
Initial Algebra, Final Coalgebra and Datatype

Masuka Yeasin

August 08, 2011

1 Introduction

Bart Jacobs and Jan Rutten published “A Tutorial on (Co) Algebras and (Co)
Induction” in which they provided a brief introduction to initial algebras and fi-
nal coalgebras[1]. Induction is used both as a definition principle, and as a proof
principle for algebraic structures. But there are also important dual “coalge-
braic” structures. Spaces of infinite data (infinite lists, non-well founded sets)
are generally of this kind and “coinduction” is used as a definition principle
and as a proof principle for such structures. Algebra is a well-established part
of mathematics, dealing with sets with operations satisfying certain properties,
like groups, rings, etc. Algebraic methods are used in computer science, in a
branch called algebraic specification or abstract data type theory. Initial al-
gebras turn out to be inductive data types. Dually final coalgebras entail a
notion of behaviour types. Both of these structures, referred to as categorical
data types, may be directly used in programming. In programming semantics,
a recursive type is understood as a solution of a recursive type equation [3].
Least fixpoints of covariant recursive type equations correspond to the so-called
inductive types which contain only finite elements, like natural numbers, lists or
trees. On the other hand, infinite data structures, such as streams, are given by
the greatest fixpoints and are called co-inductive types. From an algebraic and
categorical perspective least/greatest solutions of recursive type equations cor-
respond to the notions of initial algebras/final coalgebras. The data types used
by computer scientists are often generated from a given collection of (construc-
tor) operations, and it is for this reason that “initiality” of algebras plays such
an important role. In order to fully appreciate the underlying duality between
algebra and induction on the one hand, and coalgebra and coinduction on the
other, some elementary notions from category theory are needed, especially the
notions of functor, and of initial and final object in a category.

2 Initial and Final Objects

An object is initial if there exists a unique morphism from the object to every
object in the category, and an object is final if there exists a unique morphism
from every object in the category to the object [2]. Let C be a category and

1

S ∈ Ob(C). Then, S is an initial object if for all X ∈ Ob(C), there exists a

unique f ∈ hom(S,X). That is S
f //X for each object X, where the dashed

arrow denotes the uniqueness of the morphism. Dually, S is a final object if
for all X ∈ Ob(C), there exists a unique morphism g ∈ hom(X,S).That is,

X
g //S for each object X. The property of initial objects is called initiality

and the property of final objects is called finality.

In the category of sets, the initial object is Ø, since there exists a unique mor-
phism 0 : Ø → X; the final object is the set 1, since there exists a unique
morphism 1 : X → 1, for each set X.

3 Algebraic and Coalgebraic phenomena

The distinction between algebra and coalgebra may be described as construc-
tion versus observation [1]. As a typical example of algebra, consider for a fixed
data set A, the set A∗ = list(A) of finite sequences (lists) of elements of A.
One can inductively define a length function len : A∗ → N by the two clauses:
len(nil) = 0 and len(a.σ) = 1 + len(σ) for all a ∈ A and σ ∈ A∗. Here nil ∈ A∗

for the empty list and a.σ for the list obtained from σ ∈ A∗ by prefixing a ∈ A.

A typical induction proof that a predicate P ⊆ A∗ holds for all lists requires
us to prove the induction assumptions.P (nil) and P (σ) ⇒ P (a.σ) for all a ∈ A
and σ ∈ A∗. For example, in this way one can prove that len(a.σ) = 1 + len(σ)
by taking P = {σ ∈ A∗ | ∀a ∈ A. len(σ.a) = 1 + len(σ)}. In this algebraic
setting we make essential use of the fact that all finite lists of elements of A can
be constructed from the two operations nil ∈ A∗ and cons : A×A∗ → A∗.

Consider an example of coalgebraic phenomena, suppose there is a black box
machine which has a button and a light. If the button is pressed then the ma-
chine performs a certain action and the light goes on only if the machine stops
operating. A client cannot directly observe the internal state of the machine,
he can only observe its behaviour via the button and the light. In this simple
situation, all that can be observed directly about a particular state of the ma-
chine is whether the light is on or not. In this situation, a user can observe how
many times he has to press the button to make the light go on. This may be
zero times, nεN times, or infinitely many times. If we describe in terms of a set
X, then we define a function button : X → {∗} ∪X.

In a particular state s ∈ X, applying the function button- which corresponds to
pressing the button-has two possible outcomes: either button(s) = ∗, meaning
that the machine stops operating and that the light goes on, or button(s) ∈ X.
In the latter case the machine has moved to a next state as a result of the button
being pressed. The above pair (X, button : X → {∗} ∪ X) is an example of a
coalgebra.

2

4 Inductive and coinductive definitions

“Constructor” and “Destructor” operations play an important role for algebras
and coalgebras, respectively. Constructors tell us how to generate our (alge-
braic) data elements: the empty list constructor nil and the prefix operation
cons generate all finite lists. And destructors tell us what we can observe about
our data elements: the head and tail operations tell us about infinite lists: head
gives a direct observation, and tail returns a next state [1].

In an inductive definition of a function f , one defines the value of f on all
constructors.In an coinductive definition of a function f , one defines the val-
ues of all destructors on each outcome f(x). We shall illustrate inductive and
coinductive definitions in some examples involving finite lists (with construc-
tors nil and cons) and infinite lists (with destructors head and tail). Consider
an example: the function len from finite lists to natural numbers giving the
length: len(nil) = 0 and len(cons(a.σ)) = 1 + len(σ)

Consider an example of coinductive definitions on infinite lists. If we have
a function f : A → A, then we would like to define an extension ext(f)
of f mapping an infinite list to an infinite list by applying f component-
wise: head(ext(f)(σ)) = f(head(σ)) and tail(ext(f)(σ)) = ext(f)(tail(σ))

5 Algebras and induction

Induction is used both as a definition principle and as a proof principle [1].
The first real step is to reformulate ordinary induction in a more abstract way,
using initiality. More precisely, using initiality for “algebras of a functor”. The
abstract reformulation of induction that can be defined as:

induction = use of initiality for algebras

An algebra is initial if for an arbitrary algebra there is a unique homomorphism
from initial algebra to arbitrary algebra. Initiality involves unique existence,
which has two aspects:(i) Existence and (ii) Uniqueness. In uniqueness proofs,
one shows that two functions acting on an initial algebra are the same by show-
ing that they are both homomorphisms.

In this section, we will describe structures intended to store data elements in
particular configurations. It turns out that the types of such configurations
are suitably described by functors and the structures themselves arise as al-
gebras for such functors. At first we can start by considering the polynomial
functors. Polynomial functors are inductively defined as the least collection of
functors containing the identity Id and constant functors for all objects K in
the category, closed by functor composition and finite application of product
and coproduct functors.

3

Let T be the polynomial functor T (X) = 1+X +(X×X) and consider for a set
U a function a : T (U) → U . Such a map a may be identified with a 3-cotuple
[a1, a2, a3]of maps a1 : 1 → U , a2 : U → U , a3 : U × U → U giving us three
seperate functions going into the set U They form an example of an algebra (of
the functor T): a set together with a (cotupled) number of functions going into
that set. For example, if a group G has unit element e : 1 → G, inverse function
i : G → G and multiplication function m : G ×G → G, then these three maps
form an algebra [e, i,m] : T (G) → G.

Syntactically, a data structure is described by a set of operations which specify
how its values to be produced. A sequence, for example, is either empty or built
by adding an element to the front of a pre-existing sequence. A binary tree
signature includes an empty constant and a node constructor whereby data and
two other trees are aggregated to become the root node of a new tree. These
two examples can be modeled by polynomial functors, which are basically n-ary
sums of m-ary products. For example,

TNatX = 1 + X (natural numbers)
TSeqX = 1 + Data×X (sequences)
TBinX = 1 + Data×X ×X (binary trees)
TLefX = Data + X ×X (leaf trees)

All constructors of a given type can be grouped together into a single operation.
For example, the constructors of a sequence are

[nil, cons] : 1 + Data×X → X

In general, if the shape of one of these structures is specified by a functor T ,
the structure itself is given as a map

d : TD → D

i.e., as a T -algebra. Concrete structures are, therefore, obtained by specifying
both the carrier set D and map d. Formally, we define,

Definition 5.1. Let T be a functor. An algebra of T is a pair consisting of a
set U and a function a : T (U) → U . The set U is the carrier of the algebra,
and the function a is the algebra structure, or also the operation of the algebra.

For example, the zero and successor functions 0 : 1 → N , S : N → N on the
natural numbers form an algebra [0, S] : 1+N → N of the functor T (X) = 1+X.
And the set of A-labeled finite binary trees Tree(A) comes with functions nil :
1 → Tree(A) for the empty tree, and node : Tree(A)×A×Tree(A) → Tree(A)
for constructing a tree out of two subtrees and a node label. Together, nil and
node form an algebra 1 + (Tree(A) × A × Tree(A)) → Tree(A) of the functor
S(X) = 1 + (X ×A×X).

4

6 Algebras homomorphism

Definition 6.1. Let T be a functor with algebras a : T (U) → U and b : T (V) →
V . A homomorphism of algebras from (U, a) to (V, b) is a function f : U → V
between the carrier sets which commutes with the operations [1]: f ◦a = b◦T (f)
in

T (U)

T (f)

��

a // U

f

��
T (V)

b
// V

Suppose we have two algebras l1 : 1 → U1, c1 : A × U1 → U1 and l2 : 1 → U2,
c2 : A × U2 → U2. A homomorphism of algebras from the first to the second
consists of a function f : U1 → U2 between the carriers with f ◦c1 = c2◦(id×f).
In two diagrams:

1

1

l1 // U1

f

��
1

l2

// U2

A× U1

id×f

��

c1 // U1

f

��
A× U2 c2

// U2

These two diagrams can be combined into a single diagram:

1 + (A× U1)

id+id×f

��

[l1,c1] // U1

f

��
1 + (A× U2)

[l2,c2]
// U2

i.e., for the list-functor T (X) = 1 + (A×X),

T (U1)

T (f)

��

[l1,c1] // U1

f

��
T (U2)

[l2,c2]
// U2

Definition 6.2. An algebra a : T (U) → U of a functor T is initial if for each
algebra b : T (V) → V there is a unique homomorphism of algebras from (U, a)

5

to (V, b) [1]. Diagrammatically we express this uniqueness by a dashed arrow,
call it f , in

T (U)

T (f)

��

a // U

f

��
T (V)

b
// V

As a first example [1], we shall describe the set N of natural numbers as ini-
tial algebra. Consider the set N of natural number with its zero and successor
function 0 : 1 → N and S : N → N. These functions combine into a single
function [0, S] : 1 + N → N, forming an algebra of the functor T (X) = 1 + X.
We will show that this map [0, S] : 1+N → N is the initial algebra of this functor.

To prove initiality, assume we have an arbitrary set U carrying a T -algebra
structure [u, h] : 1 + U → U . We have to deine a homomorphism f : N → U .
We try iteration: f(n) = h(n)(u). That is, f(0) = u and f(n + 1) = h(f(n)).

These two equations express that we have a commuting diagram

1 + N

id+f

��

[0,S] // N

f

��
1 + U

[u,h]
// U

making f a homomorphism of algebras. This can be verified easily by distin-
guishing for an arbitrary element x ∈ 1+N in the upper-left corner the two cases
x = (0, ∗)=k(∗) and x = (1, n) = k(′(n)), for n ∈ N. In the first case x = k(∗)
we get, f([0, S](k(∗))) = f(0) = u = [u, h](k(∗)) = [u, h]((id + f)(k(∗))).

In the second case [1] x = k(′(n)) we similarly check: f([0, S](k(′(n))) =
f(S(n)) = u(f(n)) = [u, h](k(′(f(n))) = [u, h]((id + f)(k(′(n))).

Hence we may conclude that f([0, S](x)) = [u, h]((id + f)(x)), for all x ∈ 1 + N,
i.e. that f ◦ [0, S] = [u, h] ◦ (id + f).

We also have to show that f is the only map making the diagram commute. If
g : N → U also satisfies g ◦ [0, S] = [u, h] ◦ (id + g), then g(0) = u andg(n + 1) =
h(g(n)), by the same line of reasoning followed above. Hence g(n) = f(n) by
induction on n, so that g = f : N → U .

6

7 Properties of Initial Algebras

Lemma 6.1

(i) Initial T-algebras, if they exist, are unique, up-to-isomorphism of algebras.
(ii)The operation (constructor) of an initial algebras is an isomorphism: if
a : T (U) → U is initial algebra, then a has an inverse a−1 : U → T (U).

The first point tells us about the initial algebra of a functor T . And the second
point - which is due to Lambek - says that an initial algebra T (U) → U is a
fixed point T (U) ∼= U of the functor T [2].

Proof. (i) Suppose both a : T (U) → U and a′ : T (U ′) → U ′ are initial algebras
of the functor T . By initiality of a there is a unique algebra map f : U → U ′.
Similarly, by initiality of a′ there is a unique algebra map f ′ : U ′ → U in the
other direction:

T (U)

T (f)

��

a // U

f

��
T (U ′)

a′
// U ′

T (U ′)

T (f ′)

��

a′ // U ′

f ′

��
T (U)

a
// U

Here, we use the existence part of initiality. The uniqueness part gives us that
the two resulting algebra maps (U, a) → (U, a), namely f ◦ f ′ and id in:

T (U)

T (f)

��

a // U

f

��
T (U ′) a′ //

T (f ′)

��

U ′

f ′

��
T (U)

a
// U

T (U)

T (id)

��

a // U

id

��
T (U)

a
// U

must be equal, i.e.,that f ′ ◦ f = id. Uniqueness of algebra maps (U ′, a′) →
(U ′, a′) similarly yields f ◦ f ′ = id. Hence f is an isomorphism of algebras.

(ii) Let a : T (U) → U be initial T-algebra. In order to show that the func-
tion a is an isomorphism, we have to produce an inverse function U → T (U).
Initiality of (U, a) can be used to define functions out of U to arbitrary alge-
bras. Since we seek a function U → T (U), we have to put an algebra struc-
ture on the set T (U). By applying the functor T to the function a, we get,

7

T (a) : T (T (U)) → T (U). This function T (a) gives by initiality of a : T (U) → U
rise to a function a′ : U → T (U) with T (a) ◦ T (a′) = a′ ◦ a in:

T (U)

T (a′)

��

a // U

a′

��
T (T (U))

T (a)
// T (U)

The function a ◦ a′ : U → U is an algebra map (U, a) → (U, a):

T (U)

T (a′)

��

a // U

a′

��
T (T (U))

T (a) //

T (a)

��

T (U)

a

��
T (U)

a
// U

so that a ◦ a′ = id by uniqueness of algebra maps (U, a) → (U, a). But then

a′ ◦ a = T (a) ◦ T (a′)
= T (a ◦ a′)
= T (id)
= id

Hence a : T (U) → U is an isomorphism with a′ as its inverse.

8 Strong Category and strong functor

If X is a Cartesian category (i.e. has a binary product and a terminal object),
an X strong category Y is a cartesian category Y with a bifunctor, called an
X action [4].

−�− : Y ×X → Y

that is compatible with the coherent natural isomorphism
ass : Y � (X1 ×X2) → (Y �X1 �X2)
rid : (Y � 1) → Y
rep : Y �X → Y × (1�X)

8

X strong functors are functors between X-strong categories C and D equipped
with a natural transformations [4].

θF
A,X : F (A)×X → F (A×X)

called an X strength such that the following two diagrams commute.

F (A)×X

π0 &&NNNNNNNNNNN

θF
A,X // F (A)×X

F (π0)

��
F (A)

F (A)× (B × C)

θF
A,B×C

��

ass // (F (A)×B)× C

θF
A,B×I

��
F (A×B)× C

θF
A×B,C

��
F ((A×B)× C)

F (ass)
// F ((A×B)× C)

9 Strong Data Types and Initial Algebras

The category - theoretic explanation of recursive types is based on the idea that
types constitute objects of a category C, and type constructors are functors on
C. Given a recursive type definition in a functional language, it is always pos-
sible to derive an endofunctor F : C → C that captures the recursive shape(or
signature) of the datatype. Thus, the recursive type turns out to be an object T
such that T ∼= FT , i.e. a fixpoint of F [3]. Least fixpoints of covariant functors
give rise to inductive types which can be understood as initial functor-algebras,
a generalization of the usual notion of term algebras over a given signature. An
inductive type together with an interpretation of its constructors is given by an
initial F algebra, i.e. an initial object in the category of algebras. For instance,
given a datatype for natural numbers, Nat = Zero | Succ Nat its signature is
captured by a functor N : C → C such that NU = 1 + U and Nf = id1 + f . It
turns out that any N - algebra is a case analysis morphism [u, h] : 1 + U → U ,
with u : 1 → U and h : U → U . In particular, the initial algebra is given by
[Zero, Succ] : 1 + N → N with Zero : 1 → N and Succ : N → N. Thus, a data
type can be viewed as an algebra whose operations are given by the data type
constructors [3]. The initial datatype for natural numbers satisfy the following
universal properties:

9

1 + N

id+f

��

[Zero,Succ]// N

f

��
1 + U

[u,h]
// U

1

1

Zero // N

f

��

N

f

��

Succoo

1 u
// U U

h
oo

Cockett and Spencer showed one can achieve a definition of fold for any in-
ductive type that is strong, i.e. that is given by an algebra which is initial
with parameters. Indeed, f old may be regarded as a ’catamorphism with pa-
rameters’[3]. It is common to find recursive functions on datatypes that require
extra parameters for their computation such as in a higher-order language cur-
rying is used. A recursive function that requires parameters may be given
as a curried definition by recursion on the datatype that yields a function on
the parameters as result. In categorical terms, a cartesian closed category is
used in a higher-order language for every pair of objects A and B, there is an
exponential object [A → B] satisfying an universal property. Consider func-
tions on the natural numbers such as given a constant u : 1 → U and a func-
tion h : U → U the natural numbers catamorphism is the unique function
f : N → U such that f Zero = u and f(Succ n) = h(f n). Thus, by a
higher-order catamorphism of type N → [X → U] a recursive function can be
presented that admits an object of parameters X and returs a value of type
U , for certain u : [X → U] and h : [X → U] → [X → U]. This is the case
for addition add : Nat → [Nat → Nat] and the curried recursive definition is:
add Zero n = n and add (Succ m)n = Succ(add m n).

On the contrary, in the first order language [3], the absence of the currying
feature leads to the necessity of modifying the definition of catamorphism in
order to explicitly manage parameters. The new functional-called f old is then
introduced as a morphism of two variables f : N × X → U by recursion on
N (the inductive type) that uses the second variable as parameter. Such as,
given the functions u : X → U and h : U × X → U , the natural number
fold is the unique function f : N × X → U such that: f(Zero, x) = h(x)
and f(Succ n, x) = h(f(n, x), x). Now addition is given by add : Nat×Nat →
Nat. So the traditional number-theoretic definition is add(Zero, n) = n and
add(Succ m, n) = Succ(add(m,n)).

Nat× 1
〈π0,π10〉// Nat×Nat

add

��

Nat×Nat

〈π0,add〉
��

〈π0,π1s〉oo

Nat× 1 π0
// Nat Nat×Natπ1s

oo

Cockett and Spencer addressed the definition of fold in a not necessarily closed

10

category by introducing the concept of strong initiality which is based on the
concept of a strong functor. In fact, initiality with parameters can be stated only
for those datatypes whose signature is captured by a so-called strong functor [3].

Tatsuya Hagino’s thesis introduced two types of datatype declarations: initial
datatype and final datatypes for categorical programming language. The initial
datatype is declared as follows [4]:

data L(A) → C = c1 : E1(A,C) → C| ...| cn : En(A,C) → C.

The canonical maps associated with L(A) is ci : Ei(A,L(A)) → L(A) which is
called constructors. The initial datatypes satisfy the following universal prop-
erty:

Ei(A,L(A))

Ei(A,fL(h))

��

ci // L(A)

fL(h))

��
Ei(A,C)

hi

// C

The diagram for a strong initial datatype is

Ei(A,L(A))×X

〈θEi
2 ,p1〉

��

ci×idX // L(A)×X

fold{hs}

��

Ei(A,L(A)×X)×X

Ei(A,fold{hs})×idX

��
Ei(A,C)×X

hi

// C

Here L is strong functor and (L, c) is strong datatype. For natural numbers
the diagram for strong initiality is as follows:

(1 + N)×X

〈θ1+−,p1〉
��

[zero,succ]×idX// N×X

fold

��

(1 + (X ×N))×X

(1+fold)×idX

��
(1 + U)×X

[u,h]
// U

11

In a cartesian closed category ordinary datatypes are necessarily strong datatypes.
If (L, c) is an ordinary initial datatype then it satisfies the simple algebra initial-
ity property. Suppose hi : Ei(A,C) ×X → C is the collection of programmer-
chosen maps [4]. Using the h∗i (particular transpose) for the ordinary initial
datatype L, it is possible to construct the diagram below to obtain a unique
arrow a : L(A) → X ⇒ C and fold{hs} = (a× idX); eval

Ei(A,L(A))×X

Ei(idA,a)×idX

��

ci×idX // L(A)×X

a×idX

��
Ei(A,X ⇒ C)×X

h∗i ×idX //

〈θEi
2 ,p1〉

��

(X ⇒ C)×X

eval

��

Ei(A, (X ⇒ C)×X)×X

Ei(idA,eval)×idX

��
Ei(A,C)×X

hi

// C

(1 + N)×X

(1+a)×idX

��

[zero,succ]×idX // N×X

a×idX

��
(1 + (X ⇒ U))×X

h∗i ×idX //

〈θ1+−,p1〉
��

(X ⇒ U)×X

eval

��

(1 + ((X ⇒ U)×X))×X

(1+eval)×idX

��
(1 + U)×X

[u,h]
// U

Here N × X → U , a : N → X ⇒ U and [u, h] = hi : (1 + U) × X → U ,
h∗i : 1 + (X ⇒ U) → X ⇒ U .

Consider the initial algebra for the list datatype which is defined as [nil, cons] :
1 + A× List(A) → List(A) where nil : 1 → List(A) and cons : A× List(A) →

12

List(A). The initial datatype for list satisfy the following universal property:

1 + (A× List(A))

id+(id×f)

��

[nil,cons] // List(A)

f

��
1 + (A× C)

[u,h]
// C

1

1

nil// List(A)

f

��

A× List(A)

id×f

��

consoo

1 u
// C A× C

h
oo

For list datatype the diagram for strong initiality is as follows:

(1 + (A× List(A)))×X

〈θ1+A∗−,p1〉
��

[nil,cons]×idX // List(A)×X

fold

��

(1 + (A× (X × List(A))))×X

(1+A×fold)×idX

��
(1 + (A× C))×X

[u,h]
// C

As the ordinary datatypes in a cartesian closed category are necessarily strong
datatypes, so the list datatype satisfies the following algebra initiality property:

(1 + (A× List(A)))×X

(1+(A×a))×idX

��

[nil,cons]×idX // List(A)×X

a×idX

��
(1 + (A× (X ⇒ C)))×X

h∗i ×idX //

〈θ1+A∗−,p1〉
��

(X ⇒ C)×X

eval

��

(1 + (A× ((X ⇒ C)×X)))×X

(1+(A×eval))×idX

��
(1 + (A× C))×X

[u,h]
// C

Here X × List(A) → C, a : List(A) → X ⇒ C and [u, h] = hi : (1 + (A ×
C))×X → C, h∗i : 1 + (A× (X ⇒ C)) → X ⇒ C.

9.1 Associativity of appending lists

From the definition of append [5]

13

append(x, y) ≡

{
nil : () 7→ y

∣∣∣cons : (a, c) 7→ cons(a, c)

}
(x)

To establish the associativity property we need to show that append(x, append(y, z)) =
append(append(x, y), z)). Now we can define a factorizer form append(,append(y, z)) ={

nil : () 7→ append(y, z)
∣∣∣cons : (a, c) 7→ cons(a, c)

}
(x). It can be denoted as

pgml. Abbreviating List(A) as L(A), we have

1× (L(A)× L(A))

id

��

nil×id// L(A)× (L(A)× L(A))

pgml

��

(A× L(A))× (L(A)× L(A))

〈ass−1;id×pgml,p1

��

cons×idoo

1× (L(A)× L(A))
p1;append(−,−)

// L(A) (A× L(A))× (L(A)× L(A))
p0,cons

oo

Using fold uniqueness rule for List(A), let t(−) = append(append(,y), z) and
thereby create the following subproblems:

(i)append(append(nil(), y), z) = append(y, z)

(ii)append(append(cons(a, l), y), z) = cons(a, append(append(l, y), z))

The proof of (i) is immediate that requires a single factorizer reduction and
the proof of (ii) requires two reductions:

append(append(cons(a, l), y), z) = append(cons(a, append(l, y)), z)
= cons(a, append(append(l, y), z))

Thus, appending lists established associativity property.

10 Coalgebra

In the semantics of programming [1], finite data types such as finite lists, have
traditionally been modelled by initial algebras. Later final coalgebras were used
in order to deal with infinite data types. Coalgebras, which are the dual of alge-
bras, turned out to be suited, moreover, as models for certain types of automata
and more generally, for (transition and dynamical) systems. An important prop-
erty of initial algebras is that they satisfy the familiar principle of induction.
Such a principle was missing for coalgebras until the work of Aczel (1988) on a
theory of non-wellfounded sets, in which he introduced a proof principle nowa-
days called coinduction. It was formulated in terms of bisimulation, a notion
originally stemming from the world of concurrent programming languages (Mil-
ner, 1980; Park, 1981). Using the notion of coalgebra homomorphism, the

14

definition of bisimulation on coalgebras can be shown to be formally dual to
that of congruence on algebras (Aczel and Mendler, 1989). Thus the three basic
notions of universal algebra: algebra, homomorphism of algebras, and congru-
ence, turn out to correspond to: coalgebra, homomorphism of coalgebras, and
bisimulation, respectively.

Definition 10.1. Let T be a functor. An coalgebra of T is a pair consisting
of a set U and a function c : U → T (U). The set U is the carrier of the
coalgebra, and the function c is the coalgebra structure, or also the operation of
the coalgebra.

Consider for example the functor T (X) = A × X, where A is a fixed set. A
coalgebra U → T (U) consists of two funcions U → A and U → U . we can call
value : U → A and next : U → U . With these operations we can do two things,
given an element u ∈ U :

1. produce an element in A, namely value(u);

2. produce a next element in U , namely next(u).

Now we can repeat 1. and 2. and form another element in A, namely value(next(u)).
By proceeding in this way we can get for each element u ∈ U an infinite se-
quence (a1, a2,) ∈ AN of elements of ai = value(next(n)(u)) ∈ A. This
sequence of elements that u gives rise to is what we can observe about u. Two
elements u1, u2 ∈ U may well give rise to the same sequence of elements of A,
without actually being equal as elements of U . In such a case one calls u1 and
u2 observationally indistinguishable, or bisimilar.

11 Homomorphism of coalgebras

Definition 11.1. Let T (X) = A×X be a the “infinite list” functor with coal-
gebras 〈h1, t1〉 : U1 → A × U1 and 〈h2, t2〉 : U2 → A × U2. A homomorphism
of coalgebras from the first to the second consists of a function f : U1 → U2

between the carrier sets which commutes with the operations:h2 ◦ f = h1 and
t2 ◦ f = f ◦ t1 in [1]

U1

h1

��

f
// U2

h2

��
A

1
A

and U1

t1

��

f // U2

t2

��
U1

f
// U2

15

These two diagrams can be combined into a single diagram:

U1

〈h1,t1〉
��

f // U2

〈h2,t2〉
��

A× U1
id×f

// A× U2

i.e. into U1

〈h1,t1〉
��

f // U2

〈h2,t2〉
��

T (U1)(f)
T

// T (U2)

Definition 11.2. (i)A homomorphism of coalgebras from a T − coalgebra c1 :
U1 → T (U1) to another T − coalgebra c2 : U2 → T (U2) consists of a function
f : U1 → U2 between the carrier sets which commutes with the operations:
c2 ◦ f = T (f) ◦ c1 as expressed by the following diagram.

U1

c1

��

f // U2

c2

��
T (U1)(f)

T
// T (U2)

(ii)A final coalgebra d : W → T (W) is a coalgebra such that for every
coalgebra c : U → T (U) there is a unique map of coalgebras (U, c) to (W,d).

Now that we have seen the definition of initiality and finalty. At an informal
level we can explain the similarities between the two [1]. A typical initiality
diagram may be drawn as:

T (U)

initial algebra

��

T (f) //___ T (V)

base step plus next step

��
U
“and−so−forth”

// V

The map “and-so-forth” that is defined in this diagram applies the “next step”
operations repeatedly to the “ base step”. The pattern in a finality diagram is
similar:

V

observe plus next step

��

“and−so−forth”//____ U

final coalgebra

��
T (V)

T (f)
// T (U)

In this case the “and-so-forth” map captures the observations that arise by
repeatedly applying the “next step” operation. This captures the observable
behaviour. The technique for defining a function f : V → U by finality is
thus: describe the direct observations together with the single next steps of f
as a coalgebra structure on V . The function f then arises by repetition. Hence

16

a coinductive definition of f does not determine f “at once”, but “step-by-step”.

Lemma 10.1

(i) Final coalgebras, if they exist, are uniquely determined (up-to-isomorphism).
(ii)A final coalgebra W → T (W) is a fixed point W ∼= T (W) of the functor T

12 Coinductive Datatypes

Coinductive types represent infinite structures.The general form of the coinduc-
tive datatype is as follows:

data C → R(A) = d1 : C → E1(A,C)| ...| dn : C → En(A,C).

This definition delivers to the system the type R(A) and destructors di, i =
1,n[6]. An element of datatype R(A) is broken down by destructors with
type: di : R(A) → Ei(A,R(A)). With respect to this map the coinductive
datatype satisfy the following universal property:

C

fR(g)

��

gi // Ei(A,C)

Ei(A,fR(g))

��
R(A)

di

// Ei(A,R(A))

For a strong coinductive datatype the diagram is

C ×X

unfold{gs}

��

〈gi,p1〉// Ei(A,C)×X

θ
Ei
2

��
Ei(A,C ×X)

Ei(A,unfold{gs})
��

R(A)
di

// Ei(A,R(A))

Here the collection of functions are represented by g1, ...gn as “gs”.

References

[1] Bart Jacobs, Jan Rutten, A tutorial on (Co) Algebra and (Co) Induc-
tion, Bulletin of the Europian Association of Theoretical Computer Science
(1997).

[2] Anseok Joo, Categorical ideas as expressed in the programming language
charity.

17

[3] Alberto Pardo, A calculational approach to strong datatypes, Technische
Hochschule Darmstadt, Germany.

[4] J.Robin B. Cockett and Dwight Spencer, Strong Categorical Datatypes-
I, Canadian Mathematical Society Proceedings, Vol. 13, AMS Montreal
(1992).

[5] J.Robin B. Cockett and Dwight Spencer, Strong Categorical Datatypes-II:
A term logic for categorical programming, Theoretical Computer Science,
Vol 139 (1995).

[6] Dale Barry Yee, Implementing the charity abstract machine, Masters The-
sis, University of Calgary (1995).

18

