
Analysis of Inconsistency in Graph-Based Viewpoints:
A Category-Theoretic Approach

Mehrdad Sabetzadeh Steve Easterbrook
Department of Computer Science, University of Toronto

Toronto, ON M5S 3G4, Canada.
Email: �mehrdad,sme�@cs.toronto.edu

Abstract

Eliciting the requirements for a proposed system typi-
cally involves different stakeholders with different exper-
tise, responsibilities, and perspectives. Viewpoints-based
approaches have been proposed as a way to manage in-
complete and inconsistent models gathered from multiple
sources. In this paper, we propose a category-theoretic
framework for the analysis of fuzzy viewpoints. Informally,
a fuzzy viewpoint is a graph in which the elements of a
lattice are used to specify the amount of knowledge avail-
able about the details of nodes and edges. By defining an
appropriate notion of morphism between fuzzy viewpoints,
we construct categories of fuzzy viewpoints and prove that
these categories are (finitely) cocomplete. We then show
how colimits can be employed to merge the viewpoints and
detect the inconsistencies that arise independent of any par-
ticular choice of viewpoint semantics. We illustrate an ap-
plication of the framework through a case-study showing
how fuzzy viewpoints can serve as a requirements elicita-
tion tool in reactive systems.

1 Introduction

Requirements elicitation and analysis is significantly
complicated by the incompleteness and inconsistency of
the information available in early stages of software devel-
opment life-cycle. Different stakeholders often talk about
different aspects of a problem, use different terminologies
to express their descriptions, and have conflicting goals.
Viewpoints-based approaches have been proposed as a way
to manage incomplete and inconsistent information gath-
ered from multiple sources [8]. We may use viewpoints to
specify different features of a system, describe different per-
spectives on a single functionality, or model individual pro-
cesses that need to be composed in parallel [6]. By sepa-
rating the descriptions provided by different stakeholders,

viewpoints-based approaches facilitate the detection of in-
consistencies between the descriptions.

In the classical viewpoint approach, incompleteness and
inconsistency within a viewpoint cannot be modeled ex-
plicitly. Consistency checking is achieved by expressing a
set of consistency rules in a rich meta-language, such as
first order logic [8, 7]. With this approach, viewpoints can
be merged only by making them consistent first, and then
using classical composition operators. Alternatively, one
could translate a set of viewpoints, together with their con-
sistency rules, into the same logic. However, this approach
discards both the structure of the original viewpoints, and
the syntactic aspects of their original notations. Hence,
such merges cannot be based on structural mappings be-
tween viewpoints. Neither approach is satisfactory, and the
question of how to compose viewpoints that are incomplete
and inconsistent has remained an open problem for the past
decade.

This paper introduces a category-theoretic formalism
for the syntactic representation of a family of graph-based
viewpoints, hereafter called fuzzy viewpoints, that are capa-
ble of modeling incompleteness and inconsistency explic-
itly. Informally, a fuzzy viewpoint is a graph in which the
details of nodes and edges are annotated with the elements
of a lattice to specify the amount of knowledge available
about them. By defining an appropriate notion of morphism
between fuzzy viewpoints, we construct fuzzy viewpoint
categories and prove that they are (finitely) cocomplete. We
then show how merging a set of interconnected fuzzy view-
points can be done by constructing the colimiting viewpoint
in an appropriate fuzzy viewpoint category. Colimits will
also be used as a basis for defining a notion of syntactic
inconsistency between a set of interconnected viewpoints.

Our proposed approach to modeling incompleteness and
inconsistency is very general and should apply to any of
the large number of graph-based notations commonly used
in Software Engineering. In this paper, our focus will be
on a fairly simple kind of fuzzy viewpoints inspired by
������ [6]. We will use simple state-machine models to

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

show how nodes and edges in graphical notations can be
decorated with the additional structures required for model-
ing incompleteness and inconsistency.

The mathematical machinery in this paper builds upon
the category-theoretic properties of fuzzy sets noted in
[10, 11]. The use of colimits as an abstract mechanism for
putting structures together has been known for quite some
time (cf. [12] for references). In [14, 15], colimits have
been used for merging viewpoints. In that approach, view-
points are described by open graph transformation systems
and colimits are used to integrate them. Our work is, as
far as we know, the first use of category theory for merging
inconsistent viewpoints.

The paper is organized as follows: Section 2 reviews the
required mathematical background. Section 3 outlines the
definitions and lemmas on fuzzy set categories needed in
this paper. Section 4 proposes a category-theoretic formal-
ism for fuzzy viewpoints. Section 5 describes the merge
operation for fuzzy viewpoints and provides a definition
for syntactic inconsistency based on colimits. Section 6
demonstrates a modeling process using fuzzy viewpoints in
the context of a case-study; and finally, Section 7 presents
our conclusions and future work.

2 Mathematical Preliminaries

In this section, we briefly review the definitions of
graphs, lattices, and the category-theoretic constructs used
in the remainder of the paper.

2.1 Graphs and Graph Homomorphisms

Definition 2.1 A graph is a quadruple � � ����� ��� ���
where � is a set of nodes, � a set of edges, and
��� �� � � � � are functions respectively giving the
source and the target for each edge. A graph homomor-
phism from � � ����� ��� ��� to �� � �� �� ��� ��� � ����
is a pair of functions � � ��� � � � � �� �� � � � ���
such that: �� Æ �� � ��� Æ�� and �� Æ �� � ��� Æ��.

2.2 Partially Ordered Sets and Lattices

Definition 2.2 A partial order is a reflexive, anti-
symmetric, and transitive binary relation. A non-empty set
with a partial order on it is called a partially ordered set or
a poset, for short. We use Hasse diagrams (cf. e.g. [5]) to
visualize finite posets.

Definition 2.3 Let � be a poset. An element� � � is said
to be the top element if �� � � � � � �. Dually, an element
� � � is said to be the bottom element if �� � � � � � �.

Definition 2.4 Let� be a poset and let� � �. An element
� � � is an upper bound of � if �� � � � � � �. If � is

an upper bound of � and � � 	 for all upper bounds 	 of
�, then � is called the supremum of �. Dually, an element
� � � is a lower bound of � if �� � � � � � �. If � is a
lower bound of � and 	 � � for all lower bounds 	 of �,
then � is called the infimum of �. We write

�
�� (resp.�

��) to denote the supremum (resp. infimum) of � � �,
when it exists.

Definition 2.5 Let � be a poset. If both
�
�	��

 and�

�	��

 exist for any ��
 � �, then � is called a lattice.
If both

�
� � and

�
� � exist for any � � �, then � is

called a complete lattice.

Lemma 2.6 (cf. e.g. [5]) Every finite lattice is complete.

Lemma 2.7 (cf. e.g. [5]) Every complete lattice has a bot-
tom (�) and a top (�) element.

2.3 Category Theory

We assume acquaintance with basic concepts of category
theory and only review diagrams, colimits, and comma cat-
egories in order to provide context and establish notation.
An excellent introduction to category theory from a com-
puter science perspective is [1]. Detailed discussion about
comma categories can be found in [13, 16].

2.3.1 Diagrams and Colimits

Definition 2.8 A (finite) diagram � in a category � con-
sists of: a (finite) graph����; a � -object�� for each node
� in����; and a� -morphism�� � ��������� � ���������

for each edge in ����. A diagram � is said to commute
if for any nodes � and � in ���� and any two paths
�
������ � � � � � ����

����� and �
������ � � � � � ����

������

from � to � in ����: ��� Æ � � � Æ��� � ��� Æ � � � Æ��� .

Definition 2.9 A pushout of a pair of morphisms
� � � � � and � � � � � in a category � is a � -
object � together with a pair of morphisms � � �� � and
� � � � � such that: � Æ � � � Æ �; and for any � -object
� � and pair of morphisms �� � �� � � and �� � � � � �

satisfying �� Æ � � �� Æ �, there is a unique morphism
� � � � � � such that the following diagram commutes:

�

�

�

�

� �

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
��������������
������������

�

��� ������
������

�

��� �������
�����

�

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
��������������
������������

�

�����������������
����������������

�����������������
����������������

�����������������
����������������

�����������������
����������������

�����������������
�����������������

����������������
��������������������
������������

��

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
���������������
������������

��

���������
����
���������
����
���������
����
������������
������������

�

Pushout is a special type of a more general construct
known as colimit (see Definition 2.10). In order to help a
reader without working knowledge of category theory fol-
low the paper, we spell out the construction of pushouts in

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

��
��

��

��

��

��

������� ��� �� ��

�����

�

�	

���� ������������������� ����

��� �� �� �� ��������

�� ��

��

�� ��

�� ��

��

�� �� �����

 �

�	

��������������� ������� ���� �� ����

Figure 1. Pushout examples in ���

��� (category of sets and functions) without directly ap-
pealing to the underlying category-theoretic constructs (i.e.
binary coproducts and coequalizers).

The canonical pushout of a pair of ���-morphisms (i.e.
functions) � � 	 �
 and � � 	 � � is constructed as fol-
lows: take the disjoint union of sets
 and �, denoted

 � �. Let � �
 �
 � �, � � � �
 � � be the in-
jection functions respectively taking
 and � to their im-
ages in
 � �. The functions � Æ � and � Æ � now yield
a binary relation � �

��
� Æ ����� � Æ ����

�
� � � 	

�
on

 � �. Consider the undirected graph � in which the set
of nodes is
 � � and for any nodes �� � in �, there is an
(undirected) edge between � and � if and only if ��� �� � �.
Let � be the set of �’s connected components and let
� �
 � � � � be the function taking every � �
 � � to
the connected component of � which � belongs to. The
following diagram will be a pushout square:

�

�

�

� � � �
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
��
�
�
�
�
�
�
�
�
�

�
�����������

�

�
��
���
���
���
���
��
���
���
���
���
���
��
���
���
���
���
��
���
���
���
���
��
���
���
���
���
��
���
���
���
���
��
���
���
���
���
��
���
���
���
��
���
���
���
���
���
���
��
���
���
���
���
��
���
���
���
���
��
���
���
���
���
��
���
���
���
���
��
���
���
���
���
��
���
���
���
���
��
���
���
���
���
��
���
������

��
��
�
�
�
�
�
�
�
�

�

��
�

�����
��
�
��
�
�

�
 Æ �
��

���

�����
��
��
�
��

�� Æ �

����
����
����
�����
����
����
����
����
����
����
����
����
����
����
����
�����
����
����
����
����
����
����
����
����
����
����
����
�����
����
����
����
����
����
����
����
����
����
����
�����
����
����
����
����
����
����
����
����
����
����
����
�����
����
����
����
����
����
����
��
��
���
������

�
��
��
�
�
�
�
�
�
�

� � � Æ �

��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
����
��
�
�
�
�
�
�
�
�

�
�����������

	 � � Æ ��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
��
��

�
�
�
�
�
�
��
��
��

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
���
�

�
�
�
�
�
�
�
�
���
�

��

���
��

�����
��
��
��
�

�

Figure 1 shows two examples of pushout computation in
���. The maps corresponding to the morphisms � , �, �, and
� of the pushout square have been marked in both examples.

Definition 2.10 Let � be a diagram in � and let �

and � denote the set of ����’s nodes and edges, re-
spectively. A cocone � over � is a � -object � to-
gether with a family of � -morphisms ��� � �� � �����
such that for every edge � � � with �������� � � and
�������� � �, we have: �� Æ�� � ��. A colimit of
� is a cocone ��� � �� � ����� such that for any
cocone ���

� � �� � � ����� , there is a unique mor-
phism � � � � � � such that for every � � � , we have:
��

� � � Æ��.

Definition 2.11 A category� is (finitely) cocomplete if ev-
ery (finite) diagram in � has a colimit.

Among the numerous results on cocompleteness of cate-
gories, the following lemma is of interest to us:

Lemma 2.12 (cf. e.g. [1]) A category with an initial ob-
ject, binary coproducts of object pairs, and coequalizers of
parallel morphism pairs is finitely cocomplete.

The general intuition behind colimits is that they put
structures together with nothing essentially new added, and
nothing left over [12]. This is the main reason behind our
interest in (finite) cocompleteness results. The examples
given in Figure 1 illustrate that the pushout of a pair of mor-
phisms � � 	 �
 and � � 	 � � in ��� can be consid-
ered as the combination of
 and � with respect to a shared
part 	.

For reasons that will become clear in Section 2.3.2, we
are also interested in functors that preserve (finite) colimits:

Definition 2.13 A functor � � � � � is said to be
(finitely) cocontinuous if it preserves the existing colimits
of all (finite) diagrams in � , that is, if for any (finite) di-
agram � in � , the functor � maps any colimiting cocone
over � to a colimiting cocone over � ���.

Lemma 2.14 (cf. e.g. [1]) If � is a finitely cocomplete cat-
egory and if a functor � � � � � preserves initial objects,
binary coproducts of all object pairs, and coequalizers of all
parallel morphism pairs, then � is finitely cocontinuous.

2.3.2 Comma Categories

Definition 2.15 Let � , �, and � be categories and
let � � � � � and � � � � � be functors. The
comma category �� � �� has as objects, triples
�
� � � ��
� � ����� �� where
 is an object of �
and � is an object of �. A morphism from �
� ���� to
�
�� � �� ��� is a pair � �
 �
�, ! � � � ��� such that
the following diagram commutes in � :

����� �����

�������� ��
��

�����
��
�
��
�
�

	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
��
��

�
�
�
�
�
�
��
��
��

����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
��
��

�
�
�
�
�
�
��
��
��

����

��
��

�����
��
��
��
�

	 �

Identities are pairs of identities and composition is defined
component-wise, i.e. for a pair of morphisms � � !� and
� �� !��, we have: � � !� Æ� �� !�� � � Æ �� ! Æ !��.

Lemma 2.16 [19, 16] Let � � � � � and � � � � �

be functors with � (finitely) cocontinuous. If � and� are
(finitely) cocomplete so is the comma category �� � ��.

A remarkable fact about colimit construction in �� � ��
is that (finite) colimits are inherited from those in� and�
when � is (finitely) cocontinuous [19, 16].

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

Using a triple ��� ���� ��� � � � � ����� to denote
a graph �, it can be verified [16] that the category of graphs,
denoted �����, is isomorphic to the comma category
����� � � � where ���� � ��� � ��� is the identity func-
tor on ��� and � � ��� � ���, known as the Cartesian
product functor, is the functor that maps every set � to
� � � and every function � � � � � � to � � � . Here,
� � � is the function that takes every ��� �� � � � � to�
����� ����

�
� � � �� �. Since ��� is cocomplete and the

identity functor is cocontinuous, Lemma 2.16 implies that
����� is cocomplete. Moreover, colimits are computed
component-wise for nodes and edges. In Section 4, we give
an analogous definition for fuzzy viewpoint categories by
using fuzzy set categories in place of ��� and in Section 6,
we will exploit the component-wise nature of colimit con-
struction in comma categories without further remarks.

3 Categories of Fuzzy Sets

Since its inception in the 1960s, fuzzy set theory has re-
ceived considerable attention from different computing dis-
ciplines. This section presents the definitions and results on
fuzzy set categories needed in the paper. Most of the defi-
nitions and lemmas given here can be found in [10, 11] and
are probably very well-known in the literature on topos the-
ory; however, we were not able to find any reference that
includes all the results we need in a context close to that of
our work.

Definition 3.1 Let 	 be a poset. A 	-valued set is a pair
�
� �� consisting of a set
 and a function � �
 � 	. We
call
 the carrier set of �
� �� and 	 the truth-set of �. For
every � �
, the value ���� is interpreted as the degree of
membership of � in �
� ��.

Definition 3.2 Let �
� �� and ��� � be two 	-valued sets.
A morphism f � �
� �� � ��� � is a function � �
 � �

such that � � Æ � , i.e. the degree of membership of � in
�
� �� does not exceed that of ���� in ��� �. The function
� �
 � � is called the carrier function of f.

Lemma 3.3 For a fixed poset 	, the objects and morphisms
defined above together with the obvious identities give rise
to a category, denoted �	

�	�.

Figure 2 (informally) shows two �	

��� objects �
� ��
and ��� � along with the carrier function � �
 � � of
a �	

���-morphism f � �
� �� � ��� � where � is the
three-point poset shown in the same figure.

Lemma 3.4 [10, 11] �	

�	� is finitely cocomplete when
	 is a complete lattice.

Proof (sketch) We show how to construct the initial object,
binary coproducts, and coequalizers. Finite cocompleteness
of �	

�	� then follows from Lemma 2.12.

�

��

� � � � �

� � � � �

� �

��
��
��

��
��
��

� � � � �

Figure 2. Example of fuzzy sets

Initial object: � � ��� �� where � � � � 	 is the empty
function.
Binary coproduct: given objects �� � �
�� ��� and
�� � �
�� ���, a coproduct is �� ��� � �
� �
�� ��
where
� �
� is a ���-coproduct (disjoint union) of
�

and
� with injections �� �
� �
� �
� for � � �� �; and
�
�
�����

�
� ����� for � �
� and � � �� �.

Coequalizer: given objects � � ��� �� and � � ��� �
with parallel morphisms h1 � � � � and h2 � � � � ,
we first take the canonical ���-coequalizer of the carrier
functions �� � � � � and �� � � � � to find a set �

and a function � � � � �. Thus, � is the quotient of
� by the smallest equivalence relation � on � such that
����� � ����� for all � � �; and � is the function such
that ���� � ���� for all � � �. Then, we put � � ��� ��
where ������� �

�
�	��

��
 �� � ��. This lifts the func-
tion � � � � � to a morphism q � � � �, which is a co-
equalizer of h1 and h2.

Since we want to avoid using the details of the above
proof in Section 6, we explain the procedure for comput-
ing fuzzy set pushouts separately: let 	 be a complete lat-
tice. For computing the pushout of a pair of � 	

�	�-
morphisms f � ��� �� � ��� �� and g � ��� �� � ��� �,
first compute the canonical ���-pushout of the carrier func-
tions � � � � � and � � � � � (as discussed in Sec-
tion 2) to find a set � along with functions � � � � and
! � � � � . Then, compute a membership degree for ev-
ery " � � by taking the supremum of the membership
degrees of all those elements in ��� �� and ��� � that are
mapped to ". This yields an object ��� #� and lifts and ! to
�	

�	�-morphisms which together with ��� #�, constitute
the pushout of f and g in �	

�	�.

Definition 3.5 The map that takes every � 	

�	�-object
�
� �� to its carrier set
 and every �	

�	�-morphism
f � �
� �� � ��� � to its carrier function � �
 � � yields
a functor $� � � 	

�	� � ���, known as the carrier
functor.

Lemma 3.6 The carrier functor $� � � 	

�	� � ��� is
finitely cocontinuous when 	 is a complete lattice1.

1The carrier functor is finitely cocontinuous even when � is an arbi-
trary poset, but a separate proof is required.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

�

�

������� �������

������� ������������� ������

������� ������� ������

������� ������

�

�������

Figure 3. Powerset lattice example

Proof Based on the proof of Lemma 3.4, it is obvious that
�� � ������� � ��� preserves the initial object, binary
coproducts, and coequalizers. Finite cocontinuity of ��

then follows from Lemma 2.14.

Definition 3.7 Let � be a poset and let � � ��� �� be a
�������-object. The powerset of �, denoted ����, is the
set of all �������-objects ��� �� such that � � � and for
every element � � �: ���� � ����.

Lemma 3.8 [10, 11] The powerset of any �������-object
is a complete lattice when � is.

Proof (sketch) [10, 11] For an index set 	 , the supre-
mum of an 	-indexed family of ���� elements�
���� ���

�
���

is a fuzzy set �
� �� where
 �
�
��� ��

and � �
 � � is a function such that for every element
� �
 : ���� �

�
������� � � � ��� � 	�. The infimum

is computed, dually.

As an example, suppose the truth-set is the two-point
lattice �� � ���	� with � � 	. Then, the powerset
of the ��������-object � �

�
��� ��� ��
� 	� �
� 	�

�
is

the lattice shown in Figure 3. For easier readability, the fig-
ure uses tuples of the form �������� ���������	
 �������
instead of the original notation.

4 ����� Categories

In this section, we define the terms “fuzzy viewpoint”
and “fuzzy viewpoint morphism” and prove that the cate-
gory of fuzzy viewpoints over a complete lattice � and an
arbitrary but fixed set � of atomic propositions is finitely
cocomplete.

Definition 4.1 Let � be a complete lattice of truth values
and let � (called the universe of atomic propositions) be
an arbitrary but fixed set. A ��� ��-fuzzy viewpoint V is
a (directed) graph in which every edge � is labeled with a
value from � and every node � is labeled with an �-valued
set ���� ��� where�� � � is the set of atomic propositions
visible in node � and �� � �� � � is a function assigning
a value from � to each element in ��. By forgetting the
labels of the nodes and edges in V , we obtain a graph which
is called the carrier graph of V .

��

� � �

� � �

��

� � �

� � �

� � �

��

� � �

� � �

� � �

� � �

��

� � �
��

� � �

� � �

��

� � �

� � �

� � �

� �

�

�

��

�
�

�

�

� �

�

�

�

V�

V�

Figure 4. Example of fuzzy viewpoints

It is clear from the above definition that the edges in a
��� ��-fuzzy viewpoint form an �-valued set. The question
that remains is constructing the appropriate category that
captures the structure of nodes along with their labels. This
can be done in the following way: let � � � � � be the
constant map ��
� 	 � � � �� (notice that 	 is known
to exist by Lemma 2.7). Thus, ��� �� is a � ������-object.
Now, by Lemma 3.8, we infer that “the powerset lattice of
��� ��” is a complete lattice � . The node-set of a fuzzy
viewpoint V along with the node labels can be described by
an object of � ����� �.

Definition 4.2 Let V and V � be ��� ��-fuzzy viewpoints.
A viewpoint morphism h � V � V � is a pair h�� h�� where
h� is a ������ �-morphism and h� is a� ������-morphism
such that �� �h������h��� is a graph homomorphism
from the carrier graph of V to the carrier graph of V �. Here,
�� � � ����� � � ��� and �� � ������� � ��� are the
carrier functors.

It can be verified that the above choice of objects and
morphisms (with the obvious identities) constitutes a cate-
gory of ��� ��-fuzzy viewpoints, which we will hereafter
denote ����	��� ��.

As an example, suppose � �
� (the lattice shown
on the top-left corner of Figure 4), and � � ��� �� �� ��.
Figure 4 shows two ����	�
�� ��-objects along with a
����	�
�� ��-morphism. In this and all the figures in
Section 6, the viewpoint edges have been left anonymous
and only the truth values labeling them have been shown.
Notice that we can replace � in ����	�
�� �� with any
finite or infinite� � such that ��� �� �� �� � � � and yet char-
acterize the viewpoints and the viewpoint morphism in Fig-
ure 4 as ����	�
�� �

�� objects and morphisms.
It is easy to see that ����	��� �� is isomorphic to the

comma category ��� � � Æ�� � where � � ���� ���

is the Cartesian product functor defined in Section 2.3.2.
Since � and � are complete lattices, both ������� and
������ � are finitely cocomplete by Lemma 3.4. More-
over, by Lemma 3.6, we know that the carrier functor

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

�� � �������� ��� is finitely cocontinuous when � is
a complete lattice. Now, by Lemma 2.16, we get:

Theorem 4.3 �������� �� is finitely cocomplete for any
complete lattice � and any set � .

This, by Lemma 2.6, implies that �������� �� is finitely
cocomplete for any finite lattice � and any set � .

Although not elaborated here, Lemma 3.6 makes it pos-
sible to enrich viewpoints’ nodes and edges with other
structures such as types and additional labels through well-
known comma categorical techniques without violating the
cocompleteness result achieved in Theorem 4.3. For some
preliminary work in this direction, see [17].

A limitation to ����� categories which is implicit in
the notion of viewpoint morphism is that we assume the ex-
istence of a unified universe of atomic propositions (denoted
�). This implies that the name of a proposition suffices for
uniquely identifying the concept represented by that propo-
sition regardless of where the proposition appears; more-
over, no two distinctly named propositions can represent a
same concept. The restriction is not a problem if there is a
reference model made available at early stages of require-
ments elicitation, which describes the elements of � . If
� is not given beforehand, it is sufficient to assume � is
the set of natural numbers, �. This would allow using as
many propositions as needed; however, it is still up to the
analysts to develop a shared vocabulary of atomic propo-
sitions during the elicitation phase and specify how the set
of atomic propositions used in each viewpoint binds to this
shared vocabulary. Alternatively, we anticipate that the lim-
itation could be addressed by introducing explicit signatures
and signature morphisms, similar to the approach described
in [18]; however, we have not yet investigated this idea.

5 Viewpoint Integration and Characteriza-
tion of Inconsistency

It is well-known that “for a given species of structure, say
widgets, the result of interconnecting a system of widgets
to form a super-widget corresponds to taking the colimit of
the diagram of widgets in which the morphisms show how
they are interconnected” [12]. In our problem, the species of
structure is �������� �� for some fixed complete lattice
� and some fixed set� . A diagram in�������� �� can be
regarded as a “system” in which viewpoints are represented
by �������� ��-objects and viewpoint interconnections
are represented by �������� ��-morphisms. The cocom-
pleteness result given in Theorem 4.3 states that the colimit
exists for any finite diagram in �������� ��; therefore,
we can integrate any finite set of viewpoints with known in-
terconnections by constructing the colimit. This category-
theoretic approach formalizes the ad hoc merge operation
sketched in [6].

�

��

��� � � ���

��

� �

�� ��

Incompatible

Unknown

Agreeing

Partially Known

Disagreeing

Figure 5. The lattice 	��

Viewpoint integration via colimits is abstract from how
viewpoint interconnections are identified. In Section 6, we
will illustrate a very simple case in which the interconnec-
tions between two viewpoints are identified by introduc-
ing a third viewpoint. The reader should also refer to [15]
where some useful patterns for viewpoint interconnection
have been identified.

In the rest of this section, we will try to clarify how
an appropriate choice of � in �������� �� enables us to
model and detect inconsistencies. Our argument will also
lead to a definition for syntactic inconsistency based on col-
imits. The simplest and maybe the most widely used lattice
capable of modeling uncertainty and disagreement is Bel-
nap’s four-valued lattice [2] which was earlier referred to
as 	�. In 	�, every value shows a possible “amount of
knowledge” available about a concept. The value � (i.e.
MAYBE) denotes a lack of information, � (i.e. TRUE) and
� (i.e. FALSE) denote the desired levels of knowledge, and
� (i.e. DISAGREEMENT) denotes a disagreement (or over-
specification). Another interesting lattice is the ten-valued
lattice 	�� shown in Figure 5. This lattice arises naturally
in modeling a system with two stakeholders and will be used
for the case-study presented in Section 6.

In 	��, the value � � indicates that no information is
available. The values �� and �� (resp. � � and � �)
indicate that the first (resp. second) stakeholder has given
a decisive TRUE or FALSE answer but no information has
yet been provided by the other stakeholder. We also use
these values when stakeholders are interviewed separately:
for example, if we are interviewing the first (resp. second)
stakeholder and (s)he says something is TRUE, the answer
is recorded as �� (resp. � �). The values ��, �� indi-
cate that both stakeholders agree on whether something is
TRUE or FALSE while �� and �� indicate a disagreement
between the stakeholders. The � value arises when an in-
compatibility occurs. This value is not directly assigned
during elicitation and only arises in colimit construction.
We will explain this further in Section 6.

A nice property of both 	� and 	�� is that once we
remove the top element from either lattice, the rest of logi-
cal values can be reordered based on their “level of truth”.
The “truth ordering” lattices corresponding to 	� and 	��

have been shown in Figures 6a and 6b, respectively. The

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

��

�� � �

� �

��

��� �

��

��

�

�

(a) (b)

�

Figure 6. Truth ordering lattices

existence of the truth orders is not by mere chance. In fact,
the lower semi-lattice that results from removing the top el-
ement from �� (resp. ���) together with the associated
truth ordering in Figure 6a (resp. 6b) is an instance of a
family of multivalued logics known as Kleene-like [9] log-
ics. In this paper, we shall only appeal to the intuitive nature
of such logics and therefore, omit the formal procedure for
constructing them. The interested reader should refer to [9]
for further details. The procedure explained there yields
�� (without �) and its corresponding truth order when the
input to the procedure is the lattice �� � ����� with
� � �. The lattice ��� (without �) and its correspond-
ing truth order arise when the input is ����� (cf. e.g. [5]
for the definition of product lattice). A suitable logic for a
system with three stakeholders will arise when the input is
�� ��� ���, and so on.

The existence of such truth ordering lattices is an advan-
tage when we want to interpret viewpoints according to cer-
tain semantics. For example, we may want to treat a view-
point as a ������� [3] structure and verify certain tempo-
ral properties in it through multivalued model-checking[3].
For such an application, we are naturally interested in mea-
suring the “amount of truth” for the desired temporal prop-
erties that should hold.

In the framework we have proposed in this paper, we
are not concerned with any truth ordering lattices and the
only reason for mentioning them here was to give a gen-
eral idea of the links between the syntactic and the semantic
aspects of viewpoints. All we take for granted here is the
existence of a complete knowledge ordering lattice which
we denote by �. If we assume that the context of the sys-
tem at hand can specify which elements of � represent con-
sistent amounts of knowledge and which elements represent
inconsistent amounts of knowledge, we can define syntactic
inconsistency between a set of interconnected viewpoints as
follows:

Definition 5.1 A system of interconnected ��� ��-fuzzy
viewpoints is syntactically inconsistent if the colimit of
the diagram corresponding to the system has some edge or
proposition with an inconsistent truth value.

In ���, for example, we may choose to designate ��

and �� as consistent and the rest of the values as inconsis-

The Camera Specification

L U

In−Focus IndicatorSafety Switch

Midroll Rewind Shutter Button The camera should have a
safety switch with two states:
“locked” and “unlocked”. The
locked state prevents acciden-
tal operation.

When the camera is not locked
and a new film is loaded, the film should automatically advance
to the first frame once the camera back is closed. After the film’s
last frame is exposed, the camera should rewind the film auto-
matically back into the cartridge. The camera should also have
a “midroll rewind” button to rewind the film before reaching the
last frame.

The camera should have a shutter button that can be depressed
halfway or all the way. There should be a click-stop at the halfway
point. When the camera is not locked, the shutter button should
work as follows:

� When pressed halfway, auto-focusing starts;

� When pressed completely, the shutter is released to take
the picture and then the film advances by one frame.

The scenario for taking a picture is as follows: The shutter but-
ton is pressed halfway. When focus is achieved, the in-focus
indicator will light. The shutter button can then be pressed com-
pletely to take the picture. Under low-lit conditions, the built-in
flash should fire automatically.

Figure 7. Camera’s early reference model

tent. This is a reasonable choice when the system we are
modeling mandates total agreement of both stakeholders on
every aspect. If we are only interested in explicit conflicts
and incompatibilities, we can relax this constraint and only
designate �� , �� and � as inconsistent. Once we have a
measure for how much inconsistency we want to tolerate,
the colimit construction can also serve as a mechanism for
determining when an inconsistency amelioration phase [7]
is required. When using ���, for example, we may decide
to live with all��� values except for incompatibilities (�).

6 Case-Study

In this section, we investigate a simple Requirements En-
gineering problem with the aim of showing how our pro-
posed framework can be used in practice: suppose Bob
and Mary want to engineer a camera from scratch with the
help of a requirements analyst named Sam. Based on the
early interviews, Sam has created a reference model for the
operational behavior of the camera. This early reference
model, shown in Figure 7, serves as a basis for elaborating
Bob’s and Mary’s requirements using a (fictional) CASE
tool called �	�
�.

The primary role of Sam in this case-study is elicit-
ing the requirements and identifying the relationships be-
tween Bob’s and Mary’s perspectives. This implies that the
camera project has only two stakeholders, namely Bob and
Mary; thus, the lattice ��� (Figure 5) with Bob as the first
and Mary as the second stakeholder is a suitable choice of
knowledge ordering for this project. Since a vocabulary of
atomic propositions has not yet been developed, the project

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

is configured to use ������������ where� is the set of
natural numbers. In practice, we do not use natural numbers
as proposition names; rather, we assume that every proposi-
tion has a unique natural number assigned to it (we will not
use any numbers throughout the case-study).

The set of propositions used by Bob and Mary must
have no name clash and no two distinctly named proposi-
tions should represent the same thing. In order to enforce
these restrictions, whenever either Bob or Mary needs a
new proposition named � for some purpose, (s)he has Sam
check the project’s data dictionary to ensure that adding �

causes no name clash and that no proposition (probably with
a name different from �) has already been defined for that
particular purpose.

The viewpoints in the camera project are similar to
������� structures [6, 3]. In a viewpoint V , each node
denotes a state (world) and each edge denotes a transi-
tion labeled with the degree of certainty about the possi-
bility of going from the source to the target state of the
transition. Furthermore, there exists a unique transition
� � � � � from any V -state � to any state V -state �. This
constraint is not automatically enforced by the structure of
������������, so �	�
� should explicitly be config-
ured to do so. �	�
� disallows parallel transitions between
states; but, for convenience, it allows transitions to be omit-
ted and internally interprets the absent transitions as � �

transitions. Notice that �	�
� could as well be configured
to interpret absent transitions in Bob’s (resp. Mary’s) view-
point as �� (resp. � �) transitions. This would be closer to
how absent transitions are normally interpreted in classical
models.

In this case-study, all propositions are treated as global.
When a proposition � does not appear in a state � of a view-
point V , we assume that the owner of V either is unaware
of the existence of �, or (s)he does not care about the value
of � in state �, at least from the particular perspective that
V reflects. In either case, an unspecified proposition in a
state is interpreted as � � . This is somehow analogous to
the interpretation of absent transitions.

Figures 8 and 9 respectively show Bob’s and Mary’s
viewpoints2. The important facts about each of Bob’s and
Mary’s perspectives on the camera can be summarized as
follows:
� Bob: he does not differentiate between different shoot-

ing modes; he believes pressing the shutter button full-
way is allowed even before achieving focus; he (mis-
takenly) believes the shutter is open during focusing;
he believes midroll film rewind can occur even when
the camera is locked; he does not model the cartridge
loading procedure.

� Mary: she distinguishes between different shooting
modes; she believes pressing the shutter button fullway

2In both figures, SH BTN is an abbreviation for SHUTTER BUTTON.

Off

Responsive

SH_BTN_HALFWAY = FM
SH_BTN_FULLWAY = FM

SH_BTN_HALFWAY = TM
SH_BTN_FULLWAY = FM
SHUTTER_OPEN = TM

Focus

Shooting

SH_BTN_HALFWAY = FM
SH_BTN_FULLWAY = TM
SHUTTER_OPEN = TM

 Frame Fetch

 Film Rewind

TMTM

TM

TMTMTM

TM

TM

TM

TM

TM

TM

TM

Figure 8. Bob’s viewpoint

SHUTTER_OPEN = MF
FLASHING = MF
MOTOR_ON = MT

Film Advance

SHUTTER_OPEN = MF
MOTOR_ON = MT

Cartridge Unmount

SHUTTER_OPEN = MF
SH_BTN_HALFWAY = MT

Auto−Focusing

SHUTTER_OPEN = MF

 Locked

SHUTTER_OPEN = MF

Ready

MOTOR_ON = MT

 Catridge Mount

SHUTTER_OPEN = MF

SHUTTER_OPEN = MT
FLASHING = MT
SH_BTN_FULLWAY = MT

Flash Shooting

SHUTTER_OPEN = MT
FLASHING = MF
SH_BTN_FULLWAY = MT

Normal Shooting

MTMT

MT

MT MT

MT

MT

MTMT

MT

MF

MF

MT

MF

MT

MT

Figure 9. Mary’s viewpoint

is inhibited until focus is achieved; she does not cap-
ture the situation in which the shutter button is pressed
halfway but is released without taking a picture; she
knows that the camera has a motor that rolls the film;
she models the cartridge loading procedure and also
emphasizes that mounting a new cartridge can not take
place when the camera is locked.

Sam now identifies the structural interconnection be-
tween the two viewpoints. He first identifies the state in-
terconnections. This has been shown in Figure 10. Notice
that Sam uses his own set of names for the states. Once the
state interconnections are specified, the transition intercon-
nections can be identified automatically. This is because
there is a unique transition from any state � to any state
� of every viewpoint V . Thus, if a viewpoint morphism
h � V � V � maps states � and � in V to states �� and �� in
V � respectively, then h must map the unique transition from
� to � in V to the unique transition from �� to �� in V �.

Figure 11 shows Sam’s viewpoint. This viewpoint has
been computed by �	�
� directly from the state intercon-
nections. For clarity, we have chosen to show those tran-

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

Off

Responsive

Focusing

Shooting

Frame Fetch

Film Rewind

Responsive

Film Rewind

Flash Shooting

Focusing

Locked

Non−Flash Shooting

Film Advance Locked

Ready

Auto−Focusing

Film Advance

Cartridge Unmount

Cartridge Mount

Normal Shooting

Flash Shooting

Mary

Bob

Sam

Figure 10. State interconnections

sitions in Sam’s viewpoint that are mapped to non-� �
transitions in Bob’s and Mary’s viewpoints. The figure
also sketches the viewpoint morphism from Sam’s to Bob’s
viewpoint. The morphism from Sam’s to Mary’s view-
point (which has been omitted for saving space) is analo-
gous. Since Sam does not engage in determining the truth
or falsehood of transitions and propositions, his viewpoint
solely reflects the structural relationships between Bob’s
and Mary’s viewpoints. As a result, all transitions in Sam’s
viewpoint are labeled by � � . Sam can also forget about
propositions all together when identifying the interconnec-
tions and use � as the set of visible propositions in all states
of his viewpoint.
����� now computes the pushout of Bob’s and Mary’s

viewpoints with respect to the shared part identified by Sam.
The result of merge operation (excluding � � transitions)
is shown in Figure 12. For assigning names to the states
in the pushout, we have assumed that Sam’s choice of state
names overrides those of Bob and Mary wherever possible.
Here, the only state not mentioned by Sam is Cartridge Mount

in Mary’s viewpoint, so Sam’s state names override all state
names except for Cartridge Mount. This assumption is of no
theoretical importance; however, it can be used to devise a
built-in solution to the name mapping problem.

The pushout in Figure 12 clearly reflects the result of
merging Bob’s and Mary’s viewpoints. Assuming �� , ��,
and � are the only inconsistent values, there are three cases
of syntactic inconsistency in the pushout. The �� values
for SHUTTER OPEN in Focusing and the transition from Respon-

sive to Flash Shooting/Non-Flash Shooting respectively show dis-
agreeing perspectives on the shutter’s behavior during fo-
cusing operation and on picture-taking without achieving
focus. The other inconsistency is the � value for FLASHING
in Flash Shooting/Non-Flash Shooting state.

Intuitively, the� value in��� arises when a stakeholder
wants a proposition � to hold in a state � of a viewpoint V
and also wants � not to hold in a state �

� of a viewpoint V �

but the interconnections are in such a way that � and �
� are

mapped to the same state in the colimit. In our example, the

Off

Responsive

SH_BTN_HALFWAY = FM
SH_BTN_FULLWAY = FM

Shooting

SH_BTN_HALFWAY = FM
SH_BTN_FULLWAY = TM
SHUTTER_OPEN = TM

SH_BTN_HALFWAY = TM
SH_BTN_FULLWAY = FM
SHUTTER_OPEN = TM

Focusing

 Film Rewind

 Frame Fetch

Bob

Sam

Film Rewind

 Focusing

 Locked

Film Advance

MMMMMM

MM

MMMM

Responsive

MM
MM

MM

Non−Flash ShootingFlash Shooting

MM

MM

MM

TM

TM

TM

TM

TM

TM

TM

TM

TM
TM

MM

MM

TM

MM

TMTM

MM

Figure 11. Interconnecting the viewpoints

FLASHING =

SHUTTER_OPEN = MF
MOTOR_ON = MT

SHUTTER_OPEN = MF
FLASHING = MF
MOTOR_ON = MT

Film Advance

SHUTTER_OPEN = MF

SHUTTER_OPEN = MF

 Locked

MOTOR_ON = MT

 Catridge Mount

SHUTTER_OPEN = MF

SH_BTN_HALFWAY = FM
SH_BTN_FULLWAY = FM

Focusing

SH_BTN_HALFWAY = TT
SH_BTN_FULLWAY = FM

Non−Flash Shooting
Flash Shooting /

SHUTTER_OPEN = TT
SH_BTN_FULLWAY = TT

TT TT

TT

Film Rewind

TM

TM

TF

Responsive

SHUTTER_OPEN = TF

TMTT

TT

MT

MF

TT

TT

MT
TT

TT

Mary’s ViewpointBob’s Viewpoint

Shared Part (Sam’s Viewpoint)

Figure 12. Colimit computation

simplest reason for coming up with FLASHING � � in the
Flash Shooting/Non-Flash Shooting state of the pushout is that
Sam has made a mistake in finding the (state) interconnec-
tions. For example, Bob might have meant Non-Flash Shooting

by saying Shooting; or maybe, at the time Sam identified the
interconnections, Mary had not yet used FLASHING to distin-
guish between Flash Shooting and Non-Flash Shooting and there-
fore, Sam thought two distinct states for shooting would be
redundant. It is also possible that the incompatible informa-
tion is indeed due to the incompatible perspectives of Bob
and Mary on the shooting behavior: for example, Mary may
believe the flash clearly distinguishes between two modes
of shooting while Bob believes the flash is a separate au-
tonomous peripheral and deliberately refuses to differenti-
ate between the states that result from the combination of

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

the shooting and the flashing behaviors.
The final issue to note regarding this case-study is that

although the result of merge operation in our particular sce-
nario has a unique transition from any state � to any state
�, this is not necessarily the case in general. Based on
how the edge-map component of every viewpoint morphism
is identified, it can be verified that parallel transitions be-
tween states never arise in the colimiting object; however,
the colimiting object may have some missing transitions.
For example, if Bob saw a state X that Mary did not see,
the pushout would have had no transition from X to Car-

tridge Mount and vice versa. This is natural, because X and
Cartridge Mount would have never appeared together in a
same elicitation context. This phenomenon can be taken
advantage of for specifying the activities that should be per-
formed in the next round of elicitation to fill in the gaps.
We may as well choose to interpret missing transitions in
colimiting objects as � � transitions.

7 Conclusions and Future Work

We proposed a category-theoretic approach to represen-
tation and analysis of inconsistency in graph-based view-
points. The main contribution of this work is providing an
abstract mechanism for merging incomplete and inconsis-
tent viewpoints and defining a notion of syntactic inconsis-
tency. Our mathematically rigorous approach is a step to-
ward a general framework for the composition of inconsis-
tent viewpoints which has so far remained an open problem.

A major advantage of our proposed framework is its sup-
port for parameterizing inconsistency through lattices. This
makes the framework suitable for different types of analy-
sis. Another advantage that naturally results from the use
of category theory for conceptualizing the merge process is
the explicit identification of interconnections between view-
points prior to the merge operation rather than relying on
naming conventions to give the desired unification.

The work reported here can be carried forward in many
ways. Our future work includes adding support for hi-
erarchical structures like Statecharts, and studying possi-
ble ways to capture the evolution of the vocabulary of
atomic propositions and the underlying knowledge order-
ing through viewpoint morphisms. Exploring possible ways
of taking semantics-related details into account is yet an-
other part of our future work that will involve several case-
studies. Another interesting subject is using the framework
presented in this paper for developing graph transformation
systems based on the double-pushout approach [4]. In [17],
some initial steps have been taken in this direction, but fur-
ther work remains to be done.

Acknowledgments. We thank Wolfram Kahl for his exten-
sive help in improving this paper, Andrzej Tarlecki for the

proof of Lemma 3.4, Shiva Nejati for help with knowledge
ordering lattices, members of the Formal Methods Group at
Uof T for their helpful remarks, Colin Potts for suggesting
the case-study, and the anonymous referees for their insight-
ful comments. Financial support was provided by NSERC.

References

[1] M. Barr and C. Wells. Category Theory for Computing Sci-
ence. Les Publications CRM Montréal, third edition, 1999.

[2] N. Belnap. A useful four-valued logic. In Modern Uses of
Multiple-Valued Logic, pages 5–37. Reidel, 1977.

[3] M. Chechik, S. Easterbrook, and B. Devereux. Model check-
ing with multi-valued temporal logics. In Intl. Symposium on
Multi-Valued Logics, pages 187–192, 2001.

[4] A. Corradini et al. Algebraic approaches to graph transfor-
mation, part I. In Handbook of Graph Grammars and Com-
puting by Graph Transformation, volume 1. World Scien-
tific, 1997.

[5] B. Davey and H. Priestley. Introduction to Lattices and Or-
der. Cambridge University Press, second edition, 2002.

[6] S. Easterbrook and M. Chechik. A framework for multi-
valued reasoning over inconsistent viewpoints. In Intl. Con-
ference on Software Engineering, pages 411–420, 2001.

[7] S. Easterbrook and B. Nuseibeh. Using viewpoints for in-
consistency management. Software Engineering Journal,
11:31–43, 1996.

[8] A. Finkelstein et al. Inconsistency handling in multi-
perspective specifications. IEEE Trans. on Software Engi-
neering, 20:569–578, 1994.

[9] M. Fitting. Kleene’s logic, generalized. Journal of Logic
and Computation, 1:797–810, 1992.

[10] J. Goguen. Categories of Fuzzy Sets: Applications of Non-
Cantorian Set Theory. PhD thesis, University of California,
Berkeley, 1968.

[11] J. Goguen. Concept representation in natural and artificial
languages. Intl. Journal of Man-Machine Studies, 6:513–
561, 1974.

[12] J. Goguen. A categorical manifesto. Mathematical Struc-
tures in Computer Science, 1:49–67, 1991.

[13] J. Goguen and R. Burstall. Some fundamental algebraic
tools for the semantics of computation, part I. Theoretical
Computer Science, 31:175–209, 1984.

[14] R. Heckel. Open Graph Transformation Systems. PhD the-
sis, Technical University of Berlin, 1998.

[15] R. Heckel et al. A view-based approach to system modeling
based on open graph transformation systems. In Handbook
of Graph Grammars and Computing by Graph Transforma-
tion, volume 2. World Scientific, 1999.

[16] D. Rydeheard and R. Burstall. Computational Category
Theory. Prentice Hall, 1988.

[17] M. Sabetzadeh. A category-theoretic approach to represen-
tation and analysis of inconsistency in graph-based view-
points. Master’s thesis, University of Toronto, 2003.

[18] D. Smith. Constructing specification morphisms. Journal of
Symbolic Computation, 16:571–606, 1993.

[19] A. Tarlecki. Bits and pieces of the theory of institutions. In
Summer Workshop on Category Theory and Computer Pro-
gramming, pages 334–363. Springer, 1986.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

