A
f−−→−−→
g

B then e is monic.

Proof: Suppose xe = xy = z : X −→ A then zf = zg so there is a unique k : X −→ E such that
ke = z. Therefore k = x = y and so certainly x = y. �

A pullback diagram is a binary fan of arrows:

A

f
��

B g
// C

a cone for the above pullback diagram is called a pullback of f and g and is given by an object Q
together with two maps qA : Q −→ A and qB : Q −→ B such that qAf = qBg (this map is the map
Q −→ C required to make a cone). A limit (E, eA, eB) is called the pullback even though it is not
unique and satisfies the following couniversal property

Q

k
��

qA

''OOOOOOOOOOOOOOO

qB

��/
/////////////

E eA
//

eB
��

A

f
��

B g
// C
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that there is a unique k such that keA = qA and keB = qB.

We shall occasionally write the pullback of f and g as the couniversal pair (f ∧g, π). Sometimes
we shall want to view the pullback diagram in an asymmetric way and so we shall say (in the above)
eA is the pullback along f of g.

Lemma 3.1.14 In any category

(i) the pullback of a monic along any map is a monic;

(ii) the pullback of a retraction along any map is a retraction;

(iii) the pullback of an isomorphism along any map is an isomorphism.

Proof:

(i) Suppose g is monic and k1eA = k2eA then

k1eBg = k1eAf = k2eAf = k2eBg

so as gis monic k1eB = k2eB.

Q

  

k1eA=k2eA

''PPPPPPPPPPPPPPP

k1eB=k2eb

��0
0000000000000

E eA
//

eB
��

A

f
��

B //
g
// C

However, this makes k1 and k2 comparison maps from the outer square to the pullback.

(ii) Suppose now g is a retraction so there is a g′ with g′g = 1C . Now consider the comparison
map given by:

A

k
�� OOOOOOOOOOOOOOO

OOOOOOOOOOOOOOO

fg′

��/
/////////////

E eA
//

eB
��

A

f
��

B g
// // C

Clearly it is a left inverse for eA.

(iii) As an isomorphism is a monic retraction we may combine the two previous parts to obtain
this one.

�

A helpful observation is the following:
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Lemma 3.1.15 In any category f : A −→ B is monic if and only if the following square is a
pullback:

A A

f
��

A
f
// B.

Proof: If this square is a pullback then whenever xf = yf there is a unique comparison map

X
x

''PPPPPPPPPPPPPPP

y

��0
0000000000000

  
A A

f
��

A
f
// B.

which shows x = y. Conversely if f is monic then whenever we form the outer square so that it
commutes x = y so that this also gives a comparison map, whose uniqueness is forced by the fact
that f is monic. �

This then allows us to link the property of being monic to a couniversal property whence we
can conclude:

Corollary 3.1.16 Right adjoints preserve monics and (dually) left adjoints preserve epics.

Pullback squares can be pasted together and the following observation is key to the behavior of
squares under pasting with respect to pullbacks:

Proposition 3.1.17 In the following (commuting) diagram:

A
f //

a
��

B
g //

b
��

C

c
��

A′
f ′
// B′

g′
// C ′

(i) if the two inner squares are pullbacks the outer square is a pullback;

(ii) if the rightmost square and outer square is a pullback the leftmost square is a pullback.

Proof:

(i) Suppose xc = yf ′g′ : X −→ C then there is a unique map w : X −→ B such that wg = x
and wb = yf ′. The latter equality gives a unique v : X −→ A such that va = x and vf = w.
But this means vfg = wg = x. Thus, v is the desired comparison map. It remains to check
uniqueness which is straightforward.
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(ii) Suppose xb = yf ′ Then xgc = yf ′g′ so there is a unique k such that ka = y and kfg = xg.
But now both kf and x have the property that xg = kfg and xb = yf ′ = kaf ′ = kfb. Thus,
they both give the unique comparison map to the rightmost square, so kf = x. This means
that k is a comparison map to the leftmost square: again it is straightforward to check that
k is unique.

�

3.1.5 Completeness and cocompleteness

We shall say a category has equalizers or has pullbacks in case the appropriate limits always
exist. The category of Set has both equalizers and pullbacks. Equalizers can be described very
simply in Set, the limit cone for parallel set maps f and g is:

{a ∈ A|f(a) = f(b)} ⊆ A
f−−→−−→
g

B.

Finite dimensional vector spaces over a field K (take, for example, K = R) also have equalizers.
These, however, this time are harder to describe but is basically the solution space for a set of
linear equations. The following result shows that these examples also have pullbacks:

Proposition 3.1.18

(i) If a category has binary products and equalizers then it has pullbacks;

(ii) If a category has pullbacks and binary products then it has equalizers;

(iii) If a category has a final object and pullbacks then it has binary products;

(iv) If a category has binary products then it has n-ary products for all n > 0.

Proof:

(i) We may construct the pullback as the equalizer:

f ∧ g
〈πA, πB〉−−−−−−−→ A×B

π0f−−−−→−−−−→
π1g

C

Where we notice that 〈x, y〉π0f = 〈x, y〉π1g : X −→ C if and only if xf = yg and the unique
k : X −→ f ∧ g has k〈πA, πB〉 = 〈kπA, kπB〉 = 〈f, g〉 which is the case if and only if kπA = f
and kπB = g as required.

(ii) The equalizer of two maps may be constructed using the following pullback:

f = g
π //

πf
��

A

〈f,g〉
��

B
∆
// B ×B.
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Suppose xf = xg : X −→ B then

xf∆ = xf〈1, 1〉 = 〈xf, xf〉 = 〈xf, xg〉 = x〈f, g〉

so that there is a map k : X −→ f = g with kπ = x which is forced to be unique as π is monic
being a pullback of the section ∆.

(iii) The binary fan
A

!
��

B
!
// 1

has the pullback the product of A and B as any cone of the one is a cone of the other.

(iv) The n-ary product may be built from a composite of binary products.

�

The main observation of this subsection is as follows:

Proposition 3.1.19 A category is (finitely) complete if and only if it has (finite) products and
equalizers.

Proof: If the category is (finitely) complete then it will have all (finite) products and equalizers
so the content of the result is in the converse. Let D : G −→ U(C) be a diagram then we have the
arrows of the graph G1 and the nodes of the graph G0 and we can form the following equalizer:

V
〈va〉a∈G0−−−−−−−→

∏
a∈G0

D(a)
〈π∂0(f)D(f)〉f∈G1−−−−−−−−−−−−−−→−−−−−−−−−−−−−−→
〈π∂1(f)〉f∈G1

∏
f∈G1

D(∂1(f))

Notice that any equalizer of this equalizer is also a cone for D as

vaD(f) = 〈va〉a∈G0π∂0(f)D(f)f

= 〈va〉a∈G0〈π∂0(g)D(g)〉g∈G1πf

= 〈va〉a∈G0〈π∂1(g)〉g∈G1πf

= 〈va〉a∈G0π∂1(f)

= vb.

and conversely very cone for D gives rise to an equalizer of this diagram as

〈va〉a∈G0〈π∂0(f)D(f)〉f∈G1

= 〈〈va〉a∈G0π∂0(f)D(f)〉f∈G1

= 〈〈v∂0(f)D(f)〉f∈G1

= 〈〈v∂1(f)〉f∈G1

= 〈va〉a∈G0〈π∂1(f)〉f∈G1 .

Finally a morphism of cones over D becomes a morphism of equalizers as a map to a product is
determined by its components. This means that the two limits have isomorphic cone categories.
Thus if either has a limit it is also a limit of the other. �
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3.1.6 Exercises

(1) Prove carefully that the symmetry and associativity maps for binary products are isomorphisms.

(2) If a category has products and coproducts prove that

〈〈f |g〉, 〈h|k〉〉 = 〈〈f, h〉|〈g, k〉〉 : A+B −→ C ×D.

(3) If a category C has products (and therefore a final object 1) prove that:

A





!

��0
000000000000

A 1

is a limit cone. Show, therefore that A× 1 and 1× A are canonically (in the sense that these
maps always exist) isomorphic to A.

(4) If a category C has products prove that the following diagrams are always pullbacks:

A×B f×1B //

π0

��

A′ ×B
π0

��
A

f
// A′

A
〈1A,f〉//

f
��

A×B
f×1B
��

B
∆
// B ×B.

(5) If a category has products prove that

A
∆−−→ A×A

π0−−−→−−−→
π1

A

gives the equalizer of π0 and π1.

(6) Prove that in any category the pushout along any map of a section is itself a section. Show
that the pullback of a section is not necessarily a section: give a counter example in finite sets.

(7) Prove that if mr = 1Y and e = rm then, in the following diagram

Y
m−−→ X

e−−−→−−−→
1X

X
r−−→ Y

m is the equalizer of e and 1X and r the coequalizer.

(8) Prove that if a functor F : C −→ D preserves pullbacks and C has products that F preserves
equalizers (Hint: show that 〈F (p0), F (p1)〉 is monic).

(9) Describe coequalizers in Set. Prove that Set is complete and cocomplete.
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(10) Suppose that (η, ε) : F a G : X −→ Y is a reflection (ε is a natural isomorphism) and that X
has colimits then Y has colimits.

(11) Certain limits can be obtained from other limits:

(a) Prove that any category has limits for acyclic graphs with a source. These are graphs with
an object from which any other object can be reached (in a unique way) following the
direction of the arrows (hint: a tree in fact!).

(b) (Harder) Prove that any category with equalizers has limits for finite graphs with a source
(any other object can be reached from the source in a not necessarily unique way following
the direction of the arrow).

(c) Prove that if a category has pullbacks it has limits for all finite connected acyclic graphs.
These are the diagrams which regarding each (directional) arrow as a two-way arrow leaves
every object reachable from every other in a unique way.

(d) (Harder) Prove that if a category has pullbacks and equalizers that every finite connected
diagram has a limit. These are the diagrams which regarding each (directional) arrow as a
two way arrow leaves every object reachable from every other (possibly in many ways).

(12) Show that a small category (both objects and arrows are sets) which is complete is a preorder.
Give a concrete proof that any meet preserving map from a complete poset has left adjoint.

(13) A complete partial order is a partial order with all limits or, equivalently all meets. Prove that
the inclusion of complete partial orders into all partial orders is a reflection (you may need to
look up some lattice theory here!).

(14) Show that SetC
op

for any small category C is complete and cocomplete.

(15) Show that a congruence on a 2-category is an equivalence relation on the 2-cells which only
relates like typed 2-cells and satisfies:

(a) if α ∼ β then γαγ′ ∼ γβγ′ whenever these vertical composites are defined,

(b) if α ∼ β then γ;α; γ′ ∼ γ;β; γ′ whenever these horizontal composites are defined.

Show that every 2-functor can be factorized into a 2-functor which is surjective on 2-cells and
bijective on 1-cells and 0-cells followed by a 2-faithful 2-functor (i.e one which is injective on
the 2-cells hom-sets).

3.2 Limits, colimits and factorizations

When a category has both finite limits (or finite colimits) and a factorization system these two
structures interact in a number of important ways. Regular categories, with their factorization of
maps into regular epics monics, show how some very set-like properties can be captured in a purely
categorical manner.

The section ends with a discussion of M-extremal maps and reflexive factorizations. In partic-
ular the close correspondence between wide reflexive subcategories and reflexive factorizations is
described.
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3.2.1 Orthogonality and limits

Recall that given a class A of maps we may form the class A⊥ (or A⊥w) of maps which are (weakly)
right orthogonal to all the maps in A. The following results may all be expressed in their dual form:

Lemma 3.2.1 In any category with finite limits: the class of maps (weakly) right orthogonal to A,
A⊥ (respectively A⊥w) have the following properties:

(i) The pullback of an A⊥–map (respectively A⊥w–map) along any map is an A⊥–map (respectively
A⊥w–map);

(ii) If g1 and g2 are A⊥–maps (respectively A⊥w–maps) then g1 × g2 is an A⊥–map (respectively
an A⊥w–map);

(iii) Every section is in A⊥ (respectively A⊥w) if and only if every the equalizing map πf=g for any
parallel maps f and g is an A⊥–map (respectively A⊥w–map).

Proof:

(i) Suppose we form the pullback of an A⊥ (respectively A⊥w) map g along a map h, then we
must check that g′, as below, is in A⊥. To do this we consider a square comparing f ∈ A with
g′:

X
k1 //

f

��

g ∧ h h′ //

g′

��

A

g

��
Y

k2

//

v1

66

v2

==

B
h

// C

Because g is (weakly) orthogonal we can conclude there is a map v1 as shown. Next we can
use v1 to provide a unique map v2 which is the desired cross map.

(ii) The fact that g1 × g2 has the desired orthogonality property may be lifted straight from the
fact that g1 and g2 have this property..

(iii) Such an equalizer can be calculated as the pullback of the diagonal map which is a section
and therefore an A⊥-map: by (i) it is therefore an A⊥-map.

Conversely a section is the equalizer of its idempotent and the identity.

�

A useful observation for orthogonal classes of maps across adjoints is as follows:

Lemma 3.2.2 If F a G : X −→ Y and A is a class of maps in X while B is a class of maps in
Y such that F preserves these chosen maps, that is a ∈ A implies f(a) ∈ B, then G preserves the
(weakly) right orthogonal maps in the sense that whenever x ∈ B⊥ (respectively x ∈ B⊥w) then
g(x) ∈ A⊥ (respectively G(x) ∈ A⊥w).
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Proof: Suppose x ∈ B⊥ then certainly testing against any F (a) must produce the desired cross
map as F (a) ∈ B. However, we have the correspondence:

F (a) −→ x

a −→ G(x)

where we are working in the arrow category so the top and bottom lines are commutative squares.
This easily shows that G(x) must be in A⊥. �

3.2.2 Regular monics and extremal epics

A map is called a regular monic in case it is the equalizer of some pair of maps. Notice that if
the category has colimits then for any map f : A −→ B there is a universal pair of maps which that
map equalizes. This pair (k1, k2), the cokernel pair of f , is given by pushing out the map along
itself:

B
k1

""EEEEEEEE

A

f
??��������

f ��???????? f ∨ f

B
k2

<<yyyyyyyy

Thus a regular monic in a category with cokernel pairs is exactly a map which equalizes its own
cokernel pair.

Now if every regular monic is an A⊥-map then we may conclude that every A-map must be
epic. For suppose gh1 = gh2 and g ∈ A then letting the equalizer of h1 and h2 be k : K −→ B we
have g = g′k but as k ∈ A⊥ there is a unique map v unduced by othogonality:

A

g′

��

g // B
v

~~}}}}}}}

K
k
// B

which is necessarily an isomorphism as k is monic (because kvk = k so kv = 1K). Thus k is an
isomorpism so that h1 = h2.

Lemma 3.2.3 A⊥ contains all the regular monics if and only if all maps A are epic.

Proof: It remains to show that if all maps in A are epic that A⊥ contains all the regular monics.
For this it suffices to show that every regular monic is orthogonal to every epic. Suppose m is
regular monic and equalizes f and g, while e is epic, and suppose eh2 = h1m:

A

h1

��

e // B

h2

��k~~
C m

// D
f //

g
// E
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then h2f = h2g as eh2f = h1mf = h1mg = eh2g so that there is a unique map k as shown to
the equalizer of f and g. The fact that it is the comparison map to the equalizer makes the upper
triangle commute. For the lower triangle notice that ekm = eh2 = h1m and m is monic. �

The last part of lemma 3.2.1 may be restated as saying A⊥ contains all regular monics iff and
only if A⊥ contains all the sections. We may now use lemma 1.4.6 (iii) and the above observations
to provide the following strengthening of that result:

Corollary 3.2.4 The following are equivalent for a factorization system on a category with equal-
izers:

(i) The M-maps are left-factor closed;

(ii) Every section is an M-map;

(iii) Every regular monic is an M-map;

(iv) Every E-map is epic.

We shall say that a factorization system is stable in case the pullback of a factorization is again
a factorization. That is whenever the two squares are pullbacks e′f ∈ E and m′f ∈M

f ∧ g
ef ′ //

g′′

��

mf ∧ g
mf ′ //

g′

��

X

g

��
A ef

// Ef mf
// B

in view of lemma 3.2.1 it follows that it suffices to require that pullbacks of E-maps along any map
are E-maps.

Lemma 3.2.5 A factorization system on a category with pullbacks is stable if and only if pullbacks
of E-maps along any map are E-maps.

The standard “epi-mono” factorization of Set is stable.

Remark 3.2.6 If a factorization system is stable then if is easy to see that the products functor
will preserve factorizations: that is whenever f, g ∈ E then f × g ∈ E . Notice that we necessarily
have f, g ∈M then f×g ∈M for every factorization system by the above result. We observe that:

Suppose that X has products and a factorization which is preserved by the products. Consider
an enriched functor F : C −→ D between two X-enriched categories then we may factorize the
functor and obtain an intermediate enriched category as follows:

C(A,B)× C(B,C)

m(fAB)×m(fBC)

��

mABC // C(A,C)

m(fAC)

��
IfAB × IfBC

e(fAB)×e(fBC)
��

m // IfBC

e(fAC)
��

D(F (A), F (B))× D(F (B), F (C)) m
// D(F (A), F (C))
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This then gives a factorization on enriched categories which, furthermore, itself is preserved by
products (as the product of an enriched category is formed using the product of hom-objects in X).

This shows that for example Cat has a factorization which is preserved by products which is
inherited from the standard surjective/injective factorization of Set. The factorization is in fact
into functors which are surjective on the homsets – the objects do not change but the homsets are
quotiented – followed by a faithful functor.

This in turn means that Cat-enriched categories have a factorization ...

3.2.3 Regular and exact categories

A map is regular epic if it is the coequalizer of a parallel pair of maps. As before for any map f
there is a universal such pair of maps, called the kernel pair of f formed by pulling back f along
itself. Thus, one can test whether a map is regular by determining whether it is the coequalizer of
its kernel pair.

A regular category is a category which has pullbacks, coequalizers of all kernel pairs, and
has pullbacks of a regular epic along any map regular epic. regular categories where introduced by
Michael Barr to capture certain set-like properties. The category of Set is therefore the prototypical
regular category. The fact that Set is regular implies that, inparticular, categories of algebras
are regular providing a large source of examples of regular categories in the body of traditional
mathematics.

It is a classic result of Michael Barr that every regular category admit a factorization system
where E is the class of regular epics andM is the class of monics. In particular this means that in
a regular category the extremal epics are precisely the regular epics.

Proposition 3.2.7 In any regular category the regular epics and the monics provide a stable fac-
torization system.

Proof: As monics are closed to composition and contain the isomorphisms we may use proposition
1.4.5 (iii) to show that these give a factorization system provided we can show that there is a
maximal cofactorization for every map into a regular epic followed by a monic. Now we have
already seen (in the dual) that regular epics are orthogonal to monics and this means that the
orthogonallity condition of being a maximal factorization will be automatic. Thus, all that really
needs to be done is to show that we can factor any map into a regular epic followed by a monic.

Given any map h : A −→ B we may form its kernel pair and take the coequalizer of that pair.
As the original map coequalizes the kernel pair we certainly obtain a factorization:

h ∧ h
π0−−−→−−−→
π1

A
eh−−→ A′

j−−→ B

with h = ehj where eh is regular epic. The difficulty is to show that j is monic. This is the special
property of regular categories.

Notice that j is monic if and only if its kernel pair is equivalent to (1A′ , 1A′) so that it would
seem sensible to examine the kernel pair of j. The following lemma is then a crucial observation.

Lemma 3.2.8 In a regular category, if f is regular epic, then the induced comparison map from
the kernel pair of fg, for any map g, to that of g is epic.
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Proof: We have the following diagram of pullbacks:

(fg) ∧ (fg)
f ′1 // //

f ′0 ����

k

&&

g ∧ (fg)
g′1 //

f0

����

A

f
����

(fg) ∧ g

g′0
��

f1 // // g ∧ g g1 //

g0

��

B

g

��
A

f
// // B g

// C

in which the regular epics are indicated by double headed arrows. The comparison maps between
the kernel pairs is given by f = f ′1f0 = f ′0f1 and is epic. �

Setting f = eh and j = g in the above lemma we obtain kg0 = f ′0g
′
0f = f ′1g

′
1f = kg1 so that

g0 = g1 showing that the kernel of j is trivial. �

A, not so obvious, corollary of this is:

Corollary 3.2.9 In a regular category the composition of two regular epics is a regular epic.

A factorization is stable in the pullbacks along any map of an E-map is an E-map. We have the
following surprisingly strong result:

Proposition 3.2.10 A stable factorization on a category X which has all finite limits is the regular
epic/monic factorization if and only if M is precisely the class of monics.

Proof: If it is a regular epic/monic factorization then certainly the M-maps are precisely the
monics. Conversely we note that if every monic is in M then the diagonal maps must be in M
and so each E-map is epic and every monic E-map is an isomorphism. We must show that every
E-map is regular epic.

Let f : A −→ B be an E-map and consider its kernel, Ef given by the pullback

A
f

��????????

Ef

π0

>>~~~~~~~~

π1   @@@@@@@
B

A

f

??��������

We would like

Ef
πf0−−−→−−−→
πf1

A
f−−→ B

to be a coequalizer. To show this is so consider a map g which coequalizes πf0 , π
f
1

Ef
πf0−−−→−−−→
πf1

A
g−−→ C



3.2. LIMITS, COLIMITS AND FACTORIZATIONS 91

then we have

Ef
πf0−−−→−−−→
πf1

A
〈f, g〉−−−−→ B × C

and we can factorize 〈f, g〉 = e(〈f, g〉)m(〈f, g〉) and

Ef
πf0−−−→−−−→
πf1

A
e(〈f, g〉)−−−−−−→ D

m(〈f, g〉)−−−−−−→ B × C

where as m(〈f, g〉) is monic e(〈f, g〉) coequalizes the maps but now we have comparison maps
m(〈f, g〉)π0 : D −→ B and m(〈f, g〉)π1 : D −→ C where the former is in E as f is. To show that f is
the coequalizer it suffices to prove that the first of these maps is monic as then it will be a monic E-
map and so an isomorphism providing the required comparison map (m(〈f, g〉)π0)−1m(〈f, g〉)π1 : B
−→ C.

Suppose therefore xm(〈f, g〉)π0 = ym(〈f, g〉)π0 then we have, by forming the pullback squares
below

A

e(〈f,g〉)     @@@@@@@@

f

��

X ′

x′
>> >>|||||||

α′

    BBBBBBBB D

m(〈f,g〉)π0 &&MMMMMMMMMMMMM

Z

β
>> >>}}}}}}}}

α     AAAAAAAA X

x

>>~~~~~~~~

y   @@@@@@@@ B

Y ′
β′

>> >>||||||||

y′   BBBBBBBB D

m(〈f,g〉)π0

88qqqqqqqqqqqqq

A

e(〈f,g〉)
>> >>~~~~~~~~

f

CC

an E-map (and therefore an epic map) k = αβ′ : Z −→ X and also, as the outer square commutes

a map h : X −→ Ef such that βx′ = hπf0 and αy′ = hπf1 so that

kx = βα′x = βx′e(〈f, g〉) = hπf0 e(〈f, g〉) = hπf1 e(〈f, g〉) = αy′e(〈f, g〉) = ky

so as k is epic x = y and m(〈f, g〉)π0 is monic. �

We may define an equivalence relation on A, (E, π0, π1) in a category with pullbacks to be a
jointly monic pair:

E
π0

��~~~~~~~~
π1

��@@@@@@@@

A A

which is

• Reflexive: that is there is a map ∆ : A −→ E with ∆π0 = 1A = ∆π1;
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• Symmetric: that is there is a map c : E −→ E such that cπ0 = π1 and cπ1 = π0 (notice that
this implies that cc = 1E as π0 and π1 are jointly monic);

• Transitive: there is a map t : E2 −→ E where

E2
π′1 //

π′0
��

E

π0

��
E π1

// A

is a pullback and where tπ0 = π′0π0 and tπ1 = π′1π1 (notice that t is uniquely determined as
the pair π0, π1 is jointly monic).

It is not hard to see that any kernel pair forms an equivalence relation in this purely formal
sense:

Lemma 3.2.11 The kernel pair of any map is an equivalence relation.

Proof: We define the required maps by:

A
f

��@@@@@@@@

A

ooooooooooooooo

ooooooooooooooo

OOOOOOOOOOOOOOO

OOOOOOOOOOOOOOO
∆ // E

π0

??~~~~~~~~

π1

��@@@@@@@@ B

A
f

??~~~~~~~~

A
f

��@@@@@@@@

E

π1

77ooooooooooooooo

π0

''OOOOOOOOOOOOOOO
c // E

π0

??~~~~~~~~

π1

��@@@@@@@@ B

A
f

??~~~~~~~~

E2

  AAAAAAAA

~~}}}}}}}}
t
��

E

��~~~~~~~~

  BBBBBBBB E

wwnnnnnnnnnnnnnnn

''PPPPPPPPPPPPPPP E

~~||||||||

��@@@@@@@@

A

f
''PPPPPPPPPPPPPPP A

f
��

A

f
wwnnnnnnnnnnnnnnn

A

where E = f ∧ f and E2 is the pullback of the small upper square at whose apex its stands. �

It is not the case that every equivalence relation in this formal sense will be, in an arbitary
regular category, a kernel pair. An exact category is precisely a regular category in which
every equivalence relation is also a kernel pair. An exact category allows us constructions of
structures which are defined by the formation of equivalence relations: these constructions are
occur everywhere in mathematics.

The properties of a category relating to the kernel pairs, regular maps, and equivalence relations
are referred to as exactness properties. These properties are very important in judging how nearly
the category behaves like the category Set and indeed there are completeness theorems to the effect
that any regular category can be embedded fully and faithfully into a Grothendiek topos (which
may be viewed as an abstract set theory) in such a manner as to preserve pullbacks (indeed all
finite limits) and coequalizers of kernel pairs.

An exact category need not in general have coequalizers. However, if it is well-powered (i.e. every
object has only a set of non-isomorpic subobjects) and has limits then one may form coequalizers
simply by finding the smallest equivalence relation through which the pair of maps factor and using
its coequalizer.
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Proposition 3.2.12 An exact category which has limits and is well-powered has all coequalizers.

Proof: The smallest equivalence relation through which a parallel pair (f, g) factors exists as any
arbitrary intersection of equivalence relations is, clearly, an equivalence relation and the pair always
factors though the chaotic equivalence relation.

Furthermore, the coeqalizer of fand g is the coequalizer of this smallest equivalence relation.
For, if fh = gh then f and g factor through Ker(h). This means the smallest such equivalence
relation, E(f,g), is contained in Ker(h) but this gives a unique comparison map from the coequalizer
of E(f,g) to Ker(h). This gives the unique comparison map. �

3.2.4 M-extremal factorizations

In this section we shall provide a slightly surprising link between factorization systems and wide
reflexive subcategories. The main result says that (under certain conditions) such reflexive subcat-
egories correspond precisely to reflexive factorization systems. The condition required is that the
category is well-powered and has complete subobject lattices: this is a fairly strong condition but it
should suggest to the reader that, given a reflexive category, it is sensible to look for a factorization
system which is generated by it. Before describing these results we start with some observations
on extremal maps.

A system of monicsM in a category X with pullbacks is a class of monics which contains all
isomorphism, is closed to composition, and is stable in the sense that the pullback of an M-map
along any map is anM-map. If the category X is well-powered and we say thatM is a complete
system of monics in case the intersection of an arbitrary set ofM-subobjects is anM-subobject.

An M-extremal map is a map f : A −→ B such that any factorization f = f ′m through an
M-map, m, implies that m is an isomorphism. The monic-extremal maps which are epic are called
the extremal epics.

Proposition 3.2.13

(i) In a well-powered category with pullbacks and complete subobject lattices the monics of any
class of maps A = (A⊥)⊥ is a complete system of monics.

(ii) In a category with pullbacks and a complete system of monics M the M-extremal maps and
the M-subobjects give a factorization system.

(iii) In any well-powered category which has equalizers and pullbacks and has complete subobject
lattices, the extremal epics and the monics form a factorization system.

Proof:

(i) The monics in A are stable, contain all isomorphism, and are closed to composition as A has
these properties. The only fact we have not mentioned is that the limit of an arbitrary fan of
A-maps will be in A. This is left as an exercise.

(ii) First M-extremal epics are precisely the maps which are orthogonal to M. They are or-
thogonal to M as consider the square whose top map cannot be factored through a proper
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M-subobject and whose bottom map is M.

A

h1

��

f //

k

##

B

h2

��

h2 ∧m
;; m′

;;wwwwwwwww

h′2{{wwwwwwwww

C // m
// D

Form the pullback of m along h2 inside the square: as f cannot be factored through a proper
monic m′ must be an isomorphism. This provides the required cross map m−1h′2 : B −→ C
which must be unique as m is monic.

To show that any map which is orthogonal to M must be M-extremal we consider a map f
which can be factorized into f ′m where m ∈M. This gives the square:

A

f ′

��

f // B
k

~~
C // m

// B

from which we immediately obtain that m must be an isomorpism.

This means that both the E-maps and the M-maps contain all isomorphisms and are closed
to composition. Furthermore they are orthogonal classes of maps: to show they form a
factorization system it, therefore, suffices to show that we may factorize an arbitrary map.
Given f : A −→ B, as the M-system is complete, there is a least M-subobject m such that
f factors through that subobject as f ′m = f . Clearly f ′ must be an M-extremal map as
otherwise m would not be the smallest M-subobject.

(iii) Clearly the set of all monics form a complete system of monics when the category has complete
subobject lattices. The presence of pullbacks ensures that the monic-extremal maps and the
monics form a factorization system. Using corollary 3.2.4, and the fact that the category has
equalizers, implies that the monic extremal maps are epic.

�

Of course, these factorizations are not necessarily stable and, certainly, the extremal epics
need not be regular epics! However, it is notable that the assumption that the subobject lattices
are complete automatically provides a factorization system in the presence of pullbacks. This
factorization system explains why extremal epics are of some classical interest.

3.2.5 M-shape subcategories

A wide reflexive subcategory with reflector (R, η) is anM-shape subcategory in case each unit ηA
is an E-map and every E-map under reflection becomes an isomorphism.
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An object is Z is E-universal in case given any map x : X −→ Z and a E-map g : X −→ Y
there is a unique map x′ : Y toZ such that gx′ = x. We may portray the situation as:

X

x
  AAAAAAAA

g // // Y

x′

��
Z

A factorization system has enough E-universal objects in case every object has an E-map to an
E-final object. We have the following observations:

Lemma 3.2.14 In any category X with an (E,M)-factorization system:

(i) If X has a final object then X has enough E-universal objects;

(ii) X has enough E-universal objects if and only if X has an M-shape subcategory;

(iii) The M-shape subcategory if it exists is unique.

Proof:

(i) If X has a final object for any object X we may factorize the unique map to the final object:

X
!X−−→ 1 = X

ηX−−−→ R(X)
!R(X)−−−−→ 1.

I claim the object I have suggestively labelled as R(X) (note if !X is an M-map we shall let
R(X) = X to get a wide reflection) is an E-final object.

To show this we use the factorization system to obtain a unique cross-map for:

Y
g // //

x
��

Z

k

||
!Z
��

R(X)
!R(X)

// 1

Clearly k is unique when both triangles commute but note that the lower triangle always
commutes so the requirement that the upper triangle commutes secures the uniqueness of k.

(ii) It remains to provide the reflection: set ηX : X −→ R(X) to be a chosen map to an E-final
object (being careful to arrange that ηX is the identity in case X is already E-final). Then note
that the property of being E-final is precisely the required universal property for a reflection.
It remains to check that every E-map g becomes an isomorphism under this reflection: for
this we have

A

ηA
����

g // // Y

ηY
����

R(A) R(Y )
(gη]Y )

oo
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where the inverse is given by the unique map going in the opposite direction.

Conversely if X has an M -shape subcategory then it suffices to show that each R(Z) is an
E-final object. For this we have

X
g // //

x

��

ηX

��55555555555555555 Y

ηY
��

R(Y )

R(g)−1

��
R(Z) R(Y )

R(x)oo

which gives the desired map ηZR(g)−1R(x). For uniqueness suppose k is an alternative map
then k = ηYR(k) but R(k) = R(g)−1R(x).

(iii) The M-shape subcategory is always the full subcategory determined by the E-universal ob-
jects.

�

3.2.6 Reflexive factorizations and subcategories

Conversely, given a wide reflexive subcategory we wish to construct a factorization system for which
the given reflexive subcategory is the M-shape subcategory. We would also like the E-maps to be
precisely those which become isomorphisms under the reflection. Notice that if this is to be the
case then whenever fg = h and any two of f , g and h are E-maps then the third must also be an
E-map. This actually means that the factorization must satisfies an additional property, namely,
if fg = h and h and g are E-maps then f is an E-map. A reflexive factorization system is a
factorization system which satisfies this additional property.

Lemma 3.2.15 In a category with a factorization system an M-shape subcategory exists with
reflector R such that E = {g|R(g) is iso.} if and only if the factorization is reflexive with enough
E-universal objects.

Proof:

(⇒) If such a factorization exists it must certainly have enough E-universal objects and be reflexive.

(⇐) If the factorization is reflexive and it has enough E-universal objects then a reflector exist.
Furthermore, if R(g) is an isomorphism then gηB = ηAR(g) so that g ∈ E.

�

Finally we wish to address the question of when reflexive subcategories correspond to reflexive
factorizations:

Theorem 3.2.16 In a well-powered category with pullbacks in which all subobject lattices are com-
plete every reflexive subcategory is the M-shape subcategory of a reflexive factorization.
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Proof: We need to provide a reflexive factorization when one is given the reflexive subcategory.
In this situation the E-maps are required to be E = {g|R(g) is iso.} so that the M maps must be
E⊥. It suffices therefore to provide a factorization of an arbitrary map.

Suppose therefore that f : A −→ B then we have by inscribing a pullback inside the naturallity
square:

A

ηA

��66666666666666666
f

**UUUUUUUUUUUUUUUUUUUUUUUU
γ

$$
ηB ∧R(f) π0

//

π1

��

B

ηB
��

R(A)
R(f)

// R(B)

where we know that R(f) ∈ M and so π0 ∈ M. However, it is quite possible that γ 6∈ M. To
overcome this, notice by proposition 3.2.13 (i) that the monic M-maps form a complete system
of monics so that they give rise to a factorization system. We factor γ into an M-monic-extremal
followed by an M-monic γ = γ′m. Our aim then is to show that R(γ′) is an isomorphism.

First note that R(γ′) is certainly a section as γ′mπ1 = ηB so R(γ′)R(mπ1) = R(ηB) = 1R(B).
But this means by inscribing a pullback inside the naturallity square

A
γ′

**UUUUUUUUUUUUUUUUUUUUUUUU

$$

ηA

��77777777777777777

ηQ ∧R(γ′) p
//

q

��

Q

ηQ

��
R(A)

R(γ′)
// R(Q)

that p is a monicM-map and so, as γ′ is monicM-extremal, it must be an isomorphism. But this
gives p−1qR(γ′) = ηQ and so R(p−1q)R(γ′) = R(ηQ) = 1R(Q) whence R(γ′) is a retract and so an
isomorphism. �

This means that when the category also has a final object reflexive factorizations and reflexive
subcategories correspond bijectively:

Corollary 3.2.17 In a well-powered finitely complete category with complete subobject lattices re-
flexive factorizations and reflexive wide subcategories are in bijective correspondence.

3.2.7 Exercises

1. Prove that a category is regular in case

• The category has pullbacks;

• Every arrow has a regular epic monic factorization;

• The pullback of a regular epic is a regular epic.
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2. Give a direct proof that in a regular category the composite of two regular epics is regular
epic.

3. Prove that if fg is a regular epimorphism then g is a regular epimorphism.

4. Show that if A = (A⊥)⊥ then the limit of an arbitary fan of A-maps has its map to the apex
of the fan an A-map.

5. Say that an object Y in a category X with an (E,M)-factorization system is E-extremal in
case every map out of Y is an M-map. Show that if X has pushouts then any E-extremal
object is an E-final object. Conclude that such a category necessarily has an M-shape
subcategory which is determined by the E-extremal objects.

6. (Harder) Show that any finitely complete category with a stable extremal epic monic factor-
ization is a regular category.

3.3 Adjoints, monads, and limits

In this section we shall explore in more detail the interactions between limits and adjoints. This
takes us in two directions. First to show the circumstances in which preservation of limits is
equivalent to being a right adjoint: this is the content of Freyd’s adjoint functor theorem. Second,
to investigate the limit and colimit properties of the Eilenberg-Moore category of algebras. This
discussion leads us into Beck’s tripleability theorems.

3.3.1 Adjoint functor theorems

We have discovered that a right adjoint preserves limits. Peter Freyd proved that under certain
conditions the converse is also true: namely if a functor preserves limits then it is a right adjoint.
This sort of result is known as an “adjoint functor theorem” and there are many variants. The
importance of these theorems is that whenever you encounter a functor which preserves limits
(colimits) you should immediately be suspicious that it does so because it is a right (left) adjoint!

We start by observing that:

Lemma 3.3.1

(i) G : Y −→ X has a universal pair at A if and only if the comma category A/G has an initial
object;

(ii) If G preserves limits and Y has a G-shaped limit then A/G has G-shaped limits.

Proof:

(i) This is a restatement of the universal property.

(ii) The limit of a G-shaped diagram D in A/G is a cone over the diagram D; Π1;G,, where
Π1 : A/G −→ Y is the projection. As G preserves G-shaped limits this is given by taking the
limit lim← (D; Π1) in Y and applying G.



3.3. ADJOINTS, MONADS, AND LIMITS 99

�

This means we may concentrate our efforts on finding an initial object in the presence of limits.
By a weak initial object we shall mean an object which has a (not necessarily) unique map to
each object. By a weak initial family of objects we shall mean a set of objects such that every
object has a map from one of the objects in the set. We observe:

Lemma 3.3.2 (i) If W is a weak initial object then any W ′ with a map h : W ′ −→W is a weak
initial object.

(ii) If the category X has products then the category has a weak initial family of objects if any only
if X has a weak initial object.

(iii) If X has equalizers (or pullbacks) and a weak initial object W whose only endo-map is 1W
then W is initial.

(iv) If X has a weak initial object W , has equalizers (or pullbacks), and, in particular, has a monic
equalizer w′ : W ′ −→W for the set of all W -endomorphisms then W ′ is initial.

Proof:

(i) Immediate.

(ii) The product of the weak initial family is clearly a weak initial object.

(iii) If X has equalizers and a weak initial object W and f and g are two maps to some object X
from W then we may form the equalizer:

E
e−−→W

f−−→−−→
g

X.

As W is a weak initial object there is a map h : W −→ E and now he : W −→ W . By
assumption this is the identity map so f = g. A similar argument work for pullbacks.

(iv) We must show that W ′ has only the identity map as an endo-map. First we show w′ : W ′

−→W is a section. As W is weak initial there is a map w : W −→W ′, now observe w′ww′ = w′

as w′ equalizes all endo-maps of W (and so, in particular, ww′ and 1W ) thus, as w′ is monic
w′w = 1W .

Now suppose that W ′ has an endo-map v : W ′ −→W ′ then we obtain an endo-map wvw′ : W
−→ W : by assumption w′ equalizes this and the identity on W so that w′wvw′ = w′ but
w′wv = v so vw′ = w′ and now as w′ is monic we must have v = 1W ′ .

So W ′ is initial.

�

This gives us almost immediately Freyd’s adjoint functor theorem:

Theorem 3.3.3 (Freyd’s adjoint functor theorem) If X and Y are Set-enriched categories
and Y is complete and G : Y −→ X is a functor which preserves all limits then G has a left
adjoint if and only if for each A ∈ X the slice category A/G has a weak initial family.
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Proof: Under these assumptions each A/G is a complete category with a weak initial family. It
therefore has a weak initial object. Taking the equalizer of all endo-maps of this object yields an
initial object for A/G, which in turn yields the left-adjoint. Conversely, if there is an adjoint then
each of these categories has an initial object which can also serves as a one element weak initial
family. �

The condition that A/G has a weak initial family is often called the solution set condition:
more concretely it says that there is a family (set) of arrows {ri : A −→ G(Ri)|i ∈ I} such that for
any arrow f : A −→ G(X) there is an i ∈ I with an arrow h : Ri −→ X such that

A
ri //

f ""DDDDDDDDD G(Ri)

G(h)

��
G(X)

so that it is a weak family of universal pairs!

Notice that if Y is a small category (the objects are a set) this mean that any G which preserves
all limits must have an adjoint. Unfortunately, a small complete category is a preorder (see exer-
cises)! So this is not such an interesting use of the theorem as might at first be thought. However,
this does completely characterize adjoints from complete posets!

A more significant example of an application (which unfortunately is also more mathematical)
is as follows: any category of finitary algebras over Set is complete (groups, rings, Ω-algebras (see
later)) over sets then the underlying functor U always preserves limits. A map X −→ U(A) picks
out a set of elements of the algebra A, as the algebras are finitary the cardinallity of the algebra
generated by these elements is itself bounded by a cardinal. Thus, these are a small family of maps
X −→ U(A) for which A is generated by the elements picked out by X. These maps form a solutions
set. Thus there are always adjoints for the underlying functors for categories of finitary algebras.

There is another version of Freyd’s adjoint functor theorem, often called the “special adjoint
functor theorem” which we now develop.

A set of objects Γ in a category is said to be a cogenerating family if for each parallel pair
of distinct arrows

A
f−−→−−→
g

B

there is a map h : B −→ G where G ∈ Γ such that fh 6= gh. We say that f and g are codistin-
guished by Γ. If Γ consists of exactly one object G then G is called a cogenerator.

Dual to this notion is that of a generating family: in this case any pair of unequal parallel
arrows can be distinguished by a map from an object in the generating family.

Notice that in any small category the set of all the objects will always form both a generating
and cogenerating family. In Set the one element set is a generating object while the two element
set is a cogenerating object.

More generally in SetC
op

if we have two parallel natural transformations

F
α−−→−−→
β

G : Cop −→ Set
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which are unequal then there must be an object C ∈ C at which they differ so that

F (C)
αC−−−→−−−→
βC

G(C)

are distinct set maps. But his means there is an element c ∈ F (C) at which αC(c) 6= βC . This in
turn means that the natural transformation given by the Yoneda lemma

Y(c) : C( , C)⇒ F

distinguishes the two natural transformations. Finally, this means that the hom-functors of C form
a generating family in SetC

op
.

Thus, we do have a number of examples of large categories with generating families.

Lemma 3.3.4 In X is a Set-enriched category with (set indexed) products then Γ is a cogenerating
family if and only if each object A is a subobject of a product of objects in Γ.

Proof: We may form the product of cogenerators indexed by the maps to the cogenerators from
A. This is monic as any parallel arrows to A can be codistinguished by one of the maps to a
cogenerator.

Conversely if a : A −→
∏
i∈I Gi is a subobject of a product of objects in Γ then then any pair of

parallel maps into A is distinguished by the map a. But this means for some i ∈ I aπi : A −→ Gi
codistinguishes the maps. �

A category is said to be well-powered if for each object the subobject category is equivalent
to a small poset (so the objects form a set). Notice that if the category is complete this will mean
that each object has a smallest subobject (namely the meet of all the subobjects).

Theorem 3.3.5 (Special adjoint functor theorem) Let X and Y be Set-enriched categories
and Y be well-powered, complete, and have a cogenerating family, then any limit preserving functor
G : Y −→ X has a left adjoint.

Proof: If we can show that A/G has a weak initial family we are done. First note that A/G

also has a cogenerating family namely the family ΓA = {A f−−→ G(K)|f ∈ X(A,G(K)),K ∈ Γ}: to
ensure this is a set we use the fact that X is Set-enriched.

Now consider a map h : A −→ G(X) then X is a subobject of a product of cogenerators x : X
−→
∏
i∈I Ki in Y. Setting

Γhx = {f : A −→ K|K ∈ Γ,∃i ∈ I.f = hxπi} ⊆ ΓA

then we have:
A

〈f〉
f∈Γhx

**UUUUUUUUUUUUUUUUUUUU

h

��1
111111111111111

!!
G(S) //

��

G(
∏
f∈Γhx

∂1(f))

G(〈πhG(x)π1
〉i∈I)

��
G(X)

G(x)
// G(
∏
i∈I Ki)
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where the top right corner is an irredundant product (each component occurs once) of generators
of A/G. The pullback S in Y is then a subobject of that irredundant product through which the
map h can be factored. This makes the set of maps from X(A,G(S)) where S is a subobjects of
an irredundant product of the cogenerators in Y, a weak initial family in A/G of the irredundant
products of cogenerators there, a weak A/G. �

We have noted SetC
op

has a set of generators – these are the hom-functors – and is easily checked
that it is co-well-powered and cocomplete. Thus, by the dual of the special adjoint functor theorem,
any functor which preserves colimits from SetC

op
(or indeed Set itself) has a right adjoint.

In fact SetC
op

also has a cogenerating object, is well-powered, and complete. Thus any functor
which preserves all limits from this category has a left adjoint.

3.3.2 Limit and colimit properties for monads

As has been mentioned the Kleisli category inherits very few properties from its parent. However,
one property that it does inherit is coproducts:

Lemma 3.3.6 If T = (T, η, µ) is a monad on a category with coproducts then the Kleisli category
XT has coproducts.

Proof: Given f : X −→ T (Z) and gY −→ T (Z) there is a unique map 〈f |g〉 : X + Y −→ T (Z).
It remains to check only that this map is the copairing in the Kleisli category. However, this is
immediate as the coprojections are respectively b0η : X −→ T (X + Y ) and b1η : Y −→ T (X + Y ).
�

The Eilenberg-Moore category of algebras inherits many more properties from its parent. In
particular, it inherits limits:

Lemma 3.3.7 If X has all (finite) limits then for any monad XT will have (finite) limits and
UT : XT −→ X creates limits.

Proof: Let D : D −→ XT be a diagram then define the limit as by the algebra

T (lim
←
D;U) −→ lim

←
D;U

given by the cone whose projections are

T (lim
←
D;U)

T (pY )νY−−−−−−→ U(D(Y ))

This is easily checked to be an algebra.
To say that UT creates limits is to say that if this functor applied to a diagram D underlies to

a diagram which has a limit α then there is a unique limit cone of D which underlies to α. Given
the way we have constructed the limits this is immediate. �

We now turn to the question of what colimits are present in the Eilenberg-Moore category. One
thing that we know is that as FT is a left adjoint it preserves all colimits. In particular, therefore,
coproducts of free algebras exist (which we may also conclude from the result above concerning
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the Kleisli category). Our aim is to now to show that every algebra may be seen as a colimit of
a diagram of free algebras. As any colimit can be rearranged as a coequalizer between coproducts
we shall concentrate on coequalizers.

A parallel pair of arrows A
d0−−−→−−−→
d1

B is said to be contractible in case there is a map t such

that td0 = 1B and d0td1 = d1td1. A map B
d−−→ C contractibly coequalizes d0 and d1

A
d0−−−→−−−→
d1

B
d−−→ C

in case there is a map s : C −→ B such that ds = td1. We observe:

Lemma 3.3.8 Given a contractible pair of arrows d0 and d1:

(i) A −−−→−−−→
d0 d1

B
d−−→ C is a colimit if and only if d contractibly coequalizes d0 and d1;

(ii) The coeqalizer of a contractible pair is an absolute colimit in the sense that it is preserved by
all functors.

Proof:.

(i) If d : B −→ C is the coequalizer then as d0td1 = d1td1 there is a unique map s : C −→ B such
that ds = td1. In that case sd has the property that dsd = td1d = td0d = d so that sd = 1C
as d is being a coequalizer is epic. Thus d contractibly coequalizes d0 and d1.

Conversely, if d contractibly coequalizes the pair and h : B −→ X is another coequalizing map
(that is d0h = d− 1h) then sh is a mediating map as dsh = td1h = td0h = h. It is unique as
d is a retraction.

(ii) Clearly the image of any contractible pair under any functor is contractible. Therefore, its
coequalizer (if it exists) must contractibly coequalize, however, clearly the image of a map
which contractibly coequalizes the pair will contractibly coequalize the image of the pair!

�

The point of contractible pairs this is:

Corollary 3.3.9 Every algebra in an Eilenberg-Moore category of algebras is the coequalizer of a
contractible pair of maps between free algebras.

Proof: Notice that when (X, ν) is an algebra

T 2(X) −−−−−→−−−−−→
T (ν)

µ T (X)
ν−−→ X



104 CHAPTER 3. LIMITS AND COLIMITS

is a contractibly coequalized contractible pair! The unit ηT (X) is the contraction of the pair while
ηX is the section of ν. We note that:

ηT (X)µ = 1T (X)

T (ν)ηT (ν) = T (ν)νη = µνη = µηT (ν)

ηXν = 1X

νηX = ηT (X)T (ν)

This means

T 3(X)

µ

��

T 2(ν) //

T (µ)
// T2(X)

T (ν) //

µ

��

T (X)

ν

��
T 2(X)

T (ν) //

µ
// T (X) ν

// X

serially commutes displaying (X, ν) as the contractible coequalizer of maps between free algebras.
�

Observe now that the underlying functor from an Eilenberg-Moore categories always creates all
the coequalizers that the functors T and T 2 preserve:

Lemma 3.3.10 Let T = (T, η, µ) be a monad on X then UT creates coequalizers that T preserves
and for which T 2(h), where h is the regular epic, is epic.

Proof: Explictly what this means is that suppose X
f−−→−−→
g

Y
h−−→ Z is a coequalizer which is

preserved by T and T 2(h) is epic then, whenever (X, νX)
f−−→−−→
g

(Y, νY ) are morphisms of T-algebras,

there is a unique algebra structure νZ on Z such that h : (Y, νY ) −→ (Z, νZ) is an algebra homomor-
phism which is the coequalizer of f and g in XT. Our job is to supply the unique algebra structure
νZ . To this end consider the diagram:

T 2(X)

µ

��

T (νX)

��

T 2(f) //

T 2(g)
// T2(Y )

µ

��

T (νY )

��

T 2(h) // T (Z)

µ

��

T (νZ)

��
T (X)

T (f) //

T (g)
//

νX

��

T (Y )
T (h) //

νY

��

T (Z)

νZ

��
X

f //

g
// Y h

// Z
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where νZ is uniquely determined as T (h) is the coequalizer of T (x) and T (y). That νZ is the
equalizer T (νZ) and µ follows because this is a contractible coequalization. Clearly ηZνZ = 1Z and
ηT (Z) acts as the contraction: finally νZ coequalizes µ and T (ν) as T 2(h) is epic and

T 2(h)µνZ = µT (h)νZ = µνY h = T (νY )νY h = T 2(h)T (νZ)νZ .

�

In particular, as contractible coequalization and idempotent splitting is absolute we have:

Corollary 3.3.11 For any monad T, UT : XT −→ X creates contractible coequalizers and idempo-
tent splittings.

Returning for a moment to the category of Set we know that each epic map therein is a retraction
and the coequalizer of its kernel pair. It is reasonable to wonder whether these coequalizations are
not reflected. In fact, more is true:

Lemma 3.3.12

(i) In any category and for any idempotent e the pair

A
e−−−→−−−→

1A
A

is contractible;

(ii) In any category with pullbacks whenever f is a retraction

Ker(f)
k0−−−→−−−→
k1

A

is contractible.

(iii) A contractible pair f, g : A −→ B, with tf = 1B and ftg = gtg, has a colimit if and only if the
idempotent gt splits.

Proof:

(i) In the first case 1A is the contraction for the pair.

(ii) In the second case, letting s be a section of f we have

A
fs

))RRRRRRRRRRRRRRRRRRR

3333333333333333

3333333333333333
t

""
Ker(f)

k0

��

k1

// A

f
��

A
f

// B

then tk0 = 1 and k0tk1 = k0fsk1 = k1fsk1 = k1tK1 showing this is contractible.
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(iii) For the last part note that tg is an idempotent as tgtg = tftg = 1tg = tg. Suppose that
h coequalizes f and g so fh = gh then h = tfh = tgh so h coequalizes this idempotent.
Conversely, if h coequalizes the idempotent so that h = tgh then fh = ftgh = gtgh = gh so
h coequalizes f and g.

�

As kernels are obtained as limits this means that maps which underlie to a retraction are always
are regular epic in the algebra category. We have already noted that algebra categories over Set
inherit the epic-monic factorization system of sets; now we may observe further observe that these
algebra categories must be regular as every map which underlies to an epic has its kernel reflected
by UT and it is a contractible pair and so it is regular. Pulling back along a map preserve epics in
Set and by reflection must do so in the algebra category.

Corollary 3.3.13 All Eilenberg-Moore algebra categories over Set are exact.

Proof: Any equivalence relation in sets is a kernel and so a contractible pair, thus, all equivalence
relations in an algebra category underly to contractible pairs and so have coequalizers which are
reflected. �

In view of 3.2.12 any Eilengerg-Moore algebra category over Set has coequalizers given by
forming the smallest equivalence relation through which the given parallel pair of maps factor
and taking its coequalizer. Thus, if we had coproducts the category would be cocomplete. But,
supposing the underlying category is cocomplete, means that we do have arbitrary coproducts of
free algebras. As every object can obtained as a coequalizer of a parallel pair of arrows betwee free
algebras we can move any colimit calculation onto one on free objects. However, this means that
we can form arbitray colimits. We therefore have:

Theorem 3.3.14 (Cocompleteness of algebra categories) In X is a complete and cocomplete well-
powered exact category and T is a monad whose functor preserves regular epics (in the sense of
preserving their kernel coequalization diagrams as colimit diagrams) then XT is a complete and
cocomplete exact category.

In particular, all Eilenberg-Moore algebra categories over Set are all exact, complete, and co-
complete.

Proof: Note that T then presrves kernel coequalization and T 2 preserves regular epic maps and
therefore the epicness of coequalizers. Thus, UT reflects coequalization of kernels and so is an exact
category which is well-powered. It therefore has coequalization. As coproducts of free objects exist
and colimit calculations can be moved onto these objects we obtain cocompleteness.

Clearly and Set monads satisfies these requirements. �

If F a G : X −→ Y is an adjunction then it has a unique comparison functor K : Y −→ XT to
the Eilenberg-Moore category. If the functor K is an isomorphism then we say that G : Y −→ X is
precisely monadic. This development allows us to observe:

Theorem 3.3.15 (Beck’s precise monadicity theorem) F a G : X −→ Y is precisely monadic if and
only if G creates coequalizers of contractible pairs.
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Proof: If the functor is monadic by the above it will reflect coequalizers of contractible pairs.
Conversely, if the functor refects coequalizers of contractible pairs then as each algebra can be
expressed as a contractible coequalizer of free objects under K it must come from a unique object.
Thus K is injective on objects. Furthermore, as each such contractible colimit is reflected each
algebra must also be present in Y: so K is surjective on objects.

Finally for maps, as each object is a colimit of free objects the maps from an object are deter-
mined by the maps from its covering free object. This means we need only consider maps of the
form F (X) −→ Y . Adjointness makes these correspond to maps X −→ G(Y ) = UT(K(Y )) which
provides the bijection on maps. �

The precise monadicty theorems can be turned into crude monadicity theorems in which one
seeks a comparison functor to the algebra category for which the two requirement commute up to
a natural isomorphism.

Theorem 3.3.16 (Beck’s crude monadicity theorem) F a G : X −→ Y is cudely monadic if and
only if G reflects coequalizers of contractible pairs.

Proof: The requirement of reflection is that if the underlying contractible pair has a colimit then
a colimit must exist in Y (it necessarily is preserved). However, the presence of such coequalizers
means every algebra is represented up to isomorphism. �


