
Lecture	10
Concurrency,	Classical	Problems

Monitors
Deadlocks



Last	Time

CPSC	457	- Tyson	Kendon	2016 1

Virtual	Memory
• Page	Replacement	Algorithms
• Thrashing
• Kernel	Memory	Management
• Memory	Management	
Considerations

• Real	World	Memory	
Management

Concurrency
• Race	Conditions	(and	other	

concurrent	problems)
• Critical	Sections
• Atomic	Operations
• Locks

• Mutexs
• Semaphores



This	Time

CPSC	457	- Tyson	Kendon	2016 2

Concurrency
• Some	notes	about	Semaphores
• Spinlocks
• Classical	Synchronization	Problems
• Monitors

• Monitor	Construction
• Condition	Variables
• Using	Monitors
• Java

Deadlocks
• Deadlocks

• Resource	Allocation
• Detecting	Deadlocks
• Resolving	Deadlocks



More	about	Semaphores

CPSC	457	- Tyson	Kendon	2016 3

Mutexes vs	Semaphores

Sequenctalization

Deadlocks	and	Starvation



Spinlocks

CPSC	457	- Tyson	Kendon	2016 4



Classical	Problems	of	Synchronization

CPSC	457	- Tyson	Kendon	2016 5

Producer-Consumer	/	Bounded-Buffer	

Readers-Writers	Problem

Dining	Philosophers



Bounded	Buffer	Problem

CPSC	457	- Tyson	Kendon	2016 6



Readers-Writers	Problem

CPSC	457	- Tyson	Kendon	2016 7



Dining	Philosophers	Problem

CPSC	457	- Tyson	Kendon	2016 8



Monitors

CPSC	457	- Tyson	Kendon	2016 9

Language-Level	Construct
• Code	must	be	inserted	/	
managed	by	the	
Language

• Split	the	protection	of	
critical	sections	from	the	
scheduling	of	access



Condition	Variables

CPSC	457	- Tyson	Kendon	2016 10

Control	Access	to	the	
Monitor	Lock
• wait() – give	up	access	
to	the	monitor	lock	and	
wait	for	someone	to	
signal

• signal()– wake	up	a	
process	waiting	for	the	
condition

• broadcast() –wake	
all	processes	waiting	for	
the	condition



Java
Every	object	in	Java	is	a	monitor	and	it’s	own	
condition	variable	
• Can	declare	methods	or	code	blocks	synchronized

– Code	blocks	allow	finer	grain
• Only	one	thread	will	be	allowed	to	run	in	each	
synchronized	block/method

• Use	the	wait	and	notify/notifyAllmethods	to	signal	
waiting	and	signaling.

CPSC	457	- Tyson	Kendon	2016 11



Deadlocks

CPSC	457	- Tyson	Kendon	2016 12

Two	or	more	processes	are	unable	to	proceed	
because	each	is	waiting	for	another	process	
(which	is	waiting)	to	proceed.



System	Model

CPSC	457	- Tyson	Kendon	2016 13

Processes

Resources

Requests
• Request
• Use
• Release



Deadlock	Characterization

CPSC	457	- Tyson	Kendon	2016 14

1. Mutual Exclusion - resources cannot be shared, a 
second request must be delayed

2. Hold and wait - A process must be holding a resource 
and waiting for another resource

3. No preemption - resources cannot be taken from a 
process once it has them

4. Circular waiting - For a set of processes {P1, ..., Pn} then 
P1 must wait for P2, which must wait for P3 … which must 
wait for Pn, which must wait for P1



Resource-Allocation	Graphs

CPSC	457	- Tyson	Kendon	2016 15



Handling	Deadlocks

CPSC	457	- Tyson	Kendon	2016 16



Preventing	Deadlocks

CPSC	457	- Tyson	Kendon	2016 17

Prevent	one	of	the	four	characterizations	from	
holding.



Avoiding	Deadlocks

CPSC	457	- Tyson	Kendon	2016 18

Decide	(at	runtime)	which	situations	are	safe	
and	which	will	lead	to	Deadlocks.



Detecting	Deadlocks

CPSC	457	- Tyson	Kendon	2016 19

Look	at	our	processes	and	resources	and	
determine	if	they	are	deadlocked.



Recovering	From	Deadlocks

CPSC	457	- Tyson	Kendon	2016 20

Look	at	our	processes	and	resources	restore	
them	to	a	point	where	the	system	is	free	of	
deadlocks.



Next	Time

CPSC	457	- Tyson	Kendon	2016 21

File	Systems
• How	do	we	organize	

data	on	secondary	
storage	to	make	sense	
and	access	it	quickly

Devices
• How	the	OS	addresses	

different	
physical/virtual	devices


