
1

Hidden surface removal

Hidden and Visible Surfaces

• Visible surfaces
• Parts of a scene visible from chosen viewpoint

• Hidden surfaces
• Parts of a scene not visible from chosen viewpoint

• Subtle difference between hidden surface
removal and visible surface determination

• Many algorithms: image space, object space
and hybrid.

• Requirements for quality vs. speed.

2

Hidden Surface Algorithms

Object-space

• Comparison within real 3D scene
• Works best for scenes that contain few polygons

Image-space
• Decide on visibility

at each pixel position

Visible surface determination

• Image Space Algorithms
• Complexity = O(pixels * objects)
• e.g. 1286*1024 pixels and 1 million polygons
• Complexity = O(1.3 * 1012)

• Object Space Algorithms
• Worst case might have to compare n objects with n-1

objects:
• Complexity = O(n2)
• e.g. 1 million polygons
• Complexity = O(1012)

3

Reducing complexity

Exploit Coherence
• Object Coherence: If objects are well

separated, compare objects not faces.

• Face Coherence: If faces vary
smoothly, can modify face incrementally.
Can put constraints on models, such as
no interpenetration.

• Edge Coherence: An edge changes
visibility only when it crosses another
edge or face.

• Scan-line Coherence: Set of visible
object spans typically does not vary
much between scan lines.

Reducing complexity
• Area Coherence: Groups of

adjacent pixels often covered by
the same visible face.

• Depth Coherence: Adjacent
parts of the same surface are
typically close in depth.

• Frame Coherence: In animation,
frames adjacent in time are likely
to be very similar.

4

Back-Face Removal
back-face culling
• We see a polygon if its normal is pointed toward

the viewer.

Plane equations
Finding Polygon Normals
Ax + By +Cz + D = 0

Normal Vector: n=(A, B, C)

n = (Q-R) X (Q-P)

• In many cases the vertex
normals have been calculated
by a polygoniser

• Normals and cross products
must be normalised

5

Plane Equation
Plane equation : Ax + By +Cz + D = 0

• Can store plane as a point and a normal vector or store A,B,C,D. To
determine coefficients given 3 non-colinear points:

(A/D)xi + (B/D)yi + (C/D)zi = -1

Using cramer’s rule:

Expanding:
A = y1(z2-z3)+y2(z3-z1)+y2(z3-z1)
etc.

Back face culling
Many renderers consider counter-

clockwise polygons as outwards
facing.

Take dot product with View Plane
Normal

If (+)ve or zero discard polygon.
Q = Normalized View Plane Normal dotp = N.Q

if dotp (+)ve Backfacing
if dotp (-)ve Frontfacing
if dotp = 0 Edge On

Assuming perspective projection.
Polygon is backfacing if Z
component of normal is (-)ve
in the eye system.

6

Back face culling

• object is (approximated by) a solid polyhedron
=> faces completely enclose its volume

7

Depth sort
Or painters algorithm
• determine a visibility ordering for objects which will

ensure a correct picture if objects are rendered in that
order

• If no objects overlap in depth (z), then it is only
necessary to sort them by increasing z (furthest to
closest) and render them

• Otherwise, it will be necessary to modify (by splitting) the
objects to get an ordering

Depth sort
tests for visibility:
1. do x or y -extents not overlap?
2. is S entirely on the opposite side of S’

plane, from the viewpoint?
3. is S entirely on the same side of S’

plane, from the viewpoint?
4. do the projections of polygons onto the

xy plane not overlap?

8

Z-buffer method

• A commonly used image-space approach to
hidden-surface removal

• It is also referred as Depth-Buffer method
• Use the intensity color of the nearest 3D point

for each pixel
What is an efficient way for it?
• 2 buffers,

• frame buffer – stores image information
• z-buffer – depth information
• with the same resolution

9

Z-Buffer Algorithm
for all positions (x,y) in the view screen

frame(x,y)=I_background
depth(x,y)=max_distance

end
for each polygon in the mesh

for each point(x,y) in the polygon-fill algorithm
compute, z, the distance of corresponding 3D-point from COP

if depth(x,y) > z // a closer point
depth(x,y)=z
frame(x,y)=I(p) //shading

endif
endfor

endfor

Determining Z-Depth
If we have the plane equation:

Ax + By +Cz + D = 0 Normal Vector: N=(A, B, C)

Insert known x,y into plane eqn. and solve for z:
z = (-ax -by -d)/c

Then at (x1 +∆x, y1)
z’ = z1 – a∆x/c a/c is constant for the plane ∆x = 1

So incrementing:
zi+1 = zi - a/c across scan line
zj+1 = zi j - b/c between scanlines

10

Z-buffer Alternative method
After the algorithm
• Frame buffer contains intensity values of the visible

surface
• z-buffer contains depth values for all visible points
Alternative method for computing z-depth the step in

algorithm
• We know d1, d2, d3 and d4 from vertices of the mesh
• Use linear interpolation for other points

d1

d2

d3

d4

Advantages & Disadvantages of Z buffer

• Needs large memory to keep Z
values

• Can be implemented in hardware

• Can do any number of primitives

• Handles cyclic and penetrating
polygons

• Handles Polygon Stream in any
order

• Transparency?

