CPSC 457 Operating Systems

Lecture 8

Memory Management: Virtual Memory

Last Time

Memory Management

Midterm Review

- Address Space
- Base and Limit Registers
- How do we store processes
- Swapping
- Free Memory Management

This Time

Midterm

Virtual Memory

- Fragmentation
- Paging
- Page Tables
- Translation Look-aside Buffers
- Page Faults
- Locality

Memory Fragmentation

External

Internal

Virtual Memory

Paging

Frame

Fixed-Sized block of Physical Memory

Page

Fixed-Sized block of Logical Memory

Page Table

Maps the Pages on to the Frames

Page Address

Page Number

Page Offset

Paging can be EXPENSIVE

Translation Look-aside Buffer

Associative High Speed Memory high speed lookup cache

Big Page Tables

Hierarchical Page Tables

Lookups for the page table

Hashed / Clustered Paging

Hash Table entries, possibly gather related pages

Inverted Page Table

 Track all frames and which pages are assigned to them

Virtual Memory

How to Implement Virtual Memory

Demand Paging

Load pages into memory only when you need them

Page Fault

When you access memory and discover no page

Next Time

Memory Management

 Page Replacement Algorithms

Concurrency

- How to manage the problems when processes run at the same time
- Classical problems of Computer Science