Industrial Applications of Software Synthesis via Category Theory

Keith Williamson, Michael Healy
The Boeing Company, Seattle, Washington
Keith. Williamson@boeing.com

Abstract

Over the last two years, we have demonstrated the
feasibility of applying category-theoretic methods in
specifying, synthesizing, and maintaining industrial
strength software systems. We have been using a first-of-
its-kind tool for this purpose, Kestrel's Specware™
software development system. In this paper, we describe
our experiences and give an industrial perspective on
what is needed to make this technology have broader
appeal to industry. Our overall impression is that the
technology does work for industrial strength applications,
but that it needs additional work to make it more usable.
We believe this work marks a turning point in the use of
mathematically rigorous approaches to industrial
strength software development and maintenance.

It is interesting to note that when this technology is
applied to software systems whose outputs are designs for
airplane parts, the design rationale that is captured is not
only software engineering design rationale, but also
design rationale from other engineering disciplines (e.g.,
mechanical, material, manufacturing, etc.). This suggests
the technology provides an approach to general systems
engineering that enables one to structure and reuse
engineering knowledge broadly.

1. Introduction

Industry demands that software development and
maintenance be made faster, cheaper, and better.
Conspiring against this are high labor turnover rates in the
software industry, and increasingly in American industry
more broadly. Institutional memory is being lost in this
turnover. Is there a way to capture, structure, use and
then reuse this knowledge for the purposes of software
development and maintenance?

Within the field of automated software engineering,
there is an approach to software development and
maintenance that appears to solve some of these problems.
In essence, this paradigm for software development and

0-7695-0415-9/99 $10. 00 © 1999 | EEE

35

maintenance is one that allows the capture and structuring
of formal requirement specifications, design specifications,
implementation software, and the refinement processes
that lead from requirements to software. In this approach,
the refinement process can guarantee correctness of the
synthesized software. By recording, modifying, and then
replaying the refinement history, we are able to more
easily maintain the software. By capturing, abstracting,
and structuring the knowledge in a modular fashion, we
are able to more easily reuse this knowledge for other
applications.

In this paper, we describe our experiences in applying a
category theory based approach to software specification,
synthesis, and maintenance. In addition, we give an
industrial perspective on what is needed to make this
technology have broader appeal to industry. We begin
with some formal preliminaries and a brief discussion of
Specware™.

2.Formal Préiminaries

The field of category theory [4,10,12] provides a
foundational theory. This theory was applied to systems
theory and systems engineering [3,6]. This theory was
embodied in the software development tool Specware™
[14,16,17}.

2.1. Category of Signatures

A signature consists of the following:
1. A set Sof sort symbols
2. Atriple0=<C, F, P> of operators, where:
o Cisaset of sorted constant symbals,
o Fisaset of sorted function symbols, and
Pisaset of sorted predicate symbols.
A sugnature morphism is a consistent mapping from one
signature to another (from sort symbols to sort symboals,
and from operator symbols to operator symbols). The
category Sign consists of objects that are signatures and
morphisms that are signature morphisms. Composition of
two morphisms is the composition of the two mappings.



22.Category of Specifications

A specification consists of

1. A signature Sig = <S, 0>, and

2. A set Ax of axioms over Sig
Given two specifications <Sigl, Ax1> and <Sig2, Ax2>, a
signature morphism M between Sigl and Sig2 is a
specification mor phism between the specifications iff:

YaeAx1, (Ax2 |- M(a))

That is, every one of the axioms of Axl, after having been
translated by M, can be proved to follow from the axioms
in Ax2. This assures that everything that is provable from
Ax1 is provable from Ax2 (modulo translation). Of
course, Ax2 may be a stronger theory. The category Spec
consists of objects that are specifications and morphisms
that are specification morphisms.

2.3. Diagrams and Colimits

A diagram in a category C is a collection of vertices
and directed edges consistently labeled with objects and
arrows (morphisms) of C. A diagram in the category Spec
can be viewed as expressing structural relationships
between collections of specifications.

The colimit operation is the fundamental method in
Specware™ for combining specifications. The operation
takes a diagram of specifications as input and yields a
specification, commonly referred to as the colimit of the
diagram. See figures 1 and 2 for examples. The colimit
specification contains all the elements of the specifications
in the diagram, but elements that are linked by arcs in the
diagram are identified in the colimit. Informally, the colimit
specification is a shared union of the specifications
associated with each node of the origina diagram. Shared
here means that sorts and operations that are linked by the
morphisms of the diagram are identified as a single sort
and operation in the colimit specification.

The colimit operation can be used to compose any
specifications, which can represent problem statements,
theories, designs, architectures, or programs. The fact
that specifications can be composed via the colimit
operation allows us to build specifications by combining
simpler components modularly, just as systems can be
composed from simpler modules.

3. Specware - A Software Development Tool

Specware™ s software development and maintenance
environment supporting the specification, design, and
semi-automated synthesis of correct-by-construction
software. It represents the confluence of capabilities and
lessons learned from Kestrel's earlier prototype systems

36

(KIDS|[ 13], REACTO [ 18], and DTRE {2}), grounded on
a strong mathematical foundation (category theory). The
current version of Specware™ is a robust implementation
of this foundation. Specware™ supports automation of

e  Component-based specification of programs using

agraphica interface

e Incremental refinement of specifications into
correct code in various target programming
languages (e.g., currently C++ and LISP)
Recording and experimenting with design decisions
Domain-knowledge capture, verification and
mani pulation
Design and synthesis of software architectures
Design and synthesis of agorithm schemas
Design and synthesis of reactive systems
Data-type refinement
Program optimization

The Specware™ system has some of its roots in the
formal methods for software development community.
Within this community, there are numerous languages that
have been use d for specifying software systems; eg., Z
[15], VDM [ 1], and Larch among many others {S]. Of the
many formal specification languages, the Vienna
Development Method (VDM) is one of the few that tries
to formally tie software requirement specifications to their
implementations in programming languages. This system
is perhaps the closest to Specware™ in that it alows an
engineer to specify a software system at multiple levels of
refinement. VDM tools allow for the capture and
discharging (sometimes manually) of “proof obligations’
that arise in the refinement of a specification from one
level to another.

Specware™ (differs from VDM by having category
theory as its fundamental underlying theory. This appears
to give several benefits. It alows for a greater level of
decomposition, and then composition, of specifications
(the use of diagrams and colimits provides a genera
framework for this). It provides a solid basis [7,11] for
preserving semantics in all refinement operations - not only
within Slang (Specware’ s specification language), but also
across different logics (e.g., from the logic of Slang into
the logics underlying target programming languages). It
alows for parallel refinement of diagrams [ 17], which
helps with the scalability of the technology. Multiple
categories underlie Specware™.

e & @ o o

4. Stiffened Panel Layout

We began our evaluation of this technology with an
example of a software component that was being
considered for inclusion in a component library for



structural engineering software [ 19].  The software
component solves a structural engineering layout problem
of how to space lightening holes in a load-bearing panel.
The component was originally part of an application that
designs lay-up mandrels, which are tools that are used in
the manufacturing process for composite skin panels. At
first glance, the software component appears to solve the
following one-dimensional panel layout task (this was
pulled from a comment in the header of this component).
Given a length of a panel, a minimal separation distance
between holes in the panel, a minimal separation distance
between the end holes and the ends of the panel, and a
minimum and maximum width for holes, determine the
number of holes, and their width, that can be placed in a
panel. This software component solves a specific design
task that is part of a broader design task. Prior to the
invocation of this function, a structural engineer has
determined a minimum spacing necessary to assure
structural integrity of the panel.

Upon closer inspection of the software, one realizes
that this function actually minimizes the number of holes
subject to the constraints specified by the input parameter
values. The origina set of constraints defines a space of
feasible solutions. Given a set of parameter values for the
inputs, there may be more than one solution to picking the
number of holes and their width so that the constraints are
satisfied. So, the software documentation is incomplete.
However, going beyond this, one is inclined to ask, Why
did the programmer choose to minimize the number of
holes?’ Is there an implicit cost function defined over the
feasible solutions to the original set of constraints? If so,
what is it? Presumably, this is all part of the engineering
design rationale that went into coming up with the (not
fully stated) specification for the software component in
the first place. If we were to use this component to design
a panel that was to fly on an airplane, the panel would be
structurally sound, but not necessarily of optimal cost
(e.g., not making the best trade-off between manufacturing
cost and overall weight of the panel).

Rather than put this incompletely documented software
component into a reuse library, we seek to explicate the
engineering design rationale and tie it directly to the
software. For this purpose, we used the Specware™
system to first document the structural and manufacturing
engineering design rationale leading to the software
component specification, and then generate software that
provably implements the specification (which in turn
requires documenting software design rationale).

Specware™ allows specifications to be composed in a
very modular fashion (using the colimit construction from
category theory). In this example, we were able to
generate a specification for basic structural parts by taking

37

a colimit of a diagram, which relates specifications for
basic physical properties, material properties, and
geometry (see Figure 1). A specification for stiffened
panels was derived by taking the colimit of another
diagram, this time relating basic structural parts to panel
parts and manufactured parts (see Figure 2).  This
specification was then imported into another, which added
manufacturing properties that are specific to iffened
panels (it is here that we finaly state the (originally
implicit) cost function). From this specification, and
another describing basic optimization problems, we are
able to formaly state the panel layout problem. This
specification was then refined into Lisp software [20].

4.1. The Challenge of Software Maintenance

As business processes change, software requirements
must change accordingly. Some software changes are
straightforward. Other changes are harder to make, and
the inherent complexity is not aways obvious. In the
stiffened panel layout example, suppose there is a change
to the material of the panel. If the density of the new
material is less than five, then the search algorithm that
was used is no longer applicable [20]. In fact, with this
single change to the cost function, it is more cost effective
to have no holesin the panel at all!

What is fundamentally missing in the software (the end
artifact in the software development process) is the fact
that a design decision, that of picking a particular
algorithm to solve a class of optimization problems, is
reliant on a subtle domain constraint. Indeed, in the
origina software component, the cost function is nowhere
to be seen in the software, nor the documentation that was
associated with it. Knowledge sharing and reuse cannot
easily and uniformly occur at the software level.

If we place requirement specifications, design
specifications, and software derivations in a repository, we
can reuse them to derive similar engineering software.
When requirements change (e.g., in response to a change
in manufacturing processes), we are able to change the
appropriate specifications, and attempt to propagate those
changes through the derivation history. Sometimes the
software can be automatically regenerated. Other times,
some of the original software design will break down (due
to some congtraints no longer holding). In this case, we
need to go back to the drawing board and come up with a
new design to satisfy the requirements. But even in these
cases, presumably only some portions of the software will
need to be redesigned. We leverage those parts of the
software design that we can. In this way, we reuse
knowledge at the appropriate level of abstraction, and not
solely at the software level.



5. Equipment Locator Problem

After the successful experience of using Specware™ on
the stiffened panel layout component, we decided to see if
the technology would scale up to industrial strength
applications. There were various criteria that we used to
pick this application. The application should:

« Belarge enough to test scalahility.
Be area problem of importance to Boeing.
Already have reguirement documents written.
o Be an engineering application with relatively
simple geometry.
e Have requirements that change over time.
Bein afamily of related applications.
Have overlap with the panel layout problem.
Be functional in nature (i.e., no real time
constraints).
Some of these requirements were chosen in an effort to
maximize reuse of knowledge over time and across
applications. We have felt that the additional up front
costs (associated with rigorously defining requirement
specifications and design specifications) can more easily be
justified if there is a high probability that those costs can
be amortized over a relatively short period of time (i.e.,
two or three years). Only the last requirement is due to
current state of the technology (although work is being in
this area).

After some searching, we found the equipment locator
problem, which satisfied al of the criteria listed above.
This is the problem of determining optimal placements of
electronic pieces of equipment (e.g., the flight data
recorder, inertid navigation systems, flight computers,
etc.) on shelves of racks in commercia arplanes. The
purpose of the equipment locator application is to support
the equipment installation design process for determining
optimal locations for electrical equipment. The application
supports the designers in determining optimal locations for
equipment on a new airplane model, as well as finding a
suitable location for new electrical equipment on an
existing arplane model. The application is intended to
reduce the process time required to determine equipment
locations, and also improve the quality of the equipment
location designs.

Numerous specifications are needed for stating and
solving this problem; e.g.:

Theory of geometry,
Global and relative part positioning,
Major airplane part and zone definitions,

« Operations and properties for pieces of eguipment,

shelves, and racks,

38

e Separation and redundancy requirements for
equipment,
An assignment of a piece of equipment to a
position on a shelf,
o A layout (aset of assignments),
Hard constraints on layouts,
e  Cost function on layouts,
Theories of classes of optimization problems,
Theories of search algorithms for classes of
optimization problems,
The equipment locator problem statement,
An algorithmic solution to the problem
(instantiating a branch and bound algorithm)
All in dl, about 7,000 lines of requirement and design
specifications are needed to state and solve this problem.
The generated Lisp software exceeds 7,000 lines.

5.1. General Problem Statement

With some simplification, the equipment locator
problem has as inputs:

1. A set of shelves

2. A set of equipment

3. A partia layout of equipment to shelves

And produces as output the set of al layouts of equipment
to positions on shelves, such that:

1. The partial layout is preserved/extended,

2. All pieces of equipment are placed in some
position on some shelf,

3. All hard constraints are satisfied,

4. Layout costs (e.g., wiring distances between
pieces of equipment) are minimized.

The hard constraints, which define feasible layouts, are
things like:
Equipment assignments can not overlap in space,
Equipment must be placed on shelves with
appropriate cooling properties,
Redundant pieces of equipment must be placed
on separate cooling systems,

o Critical pieces of equipment have certain
restricted regions in space,

« Equipment with low mean time to failure must be
easily accessible,

Voice and flight data recorders must be placed in
the front electrical engineering bay,

« Equipment  sensitive to  electromagnetic
interference must be separated (by a certain
distance) from other equipment emitting that
interference.

The cost function on layouts includes such things as:

«  Equipment wiring distances minimized,



e Heavy equipment should be placed as low as
possible (for ergonomic considerations),
Voice and flight data recorders should be placed
asfar aft as possible.

As an example of the formal specifications, here are
three of the hard constraints (Specware™ does have a
prefix notation, but we did not use it):

op no-overlapping-assignments : layout -> boolean
axiom (iff (no-overlapping-assignments 1)
(fa (al :assignment a2:assignment)
(implies (and (in a 1) (in a2 1))
(implies (not (equal a a2))
(not (overlapping a a2))))))
op redundant-separated-enough : layout -> boolean
axiom (iff (redundant-separated-enough 1)
(fa (al :assignment a2:assignment)
(implies (and (in a 1) (in a2 1))
(implies (redundant (equipment-of al)
(equipment-of a2))
(gt (min-distance (assigned-geometry al)
(assigned-geometry a2))
(redundant-sep (equipment-of al)
(equipment-of a2)))))))
op redundant-separate-cooling : layout -> boolean
axiom (iff (redundant-separate-cooling 1)
(fa (a :assignment a2:assignment)
(implies (and (ina 1) (in a2 1))
(implies (redundant (equipment-of al)
(equipment-of a2))
(not (equal (cooling (shelf-of al))
(cooling (shelf-of a2))))))))

5.2. Process for Technology Use

So how does one go about using this technology for
industrial applications? After having learned some of the
underlying theory, and then Specware™ (from working on
the stiffened panel layout problem), we proceeded to learn
the domain of our new application. We had three English
requirement documents to work from. These comprised
about 20 pages of writing, drawings, etc. In addition, we
had several pieces of supporting material (tables,
drawings, etc). Only two discussions with a domain
expert were needed, since the requirement documents
were fairly clear and complete.

Once understood, we formalized the requirements.
Part of this involved figuring out how to best decompose
and abstract various portions of the problem domain. We
estimate that we captured roughly 98% of the
requirements found in the informal material. The
remaining 2% of the requirements dealt with interfacing
with other software systems (of which we had insufficient

39

information at the time). Next, we went through a manual
validation process in which we compared the formal
requirements with the informal ones. We wrote a brief
document noting places where either:
Reguirements were not formalized (the 2% above),
Additional detail was needed to formalize the
requirements (due to some degree of ambiguity in
the English documents), or
Some choice was made between alternate
interpretations of the written material (since the
three English documents were written at different
times, there were minor inconsistencies).

Once the requirements were formalized, we made and
then encoded our design decisions. Again, there were
decisions to be made about decomposition and abstraction.
For each design decision, we needed to choose data
structures for sorts and algorithms for operators.
Specware™ comes with many built-in specifications that
can be use d for this (and other purposes). For example,
there are specifications for sets, lists, and sets interpreted
as lists.  These design decisions then had to be verified to
ensure that requirement properties were upheld.
Specware™ has a built-in resolution based theorem
prover. This was used to prove roughly 25% of the proof
obligations.  The other 75% were proven by hand.
Eventually, every sort and operation had to be refined
down into some data structure and operation provided by
the Lisp programming language.

Finally, once the software was initialy generated, we
maintained the software with Specware™. As we |earned
more about the problem domain, several changes were
made to the requirement specifications, and the software
was easily regenerated. None of these changes required
significant redesign efforts, fortunately. However, one
other change did. The initial optimization algorithm used
an exhaustive search. For purposes of rapid prototyping,
we had used the optimization problem theories (see Figure
3) and search theories from the stiffened panel layout
problem. Since these were inefficient, we encoded an
additional theory of branch and bound optimization
problems, and applied a corresponding search theory to
the domain of the equipment locator problem. The general
branch and bound theories are completely reusable (i.e.,
independent of the domain in which they are instantiated).

6. Getting the Technology into Broader Use

Our overal impression is that this technology does
work for industria strength applications, but that it needs
additional work to make it more usable. Various
suggestions for technology and tool improvement are
given in this section.



6.1. Methodology for Understanding Refinement
System Interfaces

For maximum ease of use, the user interface of any
system should reflect and reinforce the user's mental
model of the artifacts and processes involved. One must
keep in mind the education, experience, and general
characteristics of the user community. It is one thing to
have the underlying theory of a tool like Specware™ be
based in category theory. It is quite another to have
categorical terminology and concepts explicitly in the user
interface of the tool. In an effort to have the tool be
usable by a broader range of engineers, an attempt should
be made to present things in the user interface that do not
require explicit knowledge of category theory.

To improve the usability of this technology, human
factors and usability engineers should perform task
analysis, domain modeling, and  requirement
elicitation/engineering for the use of this technology by its
intended audience. The emerging understanding of how
this technology could be used should drive the
requirements of the user interface.

6.2. Linking Nonformal Requirements to Formal
Requirements

The people most familiar with application domains may
not be interested or willing to author requirements in a
language based on higher-order sorted logic and category
theory. Natural languages are more widely known and
accepted, and provide needed ambiguity. In addition,
individual communities often have their own notations
and/or visual symbology (this is quite typica in many
traditional engineering disciplines). There needs to be
some type Of linkage between less structured
representations of requirements and formal requirement
specifications.

We have in mind a Web-based interface scenario in
which engineers can click on a portion of a natural
language document and get access to portions of the
formal requirement specifications.  Perhaps restricted
natural language grammars can be used to present the
formal specifications in a more readable fashion.

6.3. Viewing Linkage between Requirements,
Design, and Software

In the same vein as the previous suggestion, it would be
nice to be able to click on portions of formal requirement
specifications and get access to those portions of design

40

specifications that reflect those requirements. These
portions could be sorts, operations, axioms, or theorems.
Similarly, clicking on portions of design specifications
could lead to portions of other design specifications and/or
software.

The theme in these two subsections is visibility and
traceability of requirements and designs through the
software derivation history. If someone else were to pick
up our work on the equipment locator problem, what
could be provided to them that would make it easier for
them to understand how requirements and designs are
achieved throughout the software derivation?

6.4. Better Derivation Replay and Visibility

To replay the entire software derivation for the
equipment locator problem, it takes about 30 minutes and
150 operations via the user interface. While it is probably
not hard to do, the tool needs to better automate this task
by recording the sequence of steps and then replaying
them automatically.

There is structure to these sequences of steps, and how
these sequences get put together [9]. This structure
should be easily captured, displayed, and manipulated in
the user interface of the tool. Note that this suggestion
differs from the previous subsection in the granularity of
what is being tracked. Here, we are tracking things at the
level of specifications, diagrams, interpretations, etc. In
the previous subsection, we are interested in portions of
specifications (specific sets of statements/axioms,
objects/sorts, operators, €tc.).

6.5. Improved Specification Libraries

If larger specification libraries were available for a tool
like Specware™, then people would be more productive
with this technology. Some obvious examples would be
material from data structure and agorithm courses, e.g.,
trees, graphs, tries, search agorithms, digjoint set-union-
find algorithms, etc. Other suggestions include theories
for dimensional analysis and unit conversion of physical
quantities (e.g., the engineering math ontology of [8]),
theories of geometry, and theories of basic materia
properties. We have done some work in the first two
areas.

6.6. Better Proof Support

The effective use of the automated theorem prover in
Specware™ s limited. One way to improve this would be
to use different automated theorem provers, equation
solvers, or model checkers, individualy or perhaps in



some combination. Another, more pragmatic approach
might be to use a combination of proof checking and
automated theorem proving. As a software designer, as |
do my proofs “by hand”, why not allow me to record my
own proof steps? Perhaps a proof checker can validate
some proof steps fairly easily. Perhaps some steps require
a fair amount of deduction, but might be possible to
discharge in an interactive manner. In the worse case,
simply alow me to record my own “proof,” which can be
manually verified during maintenance operations.

6.7. Generating State Based Programs

The current version of Specware™ only generates
software that is purely functional. No use of state based
variables is possible.  This limits the efficiency of
generated software.  This limits Specware's use in
embedded systems, where the improved quality of
generated software is highly desirable.

6.8. Software Optimization Transformations

The KIDS system [13] has some very nice, and
extremely  useful, program level optimization
transformations. These range from low-level
transformations that are similar to compiler optimizations,
to high-level transformations that perform finite
differencing. To get more efficient software, these
capabilities are needed.

6.9. Expressing Rationale behind Design Choices

During design there are often multiple design
alternatives. It would be nice if we could clearly record
these alternatives and the rationale behind the current
selection of a specific design, This type of rationale could
even be stated formally; e.g., in terms of trade-offs
between space and time complexities. When changes in
requirements happen over time, this information would be
very vauable. All that is currently stored in a derivation
history is one way to achieve a software solution to a
problem. As one initially explores the design
space/aternatives, one learns a lot of information about
various trade-offs. Let's capture that information, and
leverage it in the future.

7. Summary

We have described our experiences in applying a
category theory based approach to industrial strength
software specification, synthesis, and maintenance. This
paradigm is one that alows the capture and structuring of

41

formal reguirement specifications, design specifications,
implementation software, and the refinement processes
that lead from requirements to software. In this approach,
the refinement process can guarantee correctness of the
generated software. By recording, modifying, and then
replaying the refinement history, we are able to more
easily maintain the software. By capturing, abstracting,
and structuring knowledge in a modular fashion, we are
able to more easily reuse this knowledge for other
applications.

Our overal impression is that the technology does
work for industria strength applications, but that it needs
additional work to make it more usable. It is interesting to
note that when this technology is applied to software
systems whose outputs are designs for airplane parts, the
design rationale that is captured is not only software
engineering design rationale, hut also design rationale from
other, more traditional, engineering disciplines (e.g.,
mechanical, material, manufacturing, etc.). This suggests
the technology provides an approach to general systems
engineering that enables one to structure and reuse
engineering knowledge broadly.

8. Bibliography

[11 Bjomer, Dines and Jones, Cliff, Forma6 Specification &
Software Development, Prentice-Hall International, 1982.

[2] Blaine, Lee and Goldberg, Allen, DTRE - A Semi-Automatic
Transformation System, in Constructing Programs from
Secifications, ed. B. Moller, North Holland, 199 1.

[3]Burstall, R. M. and Goguen, J. A., The Semantics of Clear, a
Specification Language, in Proceedings of the 1979 Copenhagen
Winter School on Abstract Sofiware Specification, Lecture Notes
in Computer Science, 86, Springer-Verlag, 1980, pp. 292-332.

[4] Crole, Roy, Categories for Types, Cambridge University
Press, 1993.

[5] Gannon, John et al., Sofiware Specification - A Comparison
of Formal Methods, Ablex Publishing.

[6] Goguen, J. A., Mathematical Representation of Hierarchically
Organized Systems, in Global Systems Dynamics, ed. E. Attinger
and S. Karger, 1970, pp. 112-128.

{71 Goguen, J. A. and Burstall, R. M., Institutions: Abstract
Model Theory for Specification and Programming, Journal of the
Association of Computing Machinery, 1992.

{8] Gruber, Tom et a., An Ontology for Engineering
Mathematics, in Proceedings of the Fourth International



Conference on Principles of Knowledge Representation and
Reasoning, Morgan Kauffman 1994.

[9] dullig, R. and Y. V. Srinivas, Diagrams for Software
Synthesis, Proceedings of the 8™ Knowledge-Based Software
Engineering Conference, Chicago, IL, 1993.

[10] MacLane, Saunders. Categories for the Working
Mathematician. Springer-Verlag, 197 1.

[11] Meseguer, Jose, Genera Logics, Logic Colloquium ‘87,
Fds. Ebbinghaus et a.. Elsevier Science Publishers, 1989.

[ 12} Pierce, Benjamin C., Basic Category Theory for Computer
Scientists, MIT Press, 1994.

[13} Smith, Doug, KIDS: A Knowledge Based Software
Development System, in Automating Software Design, Eds. M.
Lowry and R. McCartney, MIT Press, 1991.

[ 14] Smith, Doug, Mechanizing the Development of Software, in
Calculational System Design, Ed. M. Broy NATO ASL series,
10S Press, 1999.

[ 15] Spivey, J. M., The Z Notation: A Reference Manual,
Prentice-Hall, New Y ork, 1992.

[16] Srinivas, Y. V. and Jullig, Richard, Specware™: Formal
Support for Composing Software, in Proceedings of the
Conference of Mathematics of Program Construction, Kloster
Irsee, Germany, 1995.

[17] waldinger, Richard et d., Specware™ Language Manual
2.0. I, Suresoft, Inc, 1996.

[18] Wang, T. C. and Goldberg, Allen, A Mechanica Verifier for
Supporting the Design of Reliable Reactive Systems,
International Symposium on Software Reliability Engineering,
Austin, Texas, 1991.

[19] Williamson, K. and Healy, M., Formally Specifying
Engineering Design Rationae, in Proceedings of the Automated
Software Engineering Conference, 1997.

[20] Williamson, K. and Healy, M., Deriving Engineering

Software from Requirements, Journal of Intelligent
Manufacturing, to appear, 1999.

‘impo/n/ Real Numbers
Ir import
Physics |
physical-object. g, :
weight, mass, volume, density,
i |
weight(p) = mass(p) * g, | Geometry
|

mass(p) = volume(p) * density(p)

l N
import N

A N

Materials

material, aluminum-7075,
if matenial(p)=aluminum-7075 N
then density(p)=20

geometry, volume,

box, height, length, width, box-volume,

cylinder, radius, depth, cylinder-volume,
box-volume(b) = height(b) * length(b) * width(b),
cylinder-volume(c) = depth(c) * pi * radius(c)" 2

part, g, weight, mass, volume, .,
material, aluminum-7075,
geometry, box, box-volume, ,
weight@) =mass(p)* g, ...,

if material(p)=aluminum-7075 |

box-volume(b) = . . . .

Figure 1. Colimit of a Specification Diagram

42



Parts
part, weight, mass,..., volume, height, ...

weight(p) = mass(p) * g, ...,
box-volume(b) = ...

i"ﬁi"///‘ import
'\
Panels " Manufactured Parts
panel, boundary, hole. number-of-holes, | part, manufacturing-cost,
|
|
I
|
|
|

vertical separation, horizontal separation cost-of -raw-stock, cost-ofdrilling-hole,

volume(p) =box-volume(boundary(p)) - If material(p)=aluminum-7075 then
(number-of-holes(p)*cylinder-volume(hole(p))) cost-of-drilling-hole(p,h)= 2*cylinder-volume(h)

material(p) = aluminum-7075 cost-of -raw-stock(p) = 5*raw-stock-volume(p)

Colimit of Diagram

¢ import

Manufactured Panels
panel, cost,
raw-stock-volume(p) = box-volume(boundary(p))
manufacturing-cost(p) = cost-of-raw-stock@) +
number-of-holes(p)*cost-of-drilling-hole(p, hole(p))
cost(p) = (5*manufacturing-cost(p)) + (2*weight(p))

Figure 2. Another Colimit and Specification Morphism

spec problem is spec optimization-problem is
sort D, R
op | : D -> Boolean import  optimization-stuff
op0:D, R-> Boolean
end-spec op optimal-output : Input, Output -> Boolean

op optimal-solutions : Input > Set-of-Output
diagram prob-set-reakliagram is

nodes triv, problem, set, real axiom (implies (valid-input input)
arcs triv > problem : { E-> R }, (iff (optimal-output input output)
triv->set: { E->E} (and (feasible-output input output)
end-diagram (implies (feasible-output input x)
(Ieq (cost output) (cost x))))))
spec optimization-stuff is axiom (implies (not (valid-input input))
import trandate colimit of prob-set-rea-diagram (not (optimal-output input output)))
by { D -> Input, axiom (implies (valid-input input)
E -> Output, (iff (in x (optimal-solutions input))
Set -> Set-of-Output, (optimal-output input x)))
| > Valid-Input, axiom (implies (not (valid-input input))
0-> Feasible-Output} (equa (optimal-solutions input) empty-set))
op cost : Output -> Real
end-spec end-spec

Figure 3. Some Specifications for Optimization Problems

43



