Designing Software With Flowcharts And Pseudo-code

In this section you will learn two different ways of laying out a computer algorithm independent of programming language
A Model For Creating Computer Software

Specify the problem

Develop a design (algorithm)

Implement the design

Maintain the design
What Is An Algorithm?

The steps needed to solve a problem

Characteristics

• Specific
• Unambiguous
• Language independent
Developing An Algorithm: Top-Down Approach

General approach

Approach to part of problem

Specific steps

Specific steps

Specific steps

Specific steps

The algorithm

Figure extracted from Computer Science Illuminated by Dale N. and Lewis J.
Techniques For Laying Out An Algorithm

Pseudo-code

Flowcharts
Pseudo-Code

Employs 'programming-like' statements to depict the algorithm

No standard format (language independent)
Pseudo-Code Statements

Output
Input
Process
Decision
Repetition

Statements are carried out in order
Example: calling up a friend
1) Look up telephone number
2) Enter telephone number
3) Wait for someone to answer

: :
Variables

Are symbols used to store values

The value stored can change during the algorithm
Pseudo-Code: Output

Used to display information

General format:

 Line of text: Output 'Message'

 Variable: Output Name of variable

Example

 Output 'Available credit limit: ' limit
Pseudo-Code: Input

Used to get information

Information is stored in a variable

General format:

 Input: Name of variable

Example:

 Input user_name
Pseudo-Code: Process

For computer programs it's usually an assignment statement (sets a variable to some value)

General form:
variable ← arithmetic expression

Example:
\[x ← 2 \]
\[x ← x + 1 \]
\[a ← b * c \]
Pseudo-Code: Decision Making

If-then

General form:
if (condition is met) then
 statement(s)

Example:
if temperature < 0 then
 wear a jacket

If-then-else

General form:
if (condition is met) then
 statement(s)
else
 statements(s)
Pseudo-Code: Decision Making (2)

Example:
if (at work) then
 Dress formally
else
 Dress casually
Pseudo-Code: Repetition

repeat-until

while-do
Pseudo-Code: Repetition (2)

repeat-until

Repeat at least once (check condition after statement(s))

General form:
repeat
statement(s)
until (condition is met)

Example:
repeat
 Go up to buffet table
until full
Pseudo-Code: Repetition (3)

while-do

Repeat zero or more times (check condition before statement(s))

General form:
while (condition is met)
 statement(s)

Example:
while students ask questions
 Answer questions
Pseudo-Code: Fast Food Example

Use pseudo-code to specify the algorithm for a person who ordering food at a fast food restaurant. At the food counter, the person can either order not order the following items: a burger, fries and a drink. After placing her order the person then goes to the cashier.
Pseudo-Code: Fast Food Example

Approach counter

if want burger then
 order burger

if want fries then
 order fries

if want drink then
 order drink

Pay cashier
Pseudo-Code: Fast Food Example (Computer)

Approach counter

Output 'Order burger?'

Input order_burger

if order_burger = yes then
 order_burger

Output 'Order fries?'

Input order_fries

if order_fries = yes then
 order_fries
Pseudo-Code: Fast Food Example (Computer 2)

Output 'Order drink?'

Input order_drink

If order_drink = yes then

 order drink

Pay cashier
Pseudo-Code: ATM Example

Use pseudo-code to specify the algorithm for an ATM bank machine. The bank machine has four options: 1) Show current balance 2) Deposit money 3) Withdraw money 4) Quit. After an option has been selected, the ATM will continue displaying the four options to the person until he selects the option to quit the ATM.
Pseudo-Code: ATM Example

Approach ATM

Repeat

 Output 'Select option'

 Output '1) Make withdrawal'

 Output '2) Make deposit'

 Output '3) Show balance'

 Output '4) Quit'

 Input option
Pseudo-Code: ATM Example (2)

If option = deposit then

 Output 'Enter amount to deposit'

 Input amount

 balance ← balance + amount

If option = withdrawal then

 Output 'Enter amount to withdraw'

 Input amount

 balance ← balance – amount

 Output 'Balance is ' balance

Until option = quit

Stop

Can you spot the limitations of this algorithm?
Summary Of Pseudo-Code Statements

<table>
<thead>
<tr>
<th>Statement</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>Display information</td>
</tr>
<tr>
<td>Input</td>
<td>Get information</td>
</tr>
<tr>
<td>Process</td>
<td>Perform an atomic (non-divisible) activity</td>
</tr>
<tr>
<td>Decision</td>
<td>Choose between different alternatives</td>
</tr>
<tr>
<td>Repetition</td>
<td>Perform a step multiple times</td>
</tr>
</tbody>
</table>
Basic Flowcharts Element

Terminator

Process

Input

Output

Decision

Off page Connector
c

Arrow

Variables
Flowchart: Fast Food Example

Draw a flowchart to outline the algorithm for a person who ordering food at a fast food restaurant. At the food counter, the person can either order not order the following items: a burger, fries and a drink. After placing her order the person then goes to the cashier.
Flowchart: Fast Food Example

Approach counter

Want burger? Y → Order burger
N

Want fries? Y → Order fries
N

Want drink? Y → Order drink
N

Pay cashier
Flowchart: Fast Food Example (Computer)

Approach
console

'Order
Burger?'

Order
burger

Order
burger = 'yes'

Order
burger

2

Y

N
Flowchart: Fast Food Example (Computer 2)

2

'Order
Fries?'

Order
fries

Order_
fries='yes'

Order
fries

Y

N

3
Flowchart: Fast Food Example (Computer 3)

1. 'Order drink?'
 - If yes, go to Order drink
 - If no, go to Pay cashier

2. Order drink
 - If yes, go to Order drink
 - If no, go to Pay cashier

3. Pay cashier

James Tam
Flowchart: ATM Example

Draw a flowchart to outline the algorithm for an ATM bank machine. The bank machine has four options: 1) Show current balance 2) Deposit money 3) Withdraw money 4) Quit. After an option has been selected, the ATM will continue displaying the four options to the person until he selects the option to quit the ATM.
Flowchart: ATM Example

Approach
ATM

'Select option'
'1) Make deposit'
'2) Make withdrawal'
'3) Show balance'
'4) Quit'

option

Option = quit

Y Stop

N 2
Flowchart: ATM Example (2)

Option = deposit

Y

'Enter amount to deposit'

amount

balance ← balance + amount

N

3

2

4
Flowchart: ATM Example (3)

Option = withdrawal

Y

'Enter amount to withdraw'

amount

balance ← balance - amount

N

3

4
'Balance is' balance

Can you spot the limitations of this algorithm?
Summary

Laying out an algorithm using flowcharts and pseudo-code

Learning basic elements of algorithms:

• Input
• Output
• Decision-Making
• Repetition
• Processes