CPSC 457 Operating Systems

Lecture 8

Memory Management: Virtual Memory

Last Time

Memory Management

Midterm Review

- Address Space
- Base and Limit Registers
- How do we store processes
- Swapping
- Free Memory Management

CPSC 457 - Tyson Kendon 201

This Time

Midterm

Virtual Memory

- Fragmentation
- Paging
- Page Tables
- Translation Look-aside Buffers
- Page Faults
- Locality

CPSC 457 - Tyson Kendon 201

Memory Fragmentation

External

Internal

CPSC 457 - Tyson Kendon 201

Virtual Memory

Paging • Fixed-Sized block of Physical Memory • Fixed-Sized block of Logical Memory • Maps the Pages on to the Frames

Frame

Page

Page Table

Page Address

Page Number

Page Offset

Paging can be EXPENSIVE

Translation Look-aside Buffer

Associative High Speed Memory high speed lookup cache

CPSC 457 - Tyson Kendon 201

Big Page Tables

Hierarchical Page Tables

• Lookups for the page table

Hashed / Clustered Paging

• Hash Table entries, possibly gather related pages

Inverted Page Table

 Track all frames and which pages are assigned to them

CPSC 457 - Tyson Kendon 2016

q

Virtual Memory

PSC 457 - Tyson Kendon 2016

How to Implement Virtual Memory

Demand Paging

- Load pages into memory only when you need them
 Page Fault
- When you access memory and discover no page

CPSC 457 - Tyson Kendon 2016

11

Next Time

Memory Management

• Page Replacement Algorithms

Concurrency

- How to manage the problems when processes run at the same time
- Classical problems of Computer Science

CPSC 457 - Tyson Kendon 201

12