
Explorations in the category of combinatorial games

Kevin Saff

May 5, 2008

Abstract

ABSTRACT

1 Introduction

In combinatorial game theory, we consider games of the following form.

1. Play alternates between two players, Left and Right.

2. There is no hidden information.

3. Any play of the game terminates after a finite number of moves.

4. The player whose turn it is to move when no move is possible, is said
to lose the game. The other player has won.

A game may have options available to both Left and Right. A game x may
be identified with its sets of left and right options. The Conway notation
is to write the game as

{
xL

∣∣ xR
}

where one can think of L as indexing
over the Left options, and R as indexing over the Right. An important
concept which led to considerably greater understanding of these games is
the disjunctive sum, written as x + y. When playing the sum of games,
players choose whether to move in the component x or the component y. In
Conway’s notation, this becomes

x + y =
{

xL + y, x + yL
∣∣ xR + y, x + yR

}
.

This definition is recursive; it relies on the fact that since plays terminate
in a finite number of moves, when unfolding the definition the left or right
options of x and y are eventually empty. The game with empty option sets

1

on both sides, { | }, is usually written 0, since 0 + x = x for any x. Also of
importance is the concept of the negation of a game, where we will write

−x =
{
−xR

∣∣ −xL
}

.

Thus the negative of a game is obtained by switching the roles of the players,
Left and Right. Note that x − x is not identical to 0 as you might expect,
but there is an important sense in which it is isomorphic to 0. If you are
playing second in the game x − x, and your opponent makes some move
in a component, you will always be able to respond by making the “mirror
image” move in the opposite component. That is, if he takes xR in +x, you
can respond with −xR in −x, leaving the game xR− xR. By induction, you
can guarantee for yourself the last move in this game, and so you will win1.
Likewise, the second player wins 0 = { | } since the first player, immedi-
ately now, has no options to play.

Although the games came logically first, an important subclass, the sur-
real numbers appeared earlier in print. They were given that name by
Knuth[1]2 who was working from an earlier University of Calgary research
paper by Conway[3]. The full combinatorial theory of games eventually
appeared in Winning Ways[4], a seminal work whose multi-decade develop-
ment caused it to be beaten to print by On Numbers and Games[5].

1.1 Joyal’s category

It was after reading this last book by Conway that André Joyal realized[6]
that combinatorial games formed a category. The objects of the category
are simply games, and the arrows between them are strategies. Some ex-
planation is in order. A strategy s : x → y can be thought of as a winning
strategy for Left, playing second, in the game y−x. The identity 1x : x→ x
is simply the copycat strategy mentioned earlier, since this clearly exists and
gives a second-player win for any game x.

1In different cultures, this is known as the copycat strategy, the mirroring strategy, or
the Tweedledum-Tweedledee strategy.

2Knuth was then writing in distraction from his great work, The Art of Computer
Programming [2]. In a slightly later distraction, he would get fed up with the state of
computer typesetting and develop TEX. Since this author first heard of surreal numbers via
a Martin Gardner article describing Knuth’s work, this paper would be doubly nonexistent
if not for Knuth’s diversions.

2

It may not, however, be completely obvious that strategies can compose
in any meaningful sense. However, they do, in a rather nice way. If we have
strategies s : x → y and t : y → z, we will (here, informally) create the
strategy st3 from x to z as follows.

Suppose Right begins by selecting an option zR of z. Since we have a
map y → z, the only thing we know how to do is to give a response in the
game zR − y. If this response is in the z component, we are fine, but if it
is in −y then we are in trouble, since the component −y does not appear
in the game we are actually playing. So what we will do is imagine that we
are playing the game

z − y + y − x,

where we keep in mind that the y components are actually “virtual”. If our
strategy calls for us to make a move in −y, we can just pretend to make
a move there. Now we will pretend that our opponent makes the copycat
move in the component +y. But now we have a strategy on y − x, which
tells us what move to make next. If this is in −x, then we can happily make
that move on the real game. If not, then we again pretend to make a move
in the y component, pretend our opponent plays the mirror image across
to the −y component, and now use our strategy in z − y. We may have
to bounce back and forth across these virtual games several times before
making a real move, but this must eventually happen, since eventually there
will be nothing left of the virtual components, anyway.

Using the strategy s guarantees there are an even total of moves in y−x,
and using the strategy t guarantees an even number of moves in z− y. Pre-
tending that our opponenet always used the copycat strategy, 1y across the
virtual components guarantees an even number of moves in −y + y as well.
Thus, the total number of moves in z − x is even; since we went second, we
have the last move and thus win the game.

The proof that this composition is associative is notoriously difficult, and
we leave it for !—–TODO—–! !

3We use the convention that function application goes from left to right, so the map st
is the map often written as t◦s. This is often simpler to read, particularly when comparing
map compositions to diagrams.

3

2 A game logic

As Andreas Blass has argued[7] that a two player game semantics is “nec-
essary” for understanding linear logic, we may equally consider what logic
underlies a game theory. The concept of a categorical module (or bifunctor)
has proven helpful in the context of other kinds of games[8], and has a nice
interpretation in this category. A module can be thought of as a collection
of arrows between different categories, which composes with arrows on the
left and the right. Because of the structure of combinatorial games, we are
interested primarily in an endomodule, a module from a category to itself.
In this case it is important to note that the arrows of the module (also called
cross-arrows or cross-maps) do not compose with each other.

In our context, a cross-arrow x 9 y can be considered a strategy for Left
to win the game y − x, playing first.

The first rule in our logic will be the identity, since we clearly always
have a map from an object to itself.

1x:x→x identity

In order to create a cross-map x 9 y, we will need a good first option, either
xR or yL, and a (plain) map xR1 → y or x→ yL1 . This makes sense because
to have a winning strategy playing first is to have a winning strategy playing
second after a good first move. This gives two rules, known as injection and
projection.

→
yL1 ·s:x9{yL | yR }

s:x→yL1

injection

←
xR1 ·s:{xL | xR }9y

s:xR1→y
projection

Symbols such as s and ←
xR1 can be considered terms in the logic. The left

arrow above the ←x is to emphasize that the move is made in the component
on the left-hand side; without this notational cruft we may see some redun-
dancy when describing moves in x→ x.

The last primary logic rule is bitupling, which creates normal maps.
Since s : x→ y is a strategy on y− x, we must have a good response to any
left option of x, and any right option of y. A good response here means a
winning strategy playing first; thus, the rule is

s={ sL | sR }:{xL | xR }→{yL | yR }
(sL:xL9{yL | yR })xL (sR:{xL | xR }9yR)

yR

bituple.

4

We also need cut rules to show that arrows compose as expected. These
take the form

st:x→z

s:x→y t:y→z
,

st:x9z

s:x→y t:y9z
,

and

st:x9z

s:x9y t:y→z
.

However, we can use cut-elimination to remove these. The plain maps com-
pose as follows.

st={ sLt | stR }:x→z

s:x→y

(sL:xL9y)
xL (sR:x9yR)

yR

s:y→z

(tL:yL9z)
yL (tR:y9zR)

zR

We need two derivations for each of the cross-cuts.

s;
→
zL1 ·t=→zL1 ·st:x9z

s:x→y →
zL1 ·t:y9z

t:y→zL1

or
s;
←
yR1 ·t=sR1 t=s(

→
yR1)t:x9z

s:x→y

(sL:xL9y)
xL (sR:x9yR)

yR

←
yR1 ·t:y9z

t:yR1→z

.

The derivations for the other cross-cuts are dual to these.

2.1 Examples

One thing these logic rules give us is a way to effectively construct new
game categories from arbitrary categories. The simplest category is ∅, the
category with no objects. Applying our rules once to this, we get G (∅), the
category of games with options drawn from ∅. Since there are no options in
∅, that gives us just one game, { | }. Let’s call this game 0. We can easily
derive 0 → 0 from the bitupling rule, since trivially there are neither left
nor right options in 0.

Applying the rules another time gives us G2 (∅). The collection of ob-
jects in this category is effectively {0, {0 | } , { | 0} , {0 | 0}}4. There are
standard names given for these new games:

{0 | } = 1,

{ | 0} = −1,

{0 | 0} = ∗.
4Technically, in the logic as written we might distinguish between {0 | } and {0, 0 | },

giving us infinitely many objects. However, to keep things simple we will simply note that
the difference between these games is not significant from a game theoretical perspective.

5

Without naming all the strategies yet, the relationships among these objects
are as:

−1 →9 0 →9 1

−1 →9 ∗ →9 1
0 9 ∗9 0

with the compositions as well. We can easily derive, for an example, 0 9 ∗:

→
0·∅:09∗
∅:0→0 injection,

and we can derive ∗ 9 0 from the projection rule as well. So, Left should
win the games ∗−0 and 0−∗ playing first. Because we cannot derive 0→ ∗
or ∗ → 0 (we would need some cross-map 0 9 ∗ or ∗ 9 0) Left does not
win these games going second.

In fact, Right wins (playing first) if Left plays second. We can think of
G2 (∅) as a polarized category which is effectively a module G2 (∅) 9 G2 (∅).
The polarized dual of this is G2 (∅)∗ 9∗ G2 (∅)∗. Since we can easily iden-
tify x∗ with −x for any x in this game category, we see that 0 9 ∗ becomes
0 9∗ ∗ in the dual, which is the module from Right’s perspective. Therefore
Right, going first, wins.

Likewise, we can easily derive 0 → 1, and then take the polarized dual
to see 0∗ →∗ 1∗, or 0 →∗ −1, as we might expect. So the polarized dual
really is just the module from the other player’s perspective.

If we continue this construction from the logic for all ordinals Ω, we get
GΩ (), the standard category of combinatorial games with the added module
structure. What happens if we start with a different structure?

It’s an unfortunate fact that this logic, as written, does not allow us to
find out much about the left or right options of an object, unless that object
was itself created using this game construction5. So if we have an object in a
category which was not constructed this way, we consider it atomic. We can
think of an atom as a kind of game where we are ignorant of its structure,

5In particular, we would be interested in growing the theory of loopy games with this
logic. Loopy games may not be well-founded, “containing” themselves as left or right
options. Of particular importance are the games on = {on | }, off = { | off}, and
dud = {dud | dud}.

6

and therefore cannot derive all the strategies we might otherwise have been
able to.

Let’s begin with a category {A}, with one atom, A, and one arrow, 1A :
A→ A. This looks similar to the category G (∅), but as we will see, G (A) is
quite different from G2 (∅). The objects in G (A) are {A, 0, { | A} , {A | } , {A | A}},
and there are strategies as follows.

{ | A} → 0→ {A | } ,

{ | A} → {A | A} → {A | } ,
{ | A}9 A 9 {A | } ,

A 9 {A | A}9 A,

and strategies from composition. This module is considerably poorer, be-
cause of our ignorance of the “structure” of A.

3 Idempotents

Suppose we have an idempotent strategy e : x→ x; that is, a strategy such
that ee = e. What kind of moves might e call for? We know it must have
a good response for all moves ←xL and →

xR available to Right. The trivial
possible responses are copycat moves, that is

e : ←xL 7→ →
xL · exL , or

e : →xR 7→ ←
xR · exR

for some Right moves ←xL and →
xR. Here the maps exL and exR must be

idempotents on xL and xR respectively. These kinds of moves compose in
an idempotent way, since we map across as

←
xL e7→ →

xL 1x7→ ←
xL e7→ →

xL,

and leave the strategy e2
xL = exL .

With that out of the way, we have two types of non-copycat responses, either
in the same component, or the opposite one. Responses to the opposites
component will take the forms

e : ←xL 7→ →
xL′ · s, or

e : →xR 7→ ←
xR′ · t.

7

Here the map s can be any map xL → xL′ if e takes ←xL′ to →xL′ · exL′ , with

sexL′ = s.

This function exL′ must be an idempotent, since we are saying that e must
use a copycat response for xL′ . Fortunately, if have any s′ : xL → xL′ and
idempotent exL′ , we can create s = s′exL′ , in which case we clearly have
sexL′ = s.
Likewise, t must be a map xR′ → xR, with e taking →xR′ 7→ ←

xR′ · exR′ with
exR′ t = t.
These options are called dominated. If we have any map x → y, we can
think of y being at least as good as x. So if Right makes some move xR

which is dominated by our response xR′ , Right would have done as well for
himself if he had played this option xR′ . So in some sense, xR is actually a
“bad” choice for a move.

The other possibility is that we respond in the same component as our
opponent. Then we will have some responses

e : ←xL 7→ ←
xLR · s, or

e : →xR 7→ ←
xRL · t.

Here we must have se = s and et = t. However if we have any maps

s′ :xLR → x, and

t′ :x→ xRL,

we can obviously just set s = s′e and t = et′ to guarantee s = se and t = et.
Moves of this type, which can be “beaten” by another move in the same
component, are called reversible. It is as though we have “reversed” our
opponent’s move, yielding a position at least as favorable for us as before
the opponent moved.
Thus, any idempotent strategy is made up of copycat moves, dominating
moves, and reversing moves. For any xL, we will choose one of the following
types.

1. Perform a copycat move, facilitated by an idempotent exL .

2. Perform a dominating move, facilitated by any map d : xL → xL′ ,
with our response to xL′ of type 1. In this case, our response will be
→
xL′ · dexL′ .

8

3. Perform a reversing move, facilitated by any map r : xLR → x. In this
case, our response will be ←xLR · re.

Likewise we have the three types of responses for moves xR, and the above
material shows we can construct a strategy using these maps into an idem-
potent on x. These concepts are important in combinatorial game theory; if
a game has only the trivial idempotent 1x, it is said to be in canonical form.
A game x is said to have a canonical form c if there are arrows to and from c.

3.1 Idempotents split

It turns out that idempotents split, meaning that given any idempotent
e : x→ x, there exists some y and maps

x
f→ y

g→ x

so that fg = e and gf = 1y. Recall that there is some set of left options of
x which are responded to using a copycat move, and then some idempotent
exL . Inductively, these idempotents split to

xL f
xL→ yL g

xL→ xL

for some yL. Let CL(x) be the set of all yL corresponding to these copycat
moves.

We also will need RL(x), the set of fully reversed left options of x. Recall
that a reversible left option is one that we respond to in the same component,
taking for example xL to xLR. If we would then respond to xLRL in the
opposite component,xLRL has been fully reversed. However, if we would
respond to this in the same component again, we may need to continue to
xLRLRL, xLRLRLRL, etc., to reach a fully reversed move xL···L. Since our
games are well-founded, we must eventually reach this set of fully reversed
moves. Defining CR(x) and RR(x) in the dual manner, we will set

y =
{

CL(x) ∪RL(x)
∣∣ CR(x) ∪RR(x)

}
.

9

Now our map f : x→ y will take the form
←
xL 7→ →

yL · fxL for copycat moves
←
xL 7→ →

yL′ · sfxL′ for dominated moves
←
xL 7→ ←

xLR · sf for reversible moves
←
xR · fxR ←[→yR for copycat moves

←
xR · sL···R ←[→yRL···R for fully reversed moves

Here sL···R is the strategy such that

sLRL···R : ←xRL 7→ ←
xRLR · sL···R, . . . sLR : ←xR···L 7→ ←

xR···R · 1xR···R , . . .

and so on. That is, the strategy keeps the responses headed towards xL···L

as long as possible; once there, it uses the identity strategy. It turns out
that what the strategy does for other options is irrelevant.

The map g : y → x will be defined dually:
←
yL 7→ →

xL · gxL for copycat moves
←
yLR···L 7→ →

xL · sR···L for fully reversed moves
←
yR · gxR ← [→xR for copycat moves

←
yR′ · sgxR′ ←[→xR′ for dominated moves
→
xRL · sg ←[→xR for reversible moves

We will first see that e = fg.

1. For a copycat option ←xL, we have

(fg)(←xL) = g(→yL · fxL)

= →
xL · fxLgxL

= →
xL · exL

= e(←xL).

2. For a dominated option ←xL, we have

(fg)(←xL) = g(→yL′ · sfxL′)

= →
xL′ · sfxL′gxL′

= →
xL′ · sexL′

= e(←xL).

10

3. Finally, for a reversible option ←xL we have

(fg)(←xL) = g(←xLR · sef)

= ←
xLR · sfg

= ←
xLR · se

= e(←xL).

This shows that the responses to all xL are the same for e as for fg. Dually,
we see that the responses to all xR are the same, and so e = fg.
Now, we need to show that gf = 1y. There are essentially only two cases
here.

1. For a copycat option ←yL we have

(gf)(←yL) = f(→xL · gxL)

= →
yL · gxLfxL

= →
yL · 1yL .

2. For a fully reversed option ←yLRL··· we have

(gf)(←yL···L) = f(→xL · sR···L)

= sR···L(←xLR · s1f)

= (s1f)(→xLRL · sR···L)

= sR···L(←xLRLR · s1f)
= . . .

= sRL(←xL···R · snf)

= (snf)(→xL···L · 1xL···L

= →
yL···L · 1yL···L .

Again the situation is dual, so having shown the map functions properly in
one irection, it must also work in the other. Therefore gf = 1y. It is now
clear that if a game has a canonical form, it has an idempotent which splits
over its canonical form.

4 Fragments

There is considerably more to be learned about the category of combina-
torial games and its construction. As mentioned earlier, a disappointing

11

feature of the logic developed in this paper is that it does not seem to model
left and right membership in a nice way. However, there are hints that such
a construction may be useful. For instance, let L be a powerset of the left
options available to our games, and R∗ be the powerset of right options. For
some L ∈ L, we will first use x � L to indicate that L is the left set of x.
We can use L � y to be a map from all the elements l ∈ L to cross-maps
l 9 y.

But we will have arrows in the category L, as well; the reasonable way
to do this is have L → L′ be a map that takes l ∈ L to l′ ∈ L′ with l → l′,
or else to some lR with a map from the left options of lR to L′. (This is
essentially the maps between the games {L | } → {L′ | } .) If we have a
map L′ � y and L→ L′, then there are good responses to all elements in L′,
which is at least as “strong” (if not stronger) than L, the set of left options
of x. So it is reasonable to write x � L to mean that the left options of
x are no stronger than L. In fact this gives us modules X � L and L� X.

Likewise, we can write R � y to indicate that y’s right options are no
stronger than R ∈ R∗. However, the arrows in R∗ must now somehow be
the opposite as though defined in L; we have R → R′ if every r′ ∈ R′ has
a good response r ∈ R and r → r′, or else r′L with a map from R to the
right options of r′L. This allows us to interpret this as modules R∗ � X
and X � R∗. We can now rewrite the “bitupling” rule as

x→y
x�L L�y x�R R�y

.

Here we need not know exactly what x’s left options are, nor y’s right
options. But we do know that x’s left options are no stronger than L, and
y’s right options no stronger than R. We can perhaps simplify our notation
by noting that we have a kind of biproduct L|R∗ with arrows to and from
X which can be defined as

x→L|R
x�L x�R

and

L|R→y

L�y R�y
.

Then we can rewrite the bitupling as the trivial-looking

x→y
x→L|R L|R→y

.

The process of constructing games then becomes that of “graduating” ob-
jects L|R to games {L | R}. Note this category L|R∗ is a biproduct since

12

we clearly have projections

L←[L|R ∗7→ R

and injections L 7→ L|∅ and ∅|R ∗←[R. It’s possible that building up a
logic based on this will allow us to model loopy games and other interesting
generalizations cleanly.6

References

[1] D. E. Knuth. Surreal Numbers. Addison-Wesley, 1974.

[2] D. E. Knuth. The Art of Computer Programming. Addison-Wesley, 1997.

[3] J. H. Conway. All numbers great and small. Univ. of Calgary Math
Dept. Research Paper No. 149, February 1972.

[4] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning
Ways For Your Mathematical Plays. A K Peters, Ltd., second edition,
2001.

[5] J. H. Conway. On Numbers and Games. A K Peters, second edition
edition, 2001.

[6] André Joyal. Remarques sur la théorie des jeux à deux per-
sonnes. Gazette des Sciences Mathématiques du Québec I,
4:46–52, 1977. Available online in translation by Robin Hous-
ton as “Remarks on the theory of two-player games” at
http://www.maths.manchester.ac.uk/ rhouston/Joyal-games.ps.

[7] A. Blass. Is game semantics necessary? In E. Börger, Y. Gurevich,
and K. Meinke, editors, Computer Science Logic (CSL’93), pages 66–77,
Swansea, UK, 1993.

[8] J. R. B. Cockett and R. A. G. Seely. Polarized category theory, modules,
and game semantics. Theory and Applications of Categories, 18(2):4–101,
2007.

6It may also be a good idea to allow for the left and right options to be drawn from
different categories for generality. For instance, the Abramsky opponent games are built
using the empty category for left options, and player games for right options; while player
games are built using opponent games for left options, and the empty category for right
ones.

13

