Multi-Agent Systems

Slides adapted from Prof. Jörg Denzinger's MAS Course
Tyson Kendon
CPSC 433
Winter 2007

Motivation

- Systems with higher efficiency, faster answers, better solutions.
- Synergy! The whole is more than the sum of its parts
- Modeling behaviors
- Better software design
- Better interaction with humans

Basic Problems (I)

- Modeling Agents
 - Degree of Autonomy
 - Degree of Willingness to Collaborate
 - Degree of Intelligence
 - Complexity

Basic Problems (2)

- Construction of Community
 - Organization
 - Communication
 - Control
 - Roles
 - Division and Assignments of Tasks
 - Distribution of Resources

Basic Problems (3)

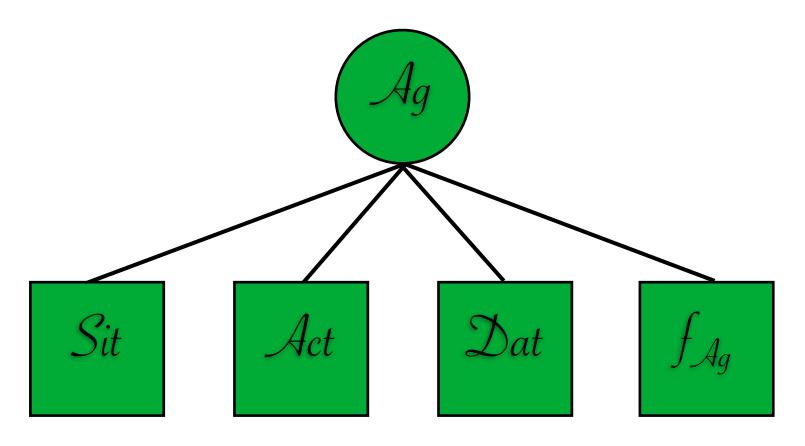
- Using a community of agents
 - Environment
 - Constraints/Conditions to fulfill
 - Efficency
 - Reuse of Components

Basic Solutions (1)

- Adaptation of human organizations
 - Political Structures
 - Business Structures
 - Societal Structures

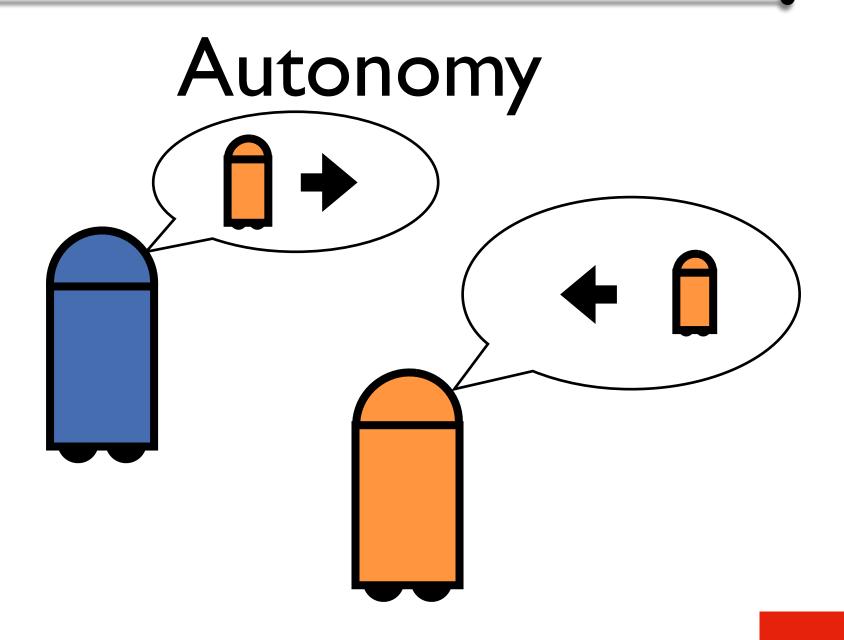
Basic Solutions (2)

- Negotiations
 - Detection of conflicts
 - Determining the scope of conflicts
 - Protocol for resolving conflicts


Basic Solutions (3)

- Agent Models
 - Modal Logics
 - State Automata
 - Rule Based Modeling

Basic Solutions (4)


- Tools for realizing MAS
 - MAS languages
 - Test beds (OLEMAS, ARES)
- Game Theroy
 - Payoff Matrixes
- Knowledge representation techniques
 - FIPA or KIF

An Agent

An Agent

- Sit the set describing all possible situations the agent can be it
- ullet \mathcal{A}_{ct} the set describing all possible actions the agent can take
- Dat the internal data area of the Agent
- $f_{\mathcal{A}_{ct}}$ the function that chooses the action based on the situation and the internal data of the agent
 - $f_{Act}: Sit \mathbf{X} \supset at \rightarrow Act$

Agent Models

- Situation-Action Pairs
- Rule Based
- State Based
- Object Oriented (from the Actor Model)
- Role Based
- BDI (Beleif, Desire, Intention)

Cooperation

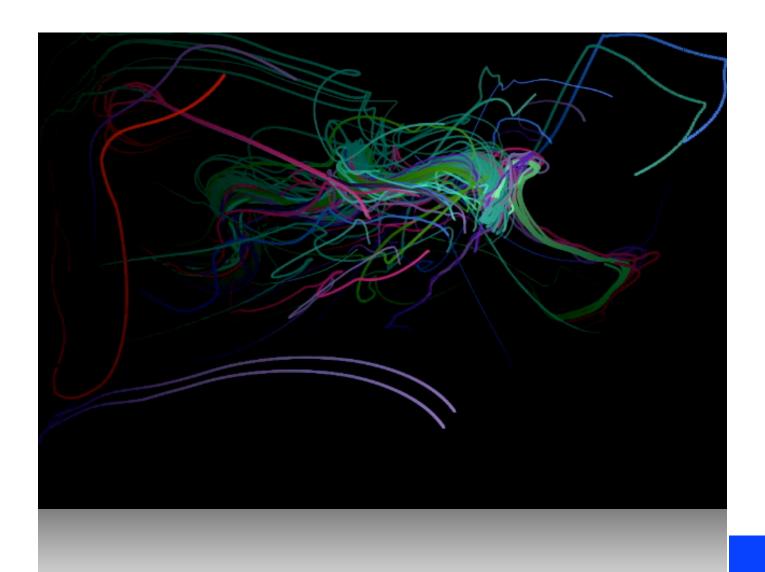
- Cooperation by making (selected) information available
- Negations
- Master-Slave Relationships
- Voting
- Auctions
- Blackboards

Competition

- Agents 'undoing' the achievements of others
- Agents 'blocking' other agents
- Lying
 - About Identity
 - About the World
 - About Others
- Trying to get protected information

Semi-Cooperation

- Agents cooperating to solve problems
 - Each agent has a secret goal
 - Has to search for the optimal global solution, that also satisfies a local function
- Example: Land-use planning


Distributed Search

- Search Problems can be spread out among agents to solve problems better or faster
- Agents can cooperate by sharing information
- Specialist agents can be brought in to solve subproblems that are difficult to handle in other ways

Distribution Paradigms

- Improvements on the Competition Approach
- Dividing the problem instance into subproblem instances
- Accessing a common search-state
 - Real state in shared memory
 - Distributed state among agents

Going to Many Agents

