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1 Introduction

To provide something in the way of motivation, an example (following the paper
by Redondo and Solotar [10]).

Consider a complex of abelian groups

· · · d−2
// A−1 d−1

// A0 d0
// A1 d1

// · · · .

The requirement that dn−1dn = 0 ensures im (dn) ⊆ ker
(
dn−1

)
, so the nth

cohomology group
Hn(A) := ker (dn)/im

(
dn−1

)
is well-defined. A morphism of complexes is a family of homomorphisms fn :
An → Bn such that

· · · // An−1 //

fn−1

��

An //

fn

��

An+1 //

fn+1

��

· · ·

· · · // Bn−1 // Bn // Bn+1 // · · ·

commutes. Any such homomorphism induces a homomorphism between the
quotient groups,

fn
∗ : Hn(A)→ Hn(B).

If all of these induced maps are isomorphisms, the overall morphism between
complexes is called a quasiisomorphism.

The natural context for all of this is not just the category of abelian groups,
but any abelian category (which, thankfully for the sake of terminological con-
sistency, abelian groups is an example of), and since homological algebra is
really only concerned with complexes up to quasiisomorphism, an even better
category would be one where quasiisomorphisms are in fact isomorphisms. The
derived category D(A) of an abelian category A, obtained by inverting quasi-
isomorphisms (i.e., by localizing the category of complexes over A by the class
of quasiisomorphisms), is just such a category.

However preferable, the move to the derived category creates some diffi-
culties. The derived category of an abelian category need not be abelian; in
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particular, the notion of short exact sequences breaks down. Take a short exact
sequence of abelian groups

0 // A
f // B

g // 0

(so, f is injective, g surjective, and ker (g) = im (f)). Such a sequence gives
rise to a short exact sequence of complexes with A, B, and C concentrated in
degree zero

...

��

...

��

...

��

...

��

...

��
0 //

��

0

��

// 0

��

// 0

��

// 0

��
0 //

��

A

��

f // B

��

g // C

��

// 0

��
0 //

��

0

��

// 0

��

// 0

��

// 0

��
...

...
...

...
....

But now consider the morphism of complexes

· · · // 0 //

��

A
f //

��

B //

g

��

0 //

��

· · ·

· · · // 0 // 0 // C // 0 // · · · ,

which induces the following maps on homology groups

0

��

0

��

B/im (f) = B/ker (g)

∼
��

0

��
0 0 C 0;

i.e., the above complexes are quasiisomorphic, and hence isomorphic in the
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derived category. But unfortunately

...

��

...

��

...

��

...

��

...

��
0 //

��

0

��

// 0

��

// A

��

// 0

��
0 //

��

A

��

f // B

��

g // B

��

// 0

��
0 //

��

0

��

// 0

��

// 0

��

// 0

��
...

...
...

...
...

is not exact. An alternate sequence

...

��

...

��

...

��

...

��
0

��

// 0

��

// A

��

// A

��
A

��

f // B

��

1 // B

��

// 0

��
0

��

// 0

��

// 0

��

// 0

��
...

...
...

...,

which could be written suggestively as A→ B → C → TA, is the substitute for
short exact sequences appropriate to the context of derived categories arrived at
by Jean-Louis Verdier, a student of Grothendieck, in his thesis. The ‘triangles’
of triangulated categories are sequences of this form.

2 Additive Categories

This section briefly recalls some facts about additive categories as preparation
for the definition of triangulated categories.

Definition 2.1. A preadditive category A is one enriched in the category
of abelian groups; that is, for X, Y ∈ A, Hom(X, Y ) has the structure of an
additive abelian group and composition of morphisms is bilinear.
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Example 2.2. Mod(R) and Mat(R) for any ring R.

As all hom-sets are abelian groups, each pair of objects X, Y has a zero
morphism between them corresponding to the identity of the group, which must
satisfy f0 = 0 = 0g for any f ∈ Hom(X ′, X) and g ∈ Hom(Y, Y ′). With the
structure of full-blown additive categories available it is possible to be more
specific about the nature of this map as well as the sum of maps.

Proposition 2.3. Let A be a preadditive category and X1, X2 ∈ A.

1. If X1 × X2 exists, let πk : X1 × X2 → Xk, k = 1, 2 be the canonical
projections and ιk : Xk → X1 ×X2 be the morphisms defined by

ιkπj =
{

1k if k = j
0 if k 6= j.

Then π1ι1 + π2ι2 = 1X1×X2 .

2. The product X1×X2, equipped with the maps above, is a coproduct of X1

and X2 with ι1 and ι2 as coprojections.

These common products and coproducts are called direct sums or biproducts,
and denoted X1 ⊕X2.

Definition 2.4. A functor f : A → B between pre-additive categories is addi-
tive if F (f + g) = F (f) + F (g) for all f, g ∈ Hom(X, Y ), X, Y ∈ A.

Definition 2.5. An additive category is a preadditive category that admits
finite direct sums.

Because they have finite direct sums, additive categories have empty prod-
ucts and coproducts, and so therefore have final objects and initial objects.
Since products and coproducts coincide, so do final and terminal objects. These
objects are called zero objects. The zero morphism between objects is, in an
additive category, the map that factors through the zero object

X
0 //

! ��?
??

??
??

? Y

0
?

??�������
.

Proposition 2.6. Let A be preadditive, X, Y ∈ A, and f, g ∈ Hom(X, Y ). If
X ⊕X and Y ⊕ Y exist, then f + g coincides with the composite

X
∆→ X ⊕X

f⊕g→ Y ⊕ Y
∇→ Y,

where ∆ is the diagonal and ∇ the codiagonal map.

Proposition 2.7. If A and B are additive categories and F : A → B is a
functor, F is additive if and only if it commutes with finite direct sums.
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3 Triangulated Categories

3.1 Definition

Definition 3.1. 1. An additive category with translation is an additive
category A together with an additive automorphism called the translation
of A, i.e., endofunctors T, T−1 : A → A such that TT−1∼=1A∼=T−1T .

2. A functor of additive categories with translation F : (A, T ) → (B, T ′) is
an additive functor with an isomorphism

TF ∼=FT ′.

A natural transformation θ of functors of additive categories with trans-
lation F, F ′ : (A, T ) → (B, T ′) is a natural transformation in the usual
sense that additionally makes the following diagram commute

TF
T (θ) //

∼
��

TF ′

∼
��

FT ′
T ′(θ)

// F ′T ′.

3. A subcategory of an additive category with translation (A, T ) is a subcat-
egory of A whose translation is the restriction of T .

Definition 3.2. A triangle in an additive category with translation is a dia-
gram

X
u // Y

v // Z
w // TX .

A morphism of triangles is a commuting diagram

X
u //

f

��

Y
v //

g

��

Z
w //

h

��

TX

T (f)

��
X ′

u′
// Y ′

v′
// Z ′

w′
// TX ′.

The rotation of a triangle X
u // Y

v // Z
w // TX is the triangle

T−1Z
−T−1(w) // X

u // Y
v // Z .

The terminology comes from the convention of sometimes writing the map
Z → TX as Z

+1→ X, so any triangle can alternately be written

Z
+1

~~~~
~~

~~
~

X
f

// Y.

g
``@@@@@@@
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Note also that, given a morphism of triangles as above, rotating the morphism
gives a morphism of rotated triangles,

T−1Z
−T−1(w) //

T−1(h)

��

X
u //

f

��

Y
v //

g

��

Z

h

��
T−1Z ′

−T−1(w′)

// X ′
u′

// Y ′
v′

// Z ′.

Definition 3.3. A triangulated category is an additive category with trans-
lation (A, T ) with a class of distinguished triangles satisfying the following
axioms:

TR1 (Rotation):

(a) A triangle is distinguished if and only if its rotated triangle is as well.

(b) Triangles isomorphic to distinguished triangles are distinguished.

TR2 (Existence of Cones):

(a) Any morphism u : X → Y in A can be completed in a not necessarily
unique way to a distinguished triangle

X
u // Y

v // Z
w // TX .

Any Z satisfying this property is called a mapping cone for u.

(b) The triangle X
1→ X → 0→ TX is distinguished for any X ∈ A.

TR3 (Morphisms):

Any commutative square

X
u //

f

��

Y

g

��
X ′

u′
// Y ′

can be completed to a morphism of given distinguished triangles in a not
necessarily unique way

X
u //

f

��

Y

g

��

v // Z
w //

��

TX

T (f)

��
X ′

u′
// Y ′

v′
// Z ′

w′
// TX ′.
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TR4 (Octahedral Axiom; Verdier’s Axiom)

Given u : X → Y and v : Y → Z and any choice of mapping cones
(provided by TR2),

X // Y // Cu
// TX

Y // Z // Cv
// TY

X // Z // Cuv
// TX,

there is a distinguished triangle Cu
α // Cuv

β // Cv
γ // TCu that

makes
X

u //

��

Y //

v

��

Cu
//

α

��

TX

��
X uv

//

��

Z //

��

Cuv
//

β

��

TX

��
Y v

//

��

Z //

��

Cv
// TY

��
Cu α

// Cuv
β

// Cv γ
// TCu

commute.

Puppe produced a similar definition in his work on stable homotopy [9] that
excludes the final axiom, which was added by Verdier. That axiom’s other name
is explained by the fact that, using the notational convention for maps to trans-
lated objects described above, it is possible to write TR4 on an octahedron. This
is described in Hartshorne’s notes [3] or the book by Kashiwara and Schapira
[4]. The non-uniqueness of the map in TR3 is apparently a source of difficulty
in some applications, and there have been efforts (by, for example, Neeman [6])
to re-axiomatize in a way that ensures uniqueness.

There is also some redundancy in the axioms. For instance, TR3 can be
derived from the other axioms by taking a commuting square

X

f

��

u // Y

g

��
X ′

u

′ // Y ′,

choosing mapping cones, Cu, Cu′ , and using TR4 to obtain two commuting
squares
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X
u // Y //

g

��

Cu
//

α

��

TX

��
X

k=ug
//

u

��

Y ′ // Ck
//

γ

��

TX

��
Y g

//

��

Y ′ //

��

Cg // TY

��
Cu α

// Ck γ
// Cg // TCu

X
f

// X ′ //

u′

��

Cf //

γ′

��

TX

��
X

k=fu
//

f

��

Y ′ // Ck
//

β

��

TX

��
X ′

u′
//

��

Y ′ //

��

Cu′
// TX ′

��
Cf

γ′
// Ck

β
// Cu′

// TCf .

The composite αβ : Cu → Cu′ then completes a morphism of the chosen
distinguished triangles.

3.2 Elementary Properties

Because of TR1, not only is the “backward” rotation of a distinguished triangle
distinguished, but its “forward” rotation as well: all three of

X
u // Y

v // Z
w // TX

T−1Z
−T−1(w) // X

u // Y
v // Z

Y
v // Z

w // TX
−T (u) // TY

are distinguished. It’s also sometimes possible (for example, after two rotations
in either direction) to remove the negatives by taking an isomorphic triangle.

Proposition 3.4. For any distinguished triangle X
u // Y

v // Z
w // TX

in a triangulated category T , uv = 0, vw = 0, and wT (u) = 0.

Proof. Consider

X
1 //

1

��

X //

u

��

0 //

��

TX

1

��
X u

// Y v
// Z w

// TX.

Since the left square commutes, there is, by TR3, a map 0→ Z that completes
the morphism of triangles, which proves uv = 0. The other equations follow
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similarly by looking at the diagrams

Y
1 //

1

��

Y //

v

��

0 //

��

TY

1

��
Y v

// Z w
// TX

−T (u)
// TY

and
Z

1 //

1

��

Z //

v

��

0 //

��

TZ

1

��
Z w

// TX
T (u)

// TY
T (v)

// TZ.

Definition 3.5. Let T be a triangulated category and A an abelian category.
An additive functor F : T → A is cohomological if, for any distinguished
triangle X → Y → Z → TX, the sequence

F (X)→ F (Y )→ F (Z)

is exact in A.

Abelian categories have gone undefined and will remain so (see, for example
the book by Kashiwara and Schapira [4] or Freyd [1]). For the purposes here,
it is sufficient to work in the category Ab of abelian groups.

To prepare for the next proposition, observe that it is possible to rotate the
axiom TR3. In the diagram below, consisting of two distinguished triangles
extended by rotation

X
u //

f

��

Y
v //

g

��

Z
w // TX

−T (u) //

T (f)

��

TY
−T (v) //

T (g)

��

TZ

X ′
u′

// Y ′
v′

// Z ′
w′

// TX ′
−T (u′)

// TY ′
−T (v′)

// TZ ′

each square commutes if and only if the other does, and the existence of a mor-
phism that completes a morphism of triangles between the triangles starting on
the left is equivalent to the existence of a morphism completing a morphism be-
tween the triangles ending on the right via rotation. So TR3 could equivalently
state that any commuting square between distinguished triangles

X
u // Y

v //

g

��

Z
w //

h

��

TX

X ′
u′

// Y ′
v′

// Z ′
w′

// TX

can be completed nonuniquely to a morphism of triangles.

9



Proposition 3.6. In any triangulated category T and for any A ∈ T , the
functors Hom(A,−) and Hom(−, A) are cohomological.

Proof. Let X
u // Y

v // Z
w // TX be a distinguished triangle and g :

A→ Y a morphism with gv = 0 (one in the kernel of Hom(A, Y ) v∗→ Hom(A,Z)).
Because the middle square in

A
1 //

f

��

A //

g

��

0

��

// TA

��
X u

// Y v
// Z w

// TX

commutes, there is an f such that fu = g by the observation made above. Thus,

Hom(A,X)
u∗ // Hom(A, Y )

v∗ // Hom(A,Z)

is exact.
Now let f : Y → A satisfy uf = 0. Rotate the upper triangle in the diagram

above and by TR3, there is a map g : Z → A that completes

0 // A
1 // A // 0

X

OO

u
// Y

f

OO

v
// Z w

// TX.

Hence
Hom(X, A) Hom(Y, A)u∗oo Hom(Z,A)v∗oo

is also exact.

In fact, rotating the bottom triangles and arguing the same way as above
allows the exact sequences to be extended to long exact sequences:

· · ·
T n−1(w)∗// Hom(A, TnX)

T n(u)∗// Hom(A, TnY )
T n(v)∗// Hom(A, TnZ)

T n(w)∗ // · · ·

· · · Hom(TnX, A)
T n+1(w)∗

oo Hom(TnY,A)
T n(u)∗oo Hom(TnZ,A)

T n(v)∗oo · · · .
T n(w)∗

oo

This one proposition is the source of many other basic properties.

Corollary 3.7. Given a morphism of distinguished triangles

X
u //

f

��

Y
v //

g

��

Z
w //

h

��

TX

T (f)

��
X ′

u′
// Y ′

v′
// Z ′

w′
// TX ′,

if f and g are both isomorphisms, then h is as well.
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Proof. Follows from the Five Lemma for abelian groups, comparing the exact
sequences obtained from the functor Hom(A,−).

Corollary 3.8. In a triangulated category, any two mapping cones associated
to a morphism u : X → Y are isomorphic. Moreover, any two distinguished
triangles associated to a single mapping cone Cu

X
u // Y

v // Cu
w // TX

X
u′ // Y

v′ // Cu
w′

// TX

have v′ = vh and w′ = h−1w for some isomorphism h of Cu.

Proof. The first statement follows from the diagram

X
u //

1

��

Y
v //

1

��

Cu
w //

��

TX

1

��
X u

// Y
v′

// C ′
u

w′
// TX.

and TR3, together with the previous corollary.
The second statement follows by observing that any object Z isomorphic via

a map h to a mapping cone for u is also a cone since

X
u //

1

��

Y
v′ //

1

��

Z
w′

//

h

��

TX

1

��
X u

// Y v
// Cu w

// TX

is an isomorphism.

Proposition 3.9. For any distinguished triangle X
u→ Y

v→ Z
w→ TX, the

following are equivalent.

1. u is monic

2. w = 0

3. v is a retraction

4. v is epic

5. u is a section

6. Y ∼=X ⊕ Z.

Proof.
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(1⇒ 2): By Proposition 3.4, wT (u) = 0 = 0T (u), so w = 0 since u is monic and T
is an equivalence.

(2⇒ 3): Since Hom(A,−) is cohomological,

Hom(Z, Y ) w∗→ Hom(Z,Z) 0∗→ Hom(Z, TX)

is exact, hence there is an s : Z → Y with sw = 1.

(3⇒ 4): Obviously.

(4⇒ 5): Since v is epic vw = 0 = v0 implies w = 0. The exactness of

Hom(Y, X) u∗→ Hom(X, X) 0∗→ Hom(T−1Z,X)

provides a morphism t : Y → X with ut = 1.

(5⇒ 1): Is clear.

(2⇒ 6): A twice rotated version of TR3 obtains from the diagram

X
u //

1

��

Y
v //

��

Z
w //

��

TX

1

��
X

1
// X // 0 // TX

a map π : Y → X satisfying uπ = 1X . TR3 also yields, from the diagram

X
u //

0

��

Y
v //

1y−πu

��

Z
w //

��

TX

0

��
0

0
// Y

1
// Y // 0,

a map ι : Z → Y with vι = 1Y = πu ⇔ πu + vι = 1Y . Then, the exact
sequence

Hom(Y,Z) v∗← Hom(Z,Z) w∗=0←− Hom(TX,Z)

gives ιv = 1Z , since v∗(ιv) = vιv = (1 = πu)v = v− πuv = v since uv = 0
by Prop. 3.4. Finally, ιπ = 0 by the exact sequence

Hom(Z, T−1Z) 0→ Hom(Z,X) u∗→ Hom(Z, Y )

since u∗(ιπ) = ιπu = ι(1− vι) = 0 because ιv = 1Z . Then by Proposition
2.3, Y is a direct sum of X and Z, with π the projection onto X, ι the
coprojection from Z, and u and v the remaining coprojection and projec-
tion, respectively. This final observation immediately gives the implication
6⇒ 1 (or 6⇒ 4), completing the proof.
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Corollary 3.10. In any triangulated category, all monics and epics are split,
and a morphism f : A → B is an isomorphism if and only if it is both monic
and epic.

Definition 3.11. 1. A functor F : T → T ′ between triangulated categories
is triangulated if it is a functor of additive categories with transla-
tion and maps distinguished triangles to distinguished triangles. A nat-
ural transformation of triangulated functors is a natural transformation of
functors of additive catgories with translation in the sense of Definition
3.1.

2. A subcategory (T ′, T ′) of a triangulated category (T , T ) is subcategory of
additive categories with translation that is itself triangulated and such that
the inclusion functor is triangulated (every triangle distinguished in T ′ is
also distinguished in T ).

Proposition 3.12. Let T ′ be a full triangulated subcategory of T . Then,

1. If T ′ contains the triangle X
f→ Y → Z → TX and it is distinguished in

T , then it is distinguished in T ′.

2. If X → Y → Z → TX is distinguished in T and X, Y ∈ T ′, then Z is
isomorphic to an object in T ′.

Proof. Both assertions follow from the same proof. Since T ′ is triangulated,
X

f→ Y completes to a distinguished triangle

X
f→ Y → Z ′ → TX

in T ′, which is also distinguished in T . Therefore, by TR3,

X
f //

1

��

Y //

1

��

Z ′ // TX

1

��
X

f
// Y // Z // TX

completes to a morphism of triangles in T , and the map Z ′ → Z must be an
isomorphism by Corollary 3.7.

Proposition 3.13. In the situation of TR3,

X
f //

α

��

Y
g //

β

��

Z
h //

γ

��

TX

T (α)

��
X ′

f ′
// Y ′

g′
// Z ′

h′
// TX ′,

if Hom(Y, X ′) = 0 and Hom(TX, Y ′) = 0, then the map γ exists uniquely.

13



Proof. First, note that γ is nonunique if and only if there exist γ1, γ2 such that
gγ1 = βg′ = gγ2 ⇔ g(γ1 = γ2) = 0, with γ1 − γ2 6= 0, which is true if and only
if γ is nonunique with β = 0. Thus, it is sufficient to consider only

X
f //

0

��

Y
g //

0

��

Z
h //

γ

��

TX

0

��
X ′

f ′
// Y ′

g′
// Z ′

h′
// TX ′

and show γ = 0.
Because γh′ = 0 and the sequence

Hom(Z, Y ′)
g′∗→ Hom(Z,Z ′)

h′∗→ Hom(Z, TX ′)

is exact, there must exist a morphism u : Z → Y ′ such that ug′ = γ. Likewise,
gγ = 0 and the exactness of

Hom(Y,Z ′)
g∗← Hom(Z,Z ′) h∗← Hom(TX,Z ′)

gives a map v : TX → Z such that hv = γ. There is, then, a morphism
w : TY → TX ′ that completes the morphism of triangles

Z
h //

u

��

TX
−T (f) //

v

��

TY
−T (g) //

w

��

TZ

T (u)

��
Y ′

g′
// Z ′

h′
// TX ′

−T (f) // TY ′.

Since Hom(Y,X ′) = 0, w = 0, which forces vh′ = 0. A reprise of the argu-
ment above with vh′ in place of γh′ shows that v factors through Y ′. But
Hom(TX, Y ′) = 0, so v = 0, giving finally γ = hv = 0.

4 An Example: The Homotopy Category

As was noted in the introduction, the motivating example of a triangulated
category is the derived category of an abelian category. This section only goes
halfway to that example, describing the homotopy category of an additive cat-
egory. The derived category can be obtained from the homotopy category of
an abelian category by localizing by the class of all quasiisomorphisms. The
intermediate step of taking the homotopy category is not strictly necessary, but
is advantageous since it allows for a calculus of fractions when working in the
derived category. Information on this, and on the derived category generally
can be found in the notes by Verdier [11], or those by Hartshorne [3].

Let A be an additive category. The category of complexes in A, C(A),
can be defined as an additive catgory with translation as follows.
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Objects: Collections of objects of A, {Ai | i ∈ Z} such that for every i ∈ Z
there are morphisms di : Ai → Ai+1 (called differentials) satisfying
didi+1 = 0. Such collections will be denoted A•.

Maps: f : A• → B• are collections of maps f i : Ai → Bi such that

· · ·
di−2

A // Ai−1
di−1

A //

fi−1

��

Ai
di

A //

fi

��

Ai+1
di+1

A //

fi+1

��

· · ·

· · ·
di−2

A

// Bi−1
di−1

B // Bi
di

B // Bi+1
di+1

B // · · ·

commutes.

Translation: T : C(A)→ C(A) defined by

T (A•)i = Ai+1, di+1
A = −T (di

A)
T (f)i = f i+1 on maps otherwise.

The inverse functor T−1 is the obvious reversal of this.

An alternate phrasing of this would be that each object of C(A) has a map
dA : A• → TA• satisfying dTA = −TdA and every morphism of complexes f is
a collection of maps that makes

A
dA //

f

��

TA

T (f)

��
B

dB

// TB

commute.
The homotopy category K(A) is just C(A) modulo homotopic maps.

Definition 4.1. A map f : A• → B• in C(A) is homotopic to 0 if there
exists a morphism u : A• → T−1B• such that f = dAT (u) + uT−1(dB). Two
maps f and g are homotopic if f − g is homotopic to 0.

A noncommuting diagram visualizing this:

T−1A•
dT−1A //

T−1(f)

��

A•

u

{{ww
ww

ww
ww

w
f

��

dA // TA•

T (u)

||yy
yy

yy
yy

y
T (f)

��
T−1B•

dT−1B

// B•
dB

// TB•;

or, within complexes,

· · · // An−1 //

fn−1

��

An

un

||xxxxxxxx
f

��

// An+1

n+1

||xxxxxxxx
fn+1

��

// · · ·

· · · // Bn−1 // Bn // Bn+1 // · · · .
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Definition 4.2. The homotopy category of an additive category A is

Objects: Objects of C(A).

Maps: For A•, B• ∈ C(A),

HomK(A)(A•, B•) := HomC(A)(A•, B•)/ Ht(A•, B•),

where Ht(A•, B•) := {f ∈ HomC(A)(A•, B•) | f is homotopic to 0}.

Composition in this category is well-defined courtesy of the following.

Lemma 4.3. Let f : A• → B• and g : B• → C• be maps in C(A). If f or g is
homotopic to 0, then fg is as well.

Proof. Suppose it is f that is homotopic to 0, so

f = dAT (u) + uT−1(dB)

for some u : A• → T−1B•. Then

fg = (dAT (u) + uT−1(dB))g
= dAT (u)g + uT−1(dB)g
= dAT (u)g + uT−1(g)T−1(dC)
= dAT (uT−1(g)) + (uT−1(g))T−1(dC),

hence fg is homotopic to 0 with cross map uT−1(g). When g is homotopic
to 0 the proof is similar.

The quotient functor C(A)→ K(A) is clearly additive, so the induced action
of the translation of C(A) makes K(A into an additive category with translation.
Triangulating K(A) requires one more definition.

Definition 4.4. Let f : A• → B• be a morphism in C(A). The mapping
cone of f is the complex Mc(f) with

Mc(f)n :=An+1 ⊕Bn

and differential

dn
Mc(f) :=

(
dn

TA T (f)n

0 dn
B

)
.

The mapping cone comes equipped with maps

α(f) : B• → Mc(f)

α(f)n : Bn (01Y n )→ Mc(f)n = An+1 ⊕Bn

and
β(f) : Mc(f)→ TA•

β(f)n : An+1 ⊕Bn

0
@ 1Xn+1

0

1
A

=⇒ An+1.
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Therefore, the mapping cone gives a triangle in C(A),

A•
f→ B• α→ Mc(f)

β→ TA•.

The homotopy catgeory is made into a triangulated category by declaring any
triangle isomorphic (in K(A)) to a mapping cone triangle a distinguished trian-
gle. The proof that this is indeed a valid triangulated structure is lengthy but
straightforward, consisting mostly of calculations, and can be found in the book
by Kashiwara and Schapira [4]. However, it does require the taking of homotopy
first, as some of the required diagrams commute only up to homotopy.

5 Further Theory

This final section offers a brief summary, without proofs, of some aspects of the
theory discussed at greater length in Neeman’s book [7].

Freyd proved the following in the context of stable homotopy [2].

Theorem 5.1. Let T be a triangulated category. There exists an abelian cate-
gory A(T ) and a cohomological functor T → A(T ) such that any other cohomo-
logical functor T → A (A an abelian category) factors as T → A(T )→ A. The
functor A(T )→ A is exact and is unique up to canonical equivalence; moreover,
any natural transformation of cohomological functors T → A factors uniquely
through a natural transformation of the functor A(T )→ A.

In fact, A(−) is a functorial association between the category of triangulated
categories and triangulated functors and abelian categories and exact functors.
Also, the cohomological functor T → A(T ) is a fully faithful embedding.

Proposition 5.2. Let F : S → T be a triangulated functor. If G : T → S is a
right adjoint to F , then it is also triangulated, and A(G) : A(S)→ A(T ) is right
adjoint to A(F ). Further, if all idempotents in S split, F has a right adjoint if
and only if A(F ) has a right adjoint. In this case, if G is right adjoint to F and
G′ is right adjoint to A(F ), then A(G) and G′ are naturally isomorphic.

Although interesting, this proposition is not particularly useful on its own
because the abelian categories obtained from the association are, in Neeman’s
word, “terrible.” For one thing, they are not well-generated, and Neeman writes
that he does not know of a single instance of someone proving the existence of
an adjunction between them. Pushing a little further provides a more usable
criterion.

Theorem 5.3 (Brown Representability). Let T be a well-generated triangulated
category and H : T op → Ab a contravariant functor to the category of abelian
groups. Then H is representable if and only if it is cohomological and carries
coproducts in T to products in Ab.

17



Definition 5.4. Let T be a triangulated category admitting coproducts indexed
by sets of any infinite cardinality. Such a category satisfies the representabil-
ity theorem if its contravariant representable functors are exactly the cohomo-
logical functors from T op to abelian groups that send coproducts to products.

Proposition 5.5. Let F : S → T be a triangulated functor. If S satisfies
the representability theorem, F has a right adjoint if and only if it respects
coproducts.
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