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Abstract

Implicit surfaces are often designed through the definition and
addition of offset surfaces. These are typically defined using
a skeleton of primitives such as points and lines. A predefined
offset from the skeleton determines the surface. Implied in this
commonly used technique is the computation of the distance
from the skeleton. It is natural to use the Euclidean definition
of distance. In this paper we discuss previous and recent
work that takes advantage of alternate definitions of distance
to achieve shapes that have previously been difficult to attain.

1 Introduction

The shapes easily modeled with commonly used implicit
surfaces have tended to be curved (giving rise to their nick
name blobs). The shapes most easily modeled with CSG tend
to be angular. Complex models that required combinations
of these two types of shapes can be achieved by combining
the two approaches to modeling through a process such as
the BlobTree[10]. However, blending between the different
types of shapes to achieve degrees ofroundednessremains
a problem, making some shapes difficult to design. For
instance, basic geometric shapes with rounded corners such
as commonly found in furniture and appliances. Through the
use of general distance measures we show how to acheive
shapes that are not just blobby but exhibit some degree of
blobbiness while retaining most angular forms. We show
also how these shapes can be achieved using an extension
of super-quadrics [3] and how we can easily blend between
them. Blending with the use of super-quadric distance
metrics has been previously been avoided due to scaling and
polygonization difficulties [12].

An implicit surface is a point set which satisfies some
implicit function, ie. F (x; y; z) = 0. The functions used
generate a scalar field. The surface is then a level set of the
scalar field. An advantage of these surfaces is the ease with
which complex models can be constructed through blending
of scalar fields of different implicit functions.

While any implicit function can be used, for example that
of a sphere, recent use of this class of surfaces computes a
scalar field based on a function of distance from a skeleton of
primitives. The primitives are generally lines, points, circles
etc. These techniques were introduced by Blinn [5], and

refined by Wyvill et al. [11] and Nishimura et al. [8]. A
common formulation is shown in function 2.
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Wherep is the point(x; y; z), andfi is the field function
for the ith skeleton in the composite implicit surface. The
function used for the field functionfi can be as shown
in function 1 however within some constraints [4, 12] any
function can be used.

In this paper we describe how to integrate general distance
metrics into a general implicit surface modeling system. The
use of general distance metrics for implicit surfaces has been
described before, most notably by [4], however assumptions
and simplifications were made in that paper. We describe
a solution for how to use different metrics on non-point
skeletons, and how to use metrics that have heretofore been
avoided. The end result of this work is to replacejpj (a
shorthand for Euclidean distance) in function 2 with some
other function.

This paper is organized in the following sections. In
section 2 we discuss the previous work both on implicit
surfaces and the use of general distance metrics for point
skeleton implicit surfaces. In section 3 we discuss use of the
super-quadric distance metric. In section 4 we discuss how
to use these general distance metrics in non-point skeleton
implicit surfaces. Some results are shown in section 5 and
conclusions and future work are outlined in 6.

2 Previous Work

The framework described in the original work on implicit
surfaces [5, 11, 8] defines the surface as a level set of an
implicit function F (x; y; z) = 0, and yielded shapes that
had a spherical offset surface. This is to say that a point
skeleton yields a sphere, a line skeleton yields a cylinder with
hemispherical caps, a circle yields a torus, etc. This is a result
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Figure 1: A summary of the affect of variation ofp for Lp metrics for two dimensional implicit surfaces.

of using a Euclidean distance metric to determine the distance
of a point from the skeleton of the implicit surface.

When introducing implicit surfaces, Blinn [5] used only
the Euclidean distance measure. He did mention however that
in general any distance measure could be used. It was briefly
pointed out in a paper from Blanc and Schlick [4] that using
other methods for distance measure can extend the modeling
power of the system. Their suggestion was to use theLp

metric, expression 3.

Lp = (jx1 � x2j
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Expression 3 can be used to replacejpj in function 2, In
this casep =< x1 � x2; y1 � y2; z1 � z2 >, where<
x1; y1; z1 > is the closest point on the skeleton to the query
point< x2; y2; z2 >.

TheLp metric is a generalization of the Euclidean metric.
Note thatL2 is exactly the Euclidean definition.L

1
is known

as the Manhattan distance. The interesting use of theLp metric
occurs forp > 2. Note that in the limit asp goes to1 the
result of the metric is simplymax( jx1 � x2j; jy1 � y2j; jz1 �
z2j) . A summary of the affect ofp to surface shape for two
dimensional implicit surfaces is shown in figure 1.

The Blanc and Schlick paper, however did not provide the
method for computation of the normal in 3D. (The normal is
the gradient of the difference vector from the skeleton, see
appendix A). This problem is an issue when the skeleton is
not a point, section 4. The main purpose of their work was to
survey existing field and distance functions and present new
ones. The majority of the work in that paper on different
distance metrics was through the use of user defined distance
metrics. Their formulation for this is similar in principle to the
use of a star-shaped set as input for a Minkowski metric [9].

3 Super-quadric Distance

A super-ellipse is a generalization of a circle. Their
introduction was by Faux and Pratt [7]. They allow the
specification of all shapes between squares, circles and
pinched circles.

The definition of super ellipses was extended to three
dimensions by Barr [3] to form super-quadrics. The
formulation for the surface of a super-quadric is given in
equation 5.
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f(x; y; z) = dsq(x; y; z)� 1 = 0 (5)

The parametersew and ns are roundedness parameters
in east/westand north/south directions. Thea, b, and
c parameters simply imply the scale in the axis aligned
directions. The roundedness parameters are the main shape
control parameters. The shapes attainable range from a cube
to a sphere ifew and ns together change uniformly from
0 to 1. These parameters can be changed independently to
attain cylindrical surfaces in either direction. If theew andns
parameters go above2 the surface becomes pinched. A full
inventory of shapes can be found in [2], figure 2 shows a small
sampling of the possible shapes.

The use of a super-quadric formulation for the measure of
distance has been avoided due to difficulty with blending [4,
12]. This is because when equation 5 (without the�1 radius
term) is used to measure distance in an implicit surface system

the scale of the offset surface is not consistent. The
�� z
c

�� 2

ns term
causes the offset to grow whenns decreases. This needs to be
controlled in order to make the function useful as a distance
measure.

The first step to getting a useful distance measure from
function 5 is to note that whenew = ns = 1 the definition
is equivelent to the implicit form of a sphere,f(x; y; z) =

x2+y2+z2�1. This infers that we need to have an extension
to the implicit equation of a super-quadric such that when
ew = ns = 1 the result is theL2 distance metric. Only
a small amount of thought is required to see that we need to
raise the function 4 to the exponentns=2. This is shown in
function 6.

f(x; y; z) = dsq(x; y; z)
ns

2 (6)

The above function for distance, 6, is a generalization of
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Figure 2: An inventory of super-quadric shapes showing the
values for theew and ns parameters. The scale
parameters are all set to1.

theLp metric. This can be shown quite easily, an informal
discussion follows. Ifew = ns = 1 then it is easily seen
that we have theL2 metric, in fact ifew = ns = n we have
the following (the scale parametersa, b andc are omitted for
brevity):
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Interesting cases which should be outlined are whenew
andns simultaneously go to zero and to1:
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Finally if ew and ns approach1 then we have the
following:
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Since this metric is nothing more than a special case of
theLp metric its use in implicit surface modelling is no more

difficult than the use of theLp metric. Some examples of the
shapes attainable with this super-quadric distance can be found
in section 5.

In order to find the normal on the surface of an implicit
surface generated with this metric we use the vector of partial
derivatives of the difference vector from the skeleton. See
appendix A.

4 Non-point Skeletons

All of the above discussion is relevant only for point skeletons.
If we have a circle skeleton which lies say in thexy plane then
we will not generate a torus as the surface from theLp metric
with p > 2. There will be pinches in the neighbourhoods on
the surface wherex � z and the normal to the surface will
no longer be the vector of partial derivatives for the difference
vector.

What is required is a local basis defined at the closest
point on the skeleton for the point in question. When the
field function is evaluated for a given point the typical implicit
surface system computes the value from the distance of that
point to the closest point on the skeleton. This distance must
be computed with respect to a local basis defined at that closest
point.

It turns out that for a point skeleton (where the point is at
the origin) the basis to use is always[< 1; 0; 0 >;< 0; 1; 0 >
;< 0; 0; 1 >]. However what is it for a line skeleton where
the line lies in they axis? The answer is[< 1; 0; 0 >;<
0; 1; 0 >;< 0; 0; 1 >]. This basis slides up and down the
line as the closest point on the skeleton changes. The distance
functiond(x; y; z) is then evaluated with respect to this basis.
If p is a point for which the field value is requested ands is
the closest point on the skeleton top then we evaluated as
follows: d((p� s) � B). WhereB is the basis on the skeleton
at s and multiplication of a vectorv by a basisB is meant
as the vector of dot products betweenv and each of the axial
vectors ofB.

For most skeletons the basis is always the default of[<
1; 0; 0 >;< 0; 1; 0 >;< 0; 0; 1 >]. In our implementation
this means; points, lines, planes, disks and squares. Their
are two skeletons in our implementation which require a
special basis, they are; circle and polyline. The basis for a
circle which lies in thexz plane and centered at the origin
is [ ^< xc; 0; zc >;< 0; 1; 0 >; ^< �zc; 0;�xc >] (where the
subscriptc is meant as the coordinates of the closest point on
the skeleton). It is with respect to this basis that the difference
vectorp � s is computed. Now also the vector of partial
derivatives of the distance function used is appropriate for the
normal of the surface.

The basis for the polyline is more complicated. A poly-
line skeleton is a set ofn-lines defined by an ordered set
of n + 1 vertices. Each pair of contiguous line segments
are connected with a circular arc to provide a piecewise
continuous field. The radius of the connecting arcs is a user



Figure 3: Five primitives with distance measured withL4

blended to form a table.

defined parameter allowing for a primitive with considerable
flexibility. A basis is defined by associating a basis with
the first point and ensuring a continuous frame based on the
relationship between contiguous line segments. For the frames
of the line segments we define an arbitrary frameF0 for the
first point p0. TheFi, 0 < i < n frames are computed with
respect to theFi�1 frames by rotating around the normal
vector of theFi�1 frame by the angle between the two line
segments. It remains to compute a frame for any point along a
curve joining two segments of the polyline. This can be done
using an interpolation. See [6] for a complete discussion of
calculating frames along a curve.

5 Results

In this section we present some visual results of models build
with theLp and the super-quadric distance metrics. Figure 3
shows four line segments blended with a plane segment to
form a table. All of the field functions are evaluated using
anL4 metric.

Figure 4 shows the result of blending super-quadric
distance measures from point skeletons. As is shown by the
figure there is no problem blending between fields generated
with equation 6. There are three skeletons in the figure. The
left most uses super-quadric distance withew = 2 andns = 1

and the right most uses super-quadric distance withew = 1

andns = 0:2. The middle skeleton uses Euclidean distance.

The third example, figure 5, shows an odd barbell/pipe
type of object. The point of the object is to show the use
of super-quadric andLp-distances blended inside a complex
hierarchical soft object using non-point skeletons. The object
is built by blending two circle primitives using anL6 metric
with the CSG difference of a line primitive from super-
quadratic distance line primitive. The difference gives the hole
through the middle, the subtracting surface was accomplished
with a standard Euclidean distance metric surface. The super-
quadratic distance measure was used for the outside line
primitive so that we could easily avoid the hemispherical caps.

Figure 4: Blending of three primitives using the super-quadric
distance metric.

Figure 5: Various distance measures in a more complex
hierarchy.

6 Conclusions

In this paper we have discussed the use of generalized distance
metrics for implicit surface modeling. We have shown that
using both theLp metric and the super-quadric metric presents
no problems in integration with an implicit modeling system.
In order to use the super-quadric formula as a distance metric
we extended the formula to be a special case of theLp metric.

There are currently two extensions that we are considering
for future work. The first is to implement parameteric distance
metrics. This would be to make theLp metricsp parameter,
or super-quadricns and ew parameters dependent on a set
of direction vectors. This would allow truly odd shapes,



with protruding roundedcorners. The other extension is
to implement ray quadrics [1] for input to the Minkowski
metric [9].
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A Normals

In this appendix we present the computation of the normal
vector to the offset surface generated for the non-Euclidean
distance metrics discussed in this paper. For both cases this is
simply the the vector of partial derivatives of the offset vector
in the local basis on the skeleton (see section 4). The distance

function is given asf complete with the parameters for the
function, and its partial derivates are shown below.

Lp Metric

f(x; y; z; n) = (jxjn + jyjn + jzjn)
1

n (14)

(15)

@f

@x
=

f(x; y; z)jxjn

x (jxjn + jyjn + jzjn)
(16)

@f

@y
=

f(x; y; z)jyjn

y (jxjn + jyjn + jzjn)
(17)

@f

@z
=

f(x; y; z)jzjn

z (jxjn + jyjn + jzjn)
(18)

Super-quadric Metric
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