Shared Screens and Windows

Kimberly Tee
CPSC 781

Outline

- Introduction
- Implementation Strategies
- Technical Issues
- Non-Technical Issues
- Examples
- Future Work
Readings

Shared-View Systems

- share another’s screen/window
 - initially used to augment face-to-face
 - soon used for distributed, real-time collaboration
Two Approaches

- collaboration transparent
 - uses existing single-user applications

- collaboration aware
 - specifically designed for groups

Abstract Architecture

- system consists of:
 - participants’ window systems
 - application or screen being shared
 - manager

→ shared workspace
 - each participant sees the same view
 - each participant can interact with the application
Centralized Architecture

- system consists of:
 - participants’ window systems
 - one instance of each application or screen
 - one instance of manager

Centralized Environment

- example
 - window system sends input to application_1
 - application_1 produces output → view changes
 - manager distributes output request or changed view to all window systems
 - can be an image file
VNC Protocol

- basic message sent:

 put a rectangle of pixel data at a given x, y position

VNC Optimizations

- raw encoding (basic)
 - pixel data sent left-to-right

- copy-rectangle encoding
 - when framebuffer has same pixel data elsewhere
 - sent (x, y) where pixel data is copied

- majority-color encoding
 - describes rectangles of different colors
 - background and sub-rectangles
VNC Updates

- can encode each update using a different scheme
- choose most appropriate for:
 - screen content being transmitted
 - available network bandwidth

- demand-driven
 - only sent when explicitly requested
 - adaptive quality

Replicated Architecture

- system consists of:
 - participants’ window systems
 - for each participant, an instance of the manager and each application/screen being shared
Replicated Environment

- example
 - window system sends input to application₁
 - input is distributed to other managers
 - replicas of application₁ receive input
 - replicas produce output
 - view changes
 - output request to window system

Tradeoffs

- replicated has better performance
 - but replicas must be synchronized
Technical Issues

- also want to support:
 - spontaneous interactions
 - group work
 - workspace management
 - floor control
 - data sharing

Spontaneous Interactions

- many interactions are spontaneous
 - should accommodate these interactions
 - minimize startup overhead
 - allow latecomers to join shared sessions
 - replay history of events
 - transfer shared state directly
 - apply process migration techniques
 - enable private windows to be later shared
 - dynamically put manager into communication link
Group Work

- support the mechanics of collaboration
 - provide telepointers
 - support annotation
 - channel for direct communication
 → without affecting shared application

Workspace Management

- traditional window managers not good
 - distinguish shared and private windows
 - identify windows in a particular session
 - determine which session a window is associated with
 - coordinate windows
 - WYSIWIS
 - handle window movements/destinations gracefully
Floor Control

- determines who has control of what
 - technological approaches
 - queue: keep list of people who request
 - pre-emptive: pass to requester on demand
 - ring-passing: give current floor holder control
 - open floor: allow anyone to hold floor at any time
 - social protocol
 - if high-quality audio available
 - let participants negotiate access

Data Sharing

- determine how data should be shared
 - possible for data to be overwritten
 - individuals may have different permissions
 - create copies of data
Non-Technical Issues

- customizing views
- social conventions
- group dynamics

RealVNC

- (free, open source) variant of VNC
 - no telepointing, annotation
 - scroll around to view
 - open floor control

http://www.realvnc.com/
Bridgit

http://www2.smarttech.com/st/en-US/Products/Bridgit/

- developed by SMART Technologies
 - annotation, webcam, spotlight tool
 - screen owner gets priority for control

Examples

MSN Messenger’s Application Sharing

- uses Windows NetMeeting
 - no telepointing, annotation
 - application owner can accept or deny requests for control

Examples
FaceTop

David Stotts, Jason Smith, Karl Gyllstrom

- two video streams over shared desktop
 - light-weight transition between communication and interaction
 - supports synchronous paired collaboration
 - can see facial expressions, gestures

Examples

Remote Access to Physical Devices

- extend VNC
 - remote access to devices
 - use standardized GUI protocol for devices that have no physical display of their own
 - when display becomes available, can then provide graphical information

Future Work
Using Shared Screens for Awareness

- class project – useful for awareness?
 - build shared screen application
 - support awareness → interaction

Future Work

Discussion

- as a viewer:
 - what do you want to see?
 - how much information is too much?
 - do you want to be notified if someone is working in a particular application?
 - do you want a recent history of what someone has been working on?

- as a sharer:
 - how much control over what you share?
 - what would you share?
 - visual indication to indicate what you are sharing?
 - times you don’t want to share?