6/14/16

Last Time
CPSC 457 Virtual Memory

Operating Systems « Fragmentation
* Paging

. * PageTables
Page Replacement Algorithms « Translation Look-aside

Concurrency Buffers

Lecture 9

* Page Faults
* Locality of Reference

CPSC 457 - Tyson Kendon 2016 1

This Time What to do when our frames are full?

Virtual Memory Concurrency
* Page Replacement Algorithms * Race Conditions (and other
e Thrashing concurrent problems)
* Kernel Memory Management < Critical Sections
* Memory Management * Atomic Operations

Considerations * Locks
* Real World Memory * Mutexs

Management * Semaphores

CPSC 457 - Tyson Kendon 2016 2 CPSC 457 - Tyson Kendon 2016 3



6/14/16

Page Replacement Algorithms Optimal
Optimal
FIFO
Second Chance
Not Recently Used
Least Recently Used
Working Set

CPSC 457 - Tyson Kendon 2016 4 CPSC 457 - Tyson Kendon 2016 5

First In, First Out Second Chance

CPSC 457 - Tyson Kendon 2016 6 CPSC 457 - Tyson Kendon 2016 7



6/14/16

Not Recently Used Least Frequently Used

CPSC 457 - Tyson Kendon 2016 8 CPSC 457 - Tyson Kendon 2016 9

Working Set Thrashing

CPSC 457 - Tyson Kendon 2016 10 CPSC 457 - Tyson Kendon 2016 11



6/14/16

Kernel Memory Allocation Memory Management Considerations

Local vs Global Allocation

Buddy Allocation Non-Uniform Memory Access

Page Size Selection
SLAB Allocation How we code

Page Locking

CPSC 457 - Tyson Kendon 2016 12 CPSC 457 - Tyson Kendon 2016 13

Real World Memory Allocation Concurrency

What are the consequences of running processes at

Windows the same time?

* Clustering / Working Set

Linux What can we do to make sure that processes don’t
« LRU — With a clock run over each other, while keeping the benefits of
parallelism.

CPSC 457 - Tyson Kendon 2016 14 CPSC 457 - Tyson Kendon 2016 15



Race Conditions

What is the value of counter?

A: register; = counter
B: register; = register; + 1 P1
C: counter = register;
D: register, = counter
E: register; = register, - 1 P,
F: counter = register;

CPSC 457 - Tyson Kendon 2016

An area of code where processes change

Critical Section

something common

1.

2.

Mutual Exclusion. No two processes may be simultaneously inside their

critical regions

Universality. No assumptions may be made about speeds or numbers of

CPUs

Progress. No process running outside its critical region may block any

process

Bounded Waiting. No process should have to wait forever to enter its critical

region

CPSC 457 - Tyson Kendon 2016

Atomic Operations

Test_and_Set_Lock

Simultaneously take the value of a variable and

set it

CPSC 457 - Tyson Kendon 2016

Locks

CPSC 457 - Tyson Kendon 2016

6/14/16



Mutexes

Lock

Take the lock if available, wait if not

Unlock

Free the lock and wake the waiting processes

CPSC 457 - Tyson Kendon 2016

Next Time
Concurrency Deadlock
* Classical problems * How locks can break
e Producer / execution
Consumer

* Dining Philosophers
* Sleeping Instructor

CPSC 457 - Tyson Kendon 2016

Semaphores

Wait
Wait for access to a resource
Signal

Let waiting processes know to proceed

CPSC 457 - Tyson Kendon 2016

6/14/16



