EMYCIN
 CPSC 433
 Tyson Kendon
 Fall 2007

Calculate This:

- Group the rules that lead to the conclusion h you want into set e.
- If $|e|=1$ only one rule $\left(P_{1} \wedge \ldots P_{n} \Rightarrow_{i} h\right)$.
- $\quad M B(h, e)=I\left(P_{1} \wedge \ldots P_{n} \Rightarrow h\right) * \max \left(0, \min \left(I\left(P_{1}\right), \ldots I\left(P_{n}\right)\right)\right)$
- If $|e| \geq 2(e=\{e 1, e 2\})$
- $\operatorname{MB}(h,\{e 1, e 2\})=M B(h,\{e 1\})+M B(h,\{e 2\})^{*}(1-M B(h,\{e 1\}))$
- $M B(h,\{e 1, e 2\})=0$, if $M D(h,\{e 1, e 2\})=1$
- MD is calculated the same way, but now we want the rules

$$
\mathrm{P}_{1} \wedge \ldots \mathrm{P}_{\mathrm{n}} \Rightarrow_{\mathrm{i}} \neg \mathrm{~h}
$$

- $I(h)=M B(h)-M D(h)$

A Problem (with numbers)

- If a student has good funding and a good GPA then there is a good chance (0.8) that the student will be accepted to grad school.
- If a student has a high community involvement and a low amount of outside obligations then there is a good chance (0.7) that they will be accepted to grad school.
- If a student has bad funding and a high amount of outside obligations then there is a chance (0.6) that the student will not be accepted to grad school.
- If a student has a low GPA, but has good research potential there is a chance (0.5) that they will be accepted to grad school.

Rules

- (e1): Funding $(X$, good $) \wedge G P A(X$, good $) \Rightarrow_{1}$ Accepted $(X) ; I(e 1)=0.8$
- (e2): Involvement $(X$, high $) \wedge$ Obligations $(X, l o w) \Rightarrow 2$ Accepted (X); $\mathrm{I}(\mathrm{e} 2)=0.7$
- (e3): Funding $(X$, bad $) \wedge$ Obligations $(X$, high $) \Rightarrow 3 \neg$ Accepted (X); $\mathrm{I}(\mathrm{e} 3)=0.6$
- (e4): GPA $(X$, low $) \wedge$ Potential $(X$, high $) \Rightarrow 4$ Accepted $(X) ; I(e 4)=0.5$

Other Inferences

- $\mathrm{I}($ Funding $($ Bob, good $))=0.7$
- $\operatorname{I}(G P A(B o b$, high $))=0.8$
- $I($ Involvement(Bob, high $))=$ 0.6
- $\mathrm{I}($ Obligations(Bob, low $))=0.7$
- $I($ Funding $($ Bob, bad $))=0.2$
- $\mathrm{I}($ Obligations $($ Bob, high $))=0.4$
- $I(G P A(B o b, l o w))=0.2$
- $\mathrm{I}($ Potential $($ Bob, high $))=0.9$

So?

- Will Bob be accepted to grad school?
- Accepted(Bob)
- We need to know the measure of belief (MB) and the measure of disbelief (MD) of Accepted(Bob)
- MB and MD are not probabilities,
- so MB = 1-MD is no necessarily true.

No Grad School for Bob

- $\quad M D(\neg h, e)=I\left(P_{1} \wedge \ldots P_{n} \Rightarrow i \neg h\right) * \max \left(0, \min \left(I\left(P_{1}\right), \ldots I\left(P_{n}\right)\right)\right)$
- $\operatorname{MD}($ Accepted $(\mathrm{Bob}), \mathrm{e} 3)=\mathrm{I}($ Funding $(\mathrm{X}$, bad $) \wedge$ Obligations $(X$, high $) \Rightarrow 3$ $\neg A c c e p t e d(X))$ * max ($0, \min (\mathrm{I}($ Funding(Bob, bad)), I(Obligations(Bob, high))))

No Grad School for Bob

- $\quad M D(\neg h, e)=I\left(P_{1} \wedge \ldots P_{n} \Rightarrow i \neg h\right) * \max \left(0, \min \left(I\left(P_{1}\right), \ldots I\left(P_{n}\right)\right)\right)$
- $\operatorname{MD}($ Accepted $($ Bob $), ~ e 3)=1($ Funding $(X$, bad $) \wedge$ Obligations $(X$, high $) \Rightarrow 3$ \neg Accepted (X)) * $\max (0, \min (\mathrm{I}($ Funding (Bob, bad)), I(Obligations(Bob, high))))
- $\operatorname{MD}(\operatorname{Accepted}(\mathrm{Bob}), \mathrm{e} 3)=0.6 * \max (0, \min (0.2,0.4))$

No Grad School for Bob

- $\quad M D(\neg h, e)=I\left(P_{1} \wedge \ldots P_{n} \Rightarrow \neg h\right) * \max \left(0, \min \left(I\left(P_{1}\right), \ldots I\left(P_{n}\right)\right)\right)$
- $\operatorname{MD}($ Accepted $(B o b), e 3)=1($ Funding $(X$, bad $) \wedge$ Obligations $(X$, high $) \Rightarrow 3$ \neg Accepted (X)) $* \max (0, \min (\mathrm{I}($ Funding (Bob, bad)), I(Obligations(Bob, high))))
- $\operatorname{MD}(\operatorname{Accepted}(\mathrm{Bob}), \mathrm{e} 3)=0.6 * \max (0, \min (0.2,0.4))$
- MD(Accepted(Bob), e3) $=0.6$ * 0.2

No Grad School for Bob

- $\quad \operatorname{MD}(\neg h, e)=I\left(P_{1} \wedge \ldots P_{n} \Rightarrow \neg h\right) * \max \left(0, \min \left(I\left(P_{1}\right), \ldots I\left(P_{n}\right)\right)\right)$
- $\mathrm{MD}($ Accepted $(\mathrm{Bob}), \mathrm{e} 3)=\mathrm{I}($ Funding $(\mathrm{X}$, bad $) \wedge$ Obligations $(\mathrm{X}$, high $) \Rightarrow 3$ \neg Accepted (X)) $* \max (0, \min (\mathrm{I}($ Funding (Bob, bad)), I(Obligations(Bob, high))))
- $\operatorname{MD}(\operatorname{Accepted}(\mathrm{Bob}), \mathrm{e} 3)=0.6 * \max (0, \min (0.2,0.4))$
- MD(Accepted(Bob), e3) $=0.6$ * 0.2
- MD(Accepted(Bob), e3) $=0.12$

Grad School for Bob

Grad School for Bob

- $\quad \mathrm{MB}($ Accepted $($ Bob, $\{e 1\}))=\mathrm{I}(\{e 1\})$ * $\max (0, \min (\mathrm{I}($ Funding (Bob, good) $), \mathrm{I}(\mathrm{GPA}($ Bob, high))))

Grad School for Bob

- $\quad \mathrm{MB}($ Accepted $($ Bob, $\{e 1\}))=\mathrm{I}(\{e 1\}) * \max (0, \min (\mathrm{I}($ Funding (Bob, good) $), \mathrm{I}(\mathrm{GPA}($ Bob, high))))
- $\quad=0.8 * \max (0, \min (0.7,0.8))$

Grad School for Bob

- $\quad \mathrm{MB}($ Accepted $($ Bob, $\{e 1\}))=\mathrm{I}(\{e 1\}) * \max (0, \min (\mathrm{I}($ Funding (Bob, good) $), \mathrm{I}(\mathrm{GPA}($ Bob, high))))
- $\quad=0.8 * \max (0, \min (0.7,0.8))$
- $\quad=0.8 * 0.7=0.56$

Grad School for Bob

- $\quad \mathrm{MB}($ Accepted $($ Bob,$\{e 1\}))=\mathrm{I}(\{e 1\}) * \max (0, \min (\mathrm{I}($ Funding (Bob, good $)), \mathrm{I}(\mathrm{GPA}($ Bob, high))))
- $\quad=0.8 * \max (0, \min (0.7,0.8))$
- $\quad=0.8 * 0.7=0.56$
- $\quad \mathrm{MB}($ Accepted $($ Bob, $\{\mathrm{e} 2\}))=\mathrm{I}(\{\mathrm{e} 2\}) * \max (0, \min (\mathrm{I}($ Involvement (Bob, high $)), \mathrm{I}$ (Obligations (Bob,low))))

Grad School for Bob

- $\quad \mathrm{MB}($ Accepted $($ Bob,$\{e 1\}))=\mathrm{I}(\{e 1\}) * \max (0, \min (\mathrm{I}($ Funding (Bob, good $)), \mathrm{I}(\mathrm{GPA}($ Bob, high))))
- $\quad=0.8 * \max (0, \min (0.7,0.8))$
- $\quad=0.8 * 0.7=0.56$
- $\quad \mathrm{MB}($ Accepted $($ Bob, $\{\mathrm{e} 2\}))=\mathrm{I}(\{\mathrm{e} 2\}) * \max (0, \min (\mathrm{I}($ Involvement (Bob, high $)), \mathrm{I}$ (Obligations (Bob,low))))
- $\quad=0.7 * \max (0, \min (0.6,0.7))$

Grad School for Bob

- $\quad \mathrm{MB}($ Accepted $($ Bob,$\{e 1\}))=\mathrm{I}(\{e 1\}) * \max (0, \min (\mathrm{I}($ Funding (Bob, good $)), \mathrm{I}(\mathrm{GPA}($ Bob, high))))
- $\quad=0.8 * \max (0, \min (0.7,0.8))$
- $\quad=0.8 * 0.7=0.56$
- $\quad \mathrm{MB}($ Accepted $($ Bob, $\{\mathrm{e} 2\}))=\mathrm{I}(\{\mathrm{e} 2\}) * \max (0, \min (\mathrm{I}($ Involvement (Bob, high $)), \mathrm{I}$ (Obligations (Bob,low))))
- $\quad=0.7 * \max (0, \min (0.6,0.7))$
- $\quad=0.7 * 0.6=0.42$

Grad School for Bob

- $\quad \mathrm{MB}($ Accepted $($ Bob,$\{e 1\}))=\mathrm{I}(\{e 1\}) * \max (0, \min (\mathrm{I}($ Funding (Bob, good $)), \mathrm{I}(\mathrm{GPA}($ Bob, high))))
- $\quad=0.8 * \max (0, \min (0.7,0.8))$
- $\quad=0.8 * 0.7=0.56$
- $\quad \mathrm{MB}($ Accepted $($ Bob, $\{\mathrm{e} 2\}))=\mathrm{I}(\{\mathrm{e} 2\}) * \max (0, \min (\mathrm{I}($ Involvement (Bob, high $)), \mathrm{I}$ (Obligations (Bob,low))))
- $\quad=0.7 * \max (0, \min (0.6,0.7))$
- $\quad=0.7 * 0.6=0.42$
- $\quad \mathrm{MB}($ Accepted $($ Bob, $\{\mathrm{e} 4\}))=\mathrm{I}(\{\mathrm{e} 4\})^{*} \max (0, \min (\mathrm{I}(\mathrm{GPA}($ Bob, low $)) \wedge \mathrm{I}$ (Potential(Bob, high))))

Grad School for Bob

- $\quad \mathrm{MB}($ Accepted $($ Bob,$\{e 1\}))=\mathrm{I}(\{e 1\}) * \max (0, \min (\mathrm{I}($ Funding (Bob, good $)), \mathrm{I}(\mathrm{GPA}($ Bob, high))))
- $\quad=0.8 * \max (0, \min (0.7,0.8))$
- $\quad=0.8 * 0.7=0.56$
- $\quad \mathrm{MB}($ Accepted $($ Bob, $\{\mathrm{e} 2\}))=\mathrm{I}(\{\mathrm{e} 2\}) * \max (0, \min (\mathrm{I}($ Involvement (Bob, high $)), \mathrm{I}$ (Obligations (Bob,low))))
- $\quad=0.7 * \max (0, \min (0.6,0.7))$
- $\quad=0.7 * 0.6=0.42$
- $\quad \mathrm{MB}($ Accepted $($ Bob, $\{\mathrm{e} 4\}))=\mathrm{I}(\{\mathrm{e} 4\}) * \max (0, \min (\mathrm{I}(\mathrm{GPA}($ Bob, low $)) \wedge \mathrm{I}$ (Potential(Bob, high))))
- $\quad=0.5 * \max (0, \min (0.2,0.9))$

Grad School for Bob

- $\quad \mathrm{MB}($ Accepted $($ Bob,$\{e 1\}))=\mathrm{I}(\{e 1\}) * \max (0, \min (\mathrm{I}($ Funding (Bob, good $)), \mathrm{I}(\mathrm{GPA}($ Bob, high))))
- $\quad=0.8 * \max (0, \min (0.7,0.8))$
- $\quad=0.8 * 0.7=0.56$
- $\quad \mathrm{MB}($ Accepted $($ Bob, $\{\mathrm{e} 2\}))=\mathrm{I}(\{\mathrm{e} 2\}) * \max (0, \min (\mathrm{I}($ Involvement (Bob, high $)), \mathrm{I}$ (Obligations (Bob,low))))
- $\quad=0.7 * \max (0, \min (0.6,0.7))$
- $\quad=0.7 * 0.6=0.42$
- $\quad \mathrm{MB}($ Accepted $($ Bob, $\{\mathrm{e} 4\}))=\mathrm{I}(\{\mathrm{e} 4\}) * \max (0, \min (\mathrm{I}(\mathrm{GPA}($ Bob, low $)) \wedge \mathrm{I}$ (Potential(Bob, high))))
- $\quad=0.5 * \max (0, \min (0.2,0.9))$
- $\quad=0.5 * 0.2=0.1$

Grad School for Bob

Grad School for Bob

- $M B(A c c e p t e d(B o b),\{e 2, ~ e 4\})=M B(A c c e p t e d(B o b)$, $\{e 2\})+M B($ Accepted(Bob) , \{e4) * (1-MB(Accepted(Bob), $\{\mathrm{e} 2\}$))

Grad School for Bob

- $M B($ Accepted (Bob) , $\{e 2, ~ e 4\})=M B(A c c e p t e d(B o b)$, $\{e 2\})+M B($ Accepted(Bob),$\{e 4)$ * (1-MB(Accepted(Bob), \{e2\}))
- $=0.42+0.1 * 0.58$

Grad School for Bob

- $M B($ Accepted (Bob) , $\{\mathrm{e} 2, \mathrm{e} 4\})=\mathrm{MB}($ Accepted $(B o b)$, $\{e 2\})+M B($ Accepted(Bob),$\{e 4)$ * (1-MB(Accepted(Bob), \{e2\}))
- $=0.42+0.1 * 0.58$
- $=0.48$

Grad School for Bob

- $M B($ Accepted (Bob), $\{e 2, ~ e 4\})=M B(A c c e p t e d(B o b)$, $\{e 2\})+M B($ Accepted(Bob),$\{e 4)$ *
(1-MB(Accepted(Bob), \{e2\}))
- $=0.42+0.1 * 0.58$
- $=0.48$
- $\operatorname{MB}($ Accepted (Bob, e) $=\mathrm{MB}($ Accepted(Bob), $\{\mathrm{e} 1,\{\mathrm{e} 2$, e4\}) $=\mathrm{MB}($ Accepted (Bob),$\{e 1\})+\mathrm{MB}($ Accepted (Bob), \{e2, e4\}) *(1-MB(Accepted(Bob), \{e1\})

Grad School for Bob

- $M B(A c c e p t e d(B o b),\{e 2, ~ e 4\})=M B(A c c e p t e d(B o b)$, $\{e 2\})+M B($ Accepted(Bob),$\{e 4)$ *
(1-MB(Accepted(Bob), \{e2\}))
- $=0.42+0.1 * 0.58$
- $=0.48$
- $\operatorname{MB}($ Accepted (Bob, e) $=\mathrm{MB}($ Accepted(Bob), $\{\mathrm{e} 1,\{\mathrm{e} 2$, e4\}) $=M B($ Accepted (Bob) , $\{e 1\})+M B($ Accepted (Bob), \{e2, e4\}) *(1-MB(Accepted(Bob), \{e1\})
- $=0.56+0.48 * 0.44$

Grad School for Bob

- $M B($ Accepted (Bob), $\{e 2, ~ e 4\})=M B(A c c e p t e d(B o b)$, $\{e 2\})+M B($ Accepted (Bob), \{e4) *
(1-MB(Accepted(Bob), \{e2\}))
- $=0.42+0.1 * 0.58$
- $=0.48$
- MB(Accepted(Bob, e) = MB(Accepted(Bob), \{e1, \{e2, e4\}) $=M B($ Accepted (Bob) , $\{e 1\})+M B($ Accepted (Bob), \{e2, e4\}) *(1-MB(Accepted(Bob), \{e1\})
- $=0.56+0.48 * 0.44$
- $=0.77$

Solution

Solution

- $I(h)=M B(h)-M D(h)$

Solution

- $\mathrm{I}(\mathrm{h})=\mathrm{MB}(\mathrm{h})-\mathrm{MD}(\mathrm{h})$
- $\quad \mathrm{I}($ Accepted(Bob)) $=\mathrm{MB}($ Accepted(Bob) $)-\mathrm{MD}$ (Accepted(Bob))

Solution

- $I(h)=M B(h)-M D(h)$
- $I($ Accepted(Bob) $)=M B($ Accepted(Bob) $)-M D$ (Accepted(Bob))
- $\mathrm{I}($ Accepted $(\mathrm{Bob}))=0.77-0.12$

Solution

- $I(h)=M B(h)-M D(h)$
- $\mathrm{I}($ Accepted(Bob) $)=\mathrm{MB}($ Accepted(Bob) $)-\mathrm{MD}$ (Accepted(Bob))
- $\mathrm{I}($ Accepted $(\mathrm{Bob}))=0.77-0.12$
- $\mathrm{I}($ Accepted $($ Bob $))=0.65$

