

-2-

Overview

We have created a 3D sketch-based flower modeller. Our application builds 3D models of

flowers by creating and connecting floral components. Users can create and manipulate

petals, leaves, stems and blooms and combine these to create single/multiple bloom

structures.

Leaves and petals are created using ruled surfaces defined by two sketched curves inputted

by the user. These surfaces are then deformed by sketching new cross-section curves.

A stem is created as a rotational blending surface based on a single sketched curve input by

the user. This curve acts as the spine of the stem. The blend curves are created by offsetting

the spine in two directions.

The overall flower structure is created by attaching leaves, petals, blooms and stems to one

central root stem.

-3-

UI & Program Usage

UI Breakdown

Our user interface has three main sections: the sketch window, the display list, and the bloom

structure windows. All sketching by the user is done in the large sketch window. When the user

saves a 3D FlowerPart (either a Surface or a Bloom) for later use when constructing a flower, the

FlowerPart is added to the display list at the top right corner where all previously-saved

FlowerParts are displayed. Since the program works in creating one flower, Stems are not added to

the display list. The two windows at the bottom right of the screen are the bloom structure

windows. The middle window allows the user to manipulate the structure of the bloom, while the

bottom window shows a preview of the bloom structure in 3D.

Figure 1 Default view of the program window

Sketch area

Display list

Bloom windows

-4-

Using the Program

Drawing Surfaces

 The default mode of the sketch window is Surface drawing. The user needs to draw two
curves on the screen by clicking the left mouse button and dragging the mouse to produce a
surface. To produce proper normals (for rendering), each of the curves needs to be drawn
from top to bottom.

 At any time, if the user does not like the curves he has drawn, he can click on the clear button
and begin drawing again.

 Once the curves have been drawn, clicking on the “Convert 3D” button will convert the curves
into a mesh.

 The user can now rotate the camera around the surface by right-clicking and dragging the
mouse.

 At any time after the mesh has been created, the user can press the “Preview” button to view
the rendered surface. Click the “Preview” button again to go back to wireframe mode.

 To update the cross-section of the curve, the mesh should be rotated by dragging the mouse in
the upward direction. The user can then draw a new curve along the cross-section and the
surface will automatically update.

 To update the length of the curve, the mesh should be rotated from the cross-sectional
position by dragging the mouse to the left. If the mesh is rotated in the other direction, the
mesh will respond in reverse to the manipulation curve.

 Both the cross-section and length can be updated multiple times by drawing new
manipulation curves.

 When the user is happy with the surface, he can click on the “Save” button to add the Surface
to the display list.

 The user can now draw new curves to add more surfaces by repeating the above steps.

 Please note that the first 3 Surfaces will be green and the next 3 will be red. This pattern will
repeat itself for subsequent Surfaces.

-5-

Creating Blooms

 To create a bloom the user must first create one or more leaves, petals and sepals –
see drawing a surface above for information on how to do that.

 The middle window on the right of the form shows the bloom structure and allows the
user to change the default settings (more on these parameters below) of the bloom as
well as add required petals and/or sepals.

 This window is split into two parts with the circular diagram representing a view of
the bloom from above and the other diagram representing a side view of the bloom.

 To add petals (sepals), the user can use the petals (sepals) spin box to set the number
of petals (sepals). The bloom diagram will show red (green) triangles where the
petals (sepals) will be attached to the bloom. By clicking the appropriate triangle and
then the desired leaf/petal in the display list, the petals (sepals) can be added to the
bloom.

 At any point the user can preview the bloom in the 3D window.

 When the user is satisfied with the bloom he can click the “Save Bloom” button and a
Bloom object will be saved to the display list. After a Bloom is saved, the circle
diagram is reinitialized to the default values.

-6-

Creating Stems

 Once the user has finished creating
surface components (leaves and petals)
for their flower, they can move into
stem creation mode by clicking on the
“toggle mode” button. In this mode;
users draw stems and attach flower
parts together to finalise their flower.

 Once in stem creation mode, users must
draw an initial root stem. A stem is
drawn by clicking and dragging with the
left mouse button.

 Once the stem is drawn, it can be
manipulated in several ways:

o By clicking and dragging the
right mouse button on the red
circles within the stem (these
represent the stem control
points) users can move the stem around.
Note: moving one point will also move every point on the stem that was drawn after that
point and also any attached FlowerParts. This enables the user to move an entire branch of
the stem without disturbing its shape by moving its root point.

o Right clicking once on a control point will select that point. The stem containing the
selected point will turn blue. Once a point is selected, users can change the radius of
the stem at that point using the left and right arrow keys.
Note: by default (if another point is not explicitly selected) the last point in the last drawn
stem is selected.

o A branch can be created from any of the red control points. To draw a branch, click
and drag with the left mouse button starting on the control point that you want the
branch to be connected to.

o A stem can be deleted by first selecting any control point along it, then pressing the
“delete stem” button. All FlowerParts branching off the deleted stem will also be
deleted.

o A flower part can be connected to any control point within the stem structure. (see
assembling flowers)

 Thus far, all stem manipulation has been in2D. Once you are happy with your 2D stem
structure click the “convert 3D” button to move into stem rotation mode. Once in rotation
mode manipulation is done on entire branches rather than individual control points. Right
click on a branch to select it (it will turn yellow when selected). You can now rotate the
selected branch around its connection point using the up and down arrow keys.

 To view the stem structure from different angles, click and drag the right mouse button to
rotate the camera.

-7-

 At any stage users can preview the rendered stem by clicking the “preview” button.
Clicking ‘preview’ again will return the stem to wireframe mode.

Assembling Flowers

 First create all leaves and petals that you will need to create your flower. Save these in the
display list in the top right corner of the ui. (You can move back to surface mode from stem
creation mode by clicking ‘toggle mode’, but any stems you have created will be lost).

 Next move into stem creation mode and draw your root stem.

 From here you are free to connect components however you please.

 To connect a component to a stem; right click to select the control point to connect to, then
left click on the component (in the display list window) to connect.

 If you connected a leaf or petal directly onto a stem it can now be manipulated in several
ways:

o To select the leaf/petal right click on it, it will turn green when selected.
note: since selection depends on gluUnproject, it can be a little unpredictable

o Once selected the leaf/petal can be rotated up and down with the up and down
arrow keys or tilted with the left and right arrow keys.

o The leaf/petal can also be turned into a Daisy. A Daisy is a basic flower created by
duplicating and rotating the same leaf/petal around a stem control point. To create
a daisy from a selected petal/leaf, choose the number of petals required using the
scroll box in the bloom creation window and click the “create daisy” button.

 Once all desired components are connected, click the “convert 3D” button to move into
rotation mode, from there you can rotate branches (as outlined in stem creation above) to
3-dimensionalize your flower.

 Click the “preview” button to see your rendered flower.

 Click and drag with the right mouse button to rotate your view.

-8-

Implementation Details

Introduction

This section explains the details of the backend of our system. It is comprised of three main

classes: Bloom, Stem, and Surface. Blooms are composed of a collection of Surfaces and an

ovary. A Stem is our high-level object that owns all FlowerParts attached to it. Surfaces

represent both leaves and petals. Our controller classes, GlSketch, Displaylist, CircleDiagram

and StemSurface handle all user input in the different widgets of the main program,

delegating Qt commands to our class objects.

-9-

Surface
A Surface represents either a leaf or a petal. It is comprised of a mesh created through two user

strokes. The mesh can be manipulated by user strokes along the cross-section or the length of the

Surface.

Composition

Control curves

A Surface is initially created when the user draws two strokes in a

downward motion, represented by quadratic B-splines of the Curve

class. Once the user is happy with his curves, he can click on the

“Convert to 3D” button which will create the mesh of points, surface.

Although the curves are stored, they are not used after this point.

When the surface is updated, the mesh itself is updated and not

the initial curves. This is because the curves cannot represent the

surface after the user has manipulated it with additional strokes because of the minute changes

that can be made to the surface.

Surface mesh

The surface mesh is created by taking the same number of equally-spaced

points along each of the control curves and linearly interpolating between the

points to make a ruled surface. These points are stored in a 2D Vector.

Initially, we used reverse Chaikin subdivision on the curves’ control points but

found it did not guarantee the same number of points on each of the curves

which made drawing the mesh more difficult and less smooth. Using the

equally-spaced points also allows us to change the resolution of the mesh by

controlling the number of points generated along the B-splines. We have

found that the mesh edges still represent the control curves very closely.

Secondary mesh

A secondary mesh, zDiff, is used to store the difference in the z-coordinates between a point on

the mesh and the first Vector of points on the surface (surface[u][0]) as made by the cross-

sectional manipulation stroke. This mesh is exactly the same size as the surface mesh but

consists of only a 2D Vector of floats instead of Points as we only need to store the difference in

the z direction. This was necessary so that manipulating surface along its length would not

Figure 2: The user-drawn control curves.

Figure 3: The initial
surface mesh.

-10-

overwrite any changes done to the cross-section of the mesh. The mesh is updated only when a

cross-sectional stroke is drawn. The differences are then added to the z values of the mesh

points to re-apply the cross-sectional stroke whenever a manipulation curve is drawn along the

length of the surface.

Manipulation

A surface is manipulated when the user draws a stroke on the sketch area after converting the

control curves into the surface mesh. The user must rotate his view of the surface so that he can

draw a line along the length of the surface or the across the surface depending on how he wants the

surface to deform. If the view is not rotated sufficiently, unfavourable results may occur. The mesh

may update along the direction the user did not intend to update. The program looks at the end

points of the curve and if the difference in the x-coordinates in more than the difference in the y-

coordinates of the two points then the cross-section is updated, otherwise the length is updated.

Cross-Section

If the user rotates the view and draws a curve along the cross-

section of the surface, the z-difference mesh described above will

be updated as will the surface mesh. We chose not to scale the

surface to the curve but instead to only use the part of the curve

that intersects the mesh on the x plane. We found it more helpful

to allow the user to have some leeway when drawing the curve to

better draw the intended curve over the surface. For each row of

the surface, the intersection of the curve with the boundary of the mesh is found by stepping

through each control point of the manipulation curve until an intersection point is found. This

is repeated from the end of the curve inward to find the ending intersection. Once the start and

end points of the curve have been found, equally-spaced points are pulled from the

manipulation curve using the algorithm described earlier when describing the surface mesh.

The number of points used is the number of points on the row of

the surface being updated (which is the same for each row of the

mesh). This makes updating the z-difference mesh very simple as

there is the same number of points on the curve as need to be

updated in the mesh. Once the entire z-difference mesh has been

updated, the z-values of the surface mesh are updated.

Figure 3: Manipulation curve along
the surface cross-section.

Figure 4: Above surface after the
cross-section has been updated.

-11-

Length

If the user rotates the view and draws a curve along the

length of the surface, the first column of points

(surface[u][0]) will be updated. The rest of the surface is

updated by iterating over the surface and adding the

value at surface[u][0] to zdiff[u][v]. This is done so the

manipulation curve drawn along the length of the surface does not overwrite changes made to

the cross-section. Again, the mesh is not scaled to the curve. Instead the intersection, in the

case in the y-direction, is found for the first column of

the mesh. If the surface is not rotated as specified in the

“Program Usage” section, unpredictable results will

occur. In hind sight, it may have been more intuitive for

the user if we had instead used the manipulation curve to

update the centre column of the mesh since it is roughly a straight line between the bottom and

top points of the surface.

Figure 4: Manipulation curve along the length
of the surface.

Figure 5: Above surface after the length has
been updated.

-12-

Stem
A stem is stored as a recursive tree structure of FlowerPart objects.

These can be Stems, Leaves, Daisies or Blooms. It has an initial

base Stem containing 20 Points each of which can be

manipulated to change the shape of the stem and

can have a FlowerPart attached.

A stemPoint is defined as:

Point pos

- The point’s position in 3D space

float radius

- The radius of the stem at that point (used to create rotational

blended surface)

FlowerPart *branch

- A pointer to the FlowerPart (stem, leaf, daisy or bloom) attatched at

that point

Stem creation and manipulation

The stems’ surfaces are created as rotational blending surfaces. In order to create these rotational

blending surfaces, all construction curves must be co-planar. We do however want to be able to

create fully 3 dimensional flowers. To facilitate this, stem creation has two modes, draw mode and

manip mode.

2D – Draw Mode

In draw mode, users create the basic stem layout by

sketching curves with the mouse. Mouse co-ordinates are

projected onto the x-y plane and are used as control points

to calculate a 3rd order B-Spline curve from which 20

evenly spaced stemPoints are created. Left and right

curves are created by offsetting each stemPoint to the left

and right by its current stored radius. The left and right

curves are then used to create a rotational blending surface

using the sketched curve as the central rotational axis.

Figure 6: Finding left and right curves

-13-

Calculating the rotational blending surface

 The stem surface is stored as a 2D vector of points created as follows:

For each stemPoint (Si) in the stem, a circle of the desired radius is created centered on the
origin. The frame transformation is then applied to the circle to orient it correctly with the
stem. The new frame is:

 ((0, 0, 0), x, y, z) where

 𝑥 =
| 𝐿𝑖 𝑋 𝑅𝑖|

 𝐿𝑖 |𝑅𝑖 |

 𝑦 = 𝑖 × 0, 0, 1

 𝑧 = (0, 0, 1)

8 points are taken around each circle and each is then translated by the vector

Si – (0, 0, 0)

 to bring it back to the correct height on the stem.

This disc of points is then added to the stem surface vector of points.

Figure 7: The stem creation process, from sketched points to stem surface

-14-

The radius of the stem at any given control point can be changed by

selecting it and using the left and right arrow keys. The radii of

neighbouring points along the stem are also changed slightly keep

the stem relatively smooth. Whenever a radius is changed, the entire

surface for the effected branch of the stem is recalculated.

Once a root stem is created, branches can be added by drawing new

stems starting at control points on the existing stem. When the user

clicks the left mouse button, the control point clicked on is found

and a new Stem object is created and stored as its branch pointer.

Branches can be moved around by right clicking and dragging on their control points. When a

control point is moved, every point in the stem after that point is also moved (this includes all

branches and flower parts attached). This is implemented by calling ‘translate’ on each point and on

any non-NULL branch pointers in the selected branch.

3D – Stem rotations

To manipulate the stem in 3D, we move into manip mode by clicking the “convert 3D” button. From

here manipulation involves moving entire branches rather than individual control points. A branch

is selected by right clicking on it (it will turn yellow when

selected). Selected branches can then be rotated around their

parent stem using the up and down arrow keys.

The axis of rotation is taken to be the vector between the point on

the parent stem at which the branch is connected, and the next

stemPoint in the parent stem. All branches and flower parts

hanging off the selected stem are also rotated.

Note: Once you have moved into 3D manipulation mode, you

cannot go back to draw mode.

Initially we had planned to have a set of pre-built stem structures for the user to choose from. They

would then be able to perform some basic manipulations on the prebuilt forms in order to

personalise their designs. We decided, however, that sketching stems was not only more fun but

also more in keeping with the sketch based nature of our application. It also gave us the

opportunity to experiment with rotational blending surfaces.

Figure 8: An example of a two branch stem

-15-

Bloom

A bloom consists of a surface of revolution representing an ovary and a collection of surfaces

representing petals/sepals.

The manipulation of the bloom is done according to the paper by Takashi Ijiri, Makoto Okabe,

Shigeru Owada, and Takeo Igarashi "Floral diagrams and inflorescences: Interactive flower

modeling using botanical structural constraints" ACM Transactions on Computer Graphics, Vol.24,

No.3, ACM SIGGRAPH 2005, Los Angeles, USA, 2005 (chapter 4.1 Floral diagram editor)

Composition

The ovary is constructed from five base points that are

rotated around y-axis.

The base points are defined as follows:

- the first point is set to (0,0,0) in bloom coordinates

- the second point is (radius1, ¼ height, 0)

- third point – (radius2, ½ height, 0)

- fourth point – (radius3, ¾ height, 0)

- fifth point – (radius4, height, 0)

The radii and the height can be manipulated by the user though the bloom diagram.

This editor’s purpose is to manipulate the

geometry of ovary and positions of petals/sepals.

Thus the flower parts are represented by triangles

(the specific shapes of these are defined during

sketching surfaces to create leaves, petals and

sepals). Any changes made by the user are

immediately reflected in 3D view of the bloom

diagram (a window directly below the diagram).

The petals/sepals are added by clicking on a triangle on the diagram and then on a corresponding

leaf/petal in the display list.

Top view

Side view

-16-

The petals/sepals are arranged symmetrically around the center axis of the bloom (going through

the ovary). One of the directions for future work is to add functionality to allow differentiated

positioning of petals and sepals as well as adding other bloom parts, such as pistil and stamens.

The bloom has the following parameters that a user can modify:

 Four radii of the ovary (represented in blue). These specify how
wide the ovary will be at quarter, half, three quarters and full
height of the ovary. To manipulate these – drag the blue handles
on the circular diagram.

 Ovary height – represents how tall the ovary will be. To manipulate it –
drag the blue handle at the side view.

 Petal radius – represents how far from the center of the bloom the
petals will be (red handle on circular diagram).

 Petal height – represents how high with respect to the ovary the petals

will be placed (red handle on the side view).

 Sepal radius – represents how far from the center of the bloom the
sepals will be (green handle on circular diagram).

 Sepal height – represents how high with respect to the ovary the
sepals will be placed (green handle on the side view).

The angle between the positive x-axis and vector from the center

of the bloom to the petal position is saved for each petal and later

used in drawing the bloom.

Each petal/sepal is positioned at the point (the coordinates of that

point are calculated from the corresponding triangle on the

diagram) and rotated around petal/sepal tangent -45 degrees and around petal vein for a

corresponding angle plus 90 degrees (for example, on this diagram petal3 would be rotated –

(a3+PI/2) radians). Such manipulations ensure that all the petals/sepals are positioned uniformly

around the bloom and facing upward and toward the bloom center.

After all the required manipulations of the bloom are done, it can be saved to display list. At that

point a bloom can be added to a stem at any control point.

-17-

Controller Classes

We created four controller classes to handle all Window and Qt events. The GLSketch class is our

main controller class. It owns the StemSurface and handles the user sketch input. It is also

responsible for sending FlowerParts to the DisplayList to be saved.

The DisplayList class is quite simple. It just displays a copy of each saved FlowerPart. When a

FlowerPart is clicked on, DisplayList emits a signal for either the Stem in the GLSketch window or

CircleDiagram to catch to add that FlowerPart to the stem or bloom.

The StemSurface class keeps track of selected parts of the flower model while in Stem mode. It owns

a Stem, representing the root stem of the flower, a branch representing the current selected branch

and a vector of Surfaces representing the leaves currently attached to the stem. It handles all mouse

events, creating and manipulating stems and connecting FlowerParts.

Lastly, CircleDiagram and CircleDiagram3D are responsible for creating Blooms. CircleDiagram

provides a 2D view of the bloom structure while CircleDiagram3d displays a 3D preview of the

ovary with petal and sepal placement. CircleDiagram translates the user input to create a Bloom

once the “Create Bloom” button has been pressed. Details of the bloom structure can be found in

the Bloom section of details.

-18-

Sample Results

-19-

-20-

-21-

-22-

Future Work

Our system creates complete models of flowers. Unfortunately, we did not have the time to

implement the creation of stamens, which would make the models much more realistic. Also, we

were unable to add load and save functions, however we intend to add this functionality after the

final submission of the project.

Conclusion

We succeeded in our main goal of creating a sketch-based flower modeller. We believe our

interface is intuitive and easy to use. Because of our class hierarchy, the program could easily be

extended to make scenes of flowers instead of individual ones by adding save functionality for the

Stem class. We learned much about topics in the course, including B-splines, ruled-surfaces, surface

manipulation, sketch-based modelling, and surfaces of revolution and are very pleased with the our

results.

-23-

References

Local B-spline Multiresolution with Examples in Iris Synthesis and Volumetric Rendering,

Faramarz F. Samavati, Richard .H. Bartels and Luke Olsen, Image Pattern Recognition: Synthesis and

Analysis in Biometrics, Series in Machine Perception and Artificial Intelligence , Vol. 67, World

Scientific Publishing, 2007.

Floral Diagrams and Inflorescences: Interactive Flower Modeling Using Botanical Structural

Constraints, Takashi Ijiri, Shigeru Owada, Makoto Okabe, Takeo Igarashi, ACM Transactions on

Graphics, 2005 (Proc. SIGGRAPH 2005), Volume 24, No.3, pp. 720-726, SIGGRAPH 2007.

Seamless Integration of Initial Sketching and Subsequent Detail Editing in Flower Modeling.

T. Ijiri, S. Owada, and T. Igarashi. The University of Tokyo, Eurographics Association and Blackwell

Publishing 2005.

Sketch-based Modeling with Few Strokes, Joseph J. Cherlin, Faramarz Samavati, Mario Costa

Sousa, Joaquim A.Jorge.

http://en.wikipedia.org/wiki/Inflorescence for definition and types of inflorescence patterns.

http://www-ui.is.s.u-tokyo.ac.jp/~ijiri/
http://www-ui.is.s.u-tokyo.ac.jp/~o/
http://www-ui.is.s.u-tokyo.ac.jp/~makoto21/index.html
http://www-ui.is.s.u-tokyo.ac.jp/~takeo/
http://en.wikipedia.org/wiki/Inflorescence

