Resolution in Prepositional Logic Examples

$\mathrm{s}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \mathrm{s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{s} \vee \mathrm{p}, \mathrm{p} \vee \neg r\}$

$\mathrm{s}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \mathrm{s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{s} \vee \mathrm{p}, \mathrm{p} \vee \neg \mathrm{r}\}$

$\mathrm{S}_{0}=\{r \vee p \vee s, s \vee q, \neg p \vee s, \neg s, \neg s \vee p, p \vee \neg r\}$

$\mathrm{S}_{0}=\{r \vee p \vee s, s \vee q, \neg p \vee s, \neg s, \neg s \vee p, p \vee \neg r\}$
 $\neg s \vee p$ can be subsumed into $\neg s$

$\mathrm{S}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \mathrm{s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{S} \vee \mathrm{p}, \mathrm{p} \vee \neg \mathrm{r}\}$
 $\neg s \vee p$ can be subsumed into $\neg s$

$\mathrm{S}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \mathrm{s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{S} \vee \mathrm{p}, \mathrm{p} \vee \neg \mathrm{r}\}$
 $\neg s \vee p$ can be subsumed into \neg s

$\mathrm{S}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \mathrm{s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{S} \vee \mathrm{p}, \mathrm{p} \vee \neg \mathrm{r}\}$
 $\neg s \vee p$ can be subsumed into $\neg s$ Resolution between $\neg \mathrm{p} \vee s$ and $\neg \mathrm{s}$

$\mathrm{s}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \mathrm{s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{S} \vee \mathrm{p}, \mathrm{p} \vee \neg \mathrm{r}\}$
 $\neg s \vee p$ can be subsumed into $\neg s$ Resolution between $\neg \mathrm{p} \vee \mathrm{s}$ and $\neg \mathrm{s}$

$\mathrm{s}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \mathrm{s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{S} \vee \mathrm{p}, \mathrm{p} \vee \neg \mathrm{r}\}$
 $\neg s \vee p$ can be subsumed into $\neg s$ Resolution between $\neg p \vee s$ and $\neg s$

$\mathrm{s}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \mathrm{s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{s} \vee \mathrm{p}, \mathrm{p} \vee \neg \mathrm{r}\}$
 $\neg s \vee p$ can be subsumed into \neg s Resolution between $\downarrow \mathrm{p} \vee$ s and \neg s

$\mathrm{S}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \mathrm{s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{s} \vee \mathrm{p}, \mathrm{p} \vee \neg \mathrm{r}\}$
 $\neg S \vee p$ can be subsumed into \neg s Resolution between $\neg p \vee s$ and \neg s Resolution between $s \vee q$ and $\neg s$

$\mathrm{s}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \mathrm{s} \mathrm{\vee q}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{SVp}, \mathrm{p} \vee \neg \mathrm{r}\}$
 \neg sVp can be subsumed into \neg s Resolution between $\neg p \vee s$ and $\neg s$ Resolution between $\mathrm{s} \vee q$ and $\neg \mathrm{s}$

$\mathrm{s}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \quad \mathrm{s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{s} \vee \mathrm{p}, \mathrm{p} \vee \neg \mathrm{r}\}$
 $\neg s \vee p$ can be subsumed into $\neg s$ Resolution between $\neg p \vee s$ and \neg s Resolution between $\mathrm{s} \vee \mathrm{q}$ and $\neg \mathrm{s}$

$\mathrm{S}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \quad \mathrm{s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{s} \vee \mathrm{p}, \mathrm{p} \vee \neg \mathrm{r}\}$
 $\neg s \vee p$ can be subsumed into $\neg s$ Resolution between $\neg \mathrm{p} V \mathrm{~s}$ and $\neg \mathrm{s}$ Resolution between $s \vee q$ and $\neg s$

$$
\mathrm{s}_{0}=\{\mathrm{rVp} \mathrm{\vee s}, \mathrm{~s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \neg \mathrm{~s} \vee \mathrm{p}, \mathrm{p} \vee \neg \mathrm{r}\}
$$

$\neg s \vee p$ can be subsumed into $\neg s$ Resolution between $\neg \mathrm{p} \vee \mathrm{s}$ and $\neg \mathrm{s}$ Resolution between $s \vee q$ and $\neg s$ Resolution between rvps and \neg s

$$
\mathrm{s}_{0}=\{\mathrm{rvp} \mathrm{\vee s}, \mathrm{~s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \neg \mathrm{~s} \vee \mathrm{p}, \mathrm{p} \vee \neg \mathrm{r}\}
$$

$\neg s \vee p$ can be subsumed into $\neg s$ Resolution between $\neg \mathrm{p} \vee \mathrm{s}$ and $\neg \mathrm{s}$ Resolution between $s \vee q$ and $\neg s$ Resolution between $r \vee p \vee s$ and $\neg s$

$$
f_{\text {wert }, 1}(\{\neg s, \neg s \vee p\},\{\neg s\})=0
$$

$$
\mathrm{s}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \mathrm{~s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \neg \mathrm{~s} \vee \mathrm{p}, \mathrm{p} \vee \neg \mathrm{r}\}
$$

\neg SVp can be subsumed into \neg s Resolution between $\neg \mathrm{p} \vee \mathrm{s}$ and $\neg \mathrm{s}$ Resolution between $s \vee q$ and $\neg s$ Resolution between $r \vee p \vee s$ and $\neg s$

$$
\begin{gathered}
f_{\text {wert, }, 1}(\{\neg s, \neg s \vee p\},\{\neg s\})=0 \\
f_{\text {wert, },}(\{s \vee q, \neg s\},\{s \vee q, \neg s, q\})=1
\end{gathered}
$$

$$
\mathrm{s}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \mathrm{~s} \mathrm{\vee q}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \neg \mathrm{~s} \vee \mathrm{p}, \mathrm{p} \vee \neg \mathrm{r}\}
$$

\neg SVp can be subsumed into \neg s Resolution between $\neg p \vee s$ and $\neg s$ Resolution between $s \vee q$ and $\neg s$ Resolution between $r \vee p \vee s$ and $\neg s$

$$
f_{\text {wert }, 1}(\{\neg s, \neg s \vee p\},\{\neg s\})=0
$$

$f_{\text {wert, }, 1(\{s \vee q, ~ \neg s\}, ~\{s \vee q, \neg s, ~ q\})=1}$
$f_{\text {wert }, 1}(\{\neg p \vee s, \neg s\},\{\neg p \vee s, \neg s, \neg p\})=1$

$$
\mathrm{s}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \mathrm{~s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \neg \mathrm{~s} \vee \mathrm{p}, \mathrm{p} \vee \neg \mathrm{r}\}
$$

$\neg S V p$ can be subsumed into $\neg s$ Resolution between $\neg \mathrm{p} \vee \mathrm{s}$ and $\neg \mathrm{s}$ Resolution between $s \boxtimes q$ and $\neg s$ Resolution between $r \vee p \vee s$ and $\neg s$

$$
f_{\text {wert }, 1}(\{\neg s, \neg s \vee p\},\{\neg s\})=0
$$

$\mathrm{f}_{\text {wert, }, 1}(\{\mathrm{~s} \vee \mathrm{q}, \neg \mathrm{s}\},\{\mathrm{s} \vee \mathrm{q}, \neg \mathrm{s}, \mathrm{q}\})=1$ $f_{\text {wert, }, 1}(\{\neg p \vee s, \neg s\},\{\neg p \vee s, \neg s, \neg p\})=1$ $f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$

$$
\mathrm{s}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \mathrm{~s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \neg \mathrm{~s} \vee \mathrm{p}, \mathrm{p} \vee \neg \mathrm{r}\}
$$

\neg SVp can be subsumed into \neg s Resolution between $\neg p \vee s$ and $\neg s$ Resolution between $s \Downarrow q$ and $\neg s$ Resolution between $r \vee p \vee s$ and $\neg s$

$$
\begin{gathered}
\mathrm{f}_{\text {wert }, 1}(\{\neg \mathrm{~s}, \neg \mathrm{~s} \vee \mathrm{p}\},\{\neg \mathrm{s}\})=0 \\
\mathrm{f}_{\text {wert }, 1}(\{\mathrm{~s} \vee \mathrm{q}, \neg \mathrm{~s}\},\{\mathrm{s} \vee \mathrm{q}, \neg \mathrm{~s}, \mathrm{q}\})=1 \\
\mathrm{f}_{\text {wert, }, 1(\{\neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}\},\{\neg p \vee \mathrm{~s}, \neg \mathrm{~s}, \neg \mathrm{p}\})=1} \\
\mathrm{f}_{\text {wert, }, 1}(\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}\},\{\mathrm{r} \vee p \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{r} \vee \mathrm{p}\})=2
\end{gathered}
$$

$\mathrm{s}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \mathrm{s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{s} \vee p, \mathrm{p} \vee \neg r\}$
$\mathrm{s}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \mathrm{s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{s} \vee p, \mathrm{p} \vee \neg r\}$

$\mathrm{s}_{0}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \mathrm{s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{s} \vee p, \mathrm{p} \vee \neg r\}$

$$
\mathrm{s}_{1}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \mathrm{~s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}\}
$$

$s_{1}=\{r \vee p \vee s, s \vee q, \neg p \vee s, \neg s, \neg s \vee p, p \vee \neg r\}$

Resolution between $\neg p \vee s$ and $\neg s$

 Resolution between $\mathrm{s} \vee \mathrm{q}$ and $\neg \mathrm{s}$ Resolution between $\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}$ and $\neg \mathrm{s}$$$
f_{\text {wert }, 1}(\{s \vee q, \neg s\},\{s \vee q, \neg s, q\})=1
$$

$$
\mathrm{f}_{\text {wert }, 1}(\{\neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}\},\{\neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \neg \mathrm{p}\})=1
$$

$$
f_{\text {wert }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2
$$

$\mathrm{s}_{1}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \mathrm{s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{s} \vee \mathrm{p}, \mathrm{p} \vee \neg \mathrm{r}\}$

Resolution between $\neg p \vee s$ and $\neg s$ Resolution between $\mathrm{s} \vee \mathrm{q}$ and $\neg \mathrm{s}$ Resolution between $\mathrm{rVp} \mathrm{\vee s}$ and $\neg s$

$$
f_{\text {wert, },}(\{s \vee q, \neg s\},\{s \vee q, \neg s, q\})=1
$$

$\mathrm{f}_{\text {wert, }, 1}(\{\neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}\},\{\neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{p}\})=1$
$f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$
$s_{1}=\{r \vee p \vee s, s \vee q, \neg p \vee s, \neg s, \neg s \vee p, p \vee \neg r\}$
$\mathrm{s}_{1}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \mathrm{s} \vee q, \neg p \vee \mathrm{~s}, \neg \mathrm{~s}, \neg \mathrm{~s} \vee \mathrm{p}, \mathrm{p} \vee \neg r\}$
$\mathrm{s}_{1}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \mathrm{s} \vee q, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{s} \vee \mathrm{p}, \mathrm{p} \vee \neg r\}$ $\mathrm{s}_{2}=\{r \vee p \vee \mathrm{~s}, \mathrm{~s} \vee q, \neg p \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg r, q\}$

$$
s_{2}=\{r \vee p \vee s, s \vee q, \neg p \vee s, \neg s, p \vee \neg r, q\}
$$

Resolution between $\neg \mathrm{p} \vee \mathrm{s}$ and $\neg \mathrm{s}$ Resolution between $\mathrm{r} \vee p \vee s$ and $\neg s$
$f_{\text {wert, }, 1}(\{\neg p \vee s, \neg s\},\{\neg p \vee s, \neg s, \neg p\})=1$ $\mathrm{f}_{\text {wert }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$

$$
\mathrm{s}_{2}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \mathrm{~s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}\}
$$

Resolution between $\neg \mathrm{p} \vee s$ and $\neg \mathrm{s}$ Resolution between $\mathrm{r} V \mathrm{p} \vee \mathrm{s}$ and $\neg \mathrm{s}$
$f_{\text {wert, }, 1}(\{\neg p \vee s, \neg s\},\{\neg p \vee s, \neg s, \neg p\})=1$ $\mathrm{f}_{\text {wert }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$

$$
\mathrm{s}_{2}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \mathrm{~s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}\}
$$

Resolution between $\neg \mathrm{p} \vee s$ and $\neg \mathrm{s}$ Resolution between $r \vee p \vee s$ and $\neg s$
$\mathrm{f}_{\text {wert }, 1}(\{\neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}\},\{\neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{p}\})=1$ $\mathrm{f}_{\text {wert }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$

$\mathrm{s}_{2}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \mathrm{s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}\}$

Resolution between $\neg p \vee s$ and $\neg s$ Resolution between $\mathfrak{M p} \vee s$ and $\neg s$
$\mathrm{f}_{\text {wert, }, 1}(\{\neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}\},\{\neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{p}\})=1$ $\mathrm{f}_{\text {wert }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$

$$
\mathrm{s}_{2}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \mathrm{~s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}\}
$$

Resolution between $\neg \mathrm{p} \vee \mathrm{s}$ and $\neg \mathrm{s}$ Resolution between $\mathscr{V} P \vee s$ and $\neg s$ $s \vee q$ can be subsumed into q
$\mathrm{f}_{\text {wert }, 1}(\{\neg p \vee \mathrm{~s}, \neg \mathrm{~s}\},\{\neg p \vee \mathrm{~s}, \neg \mathrm{~s}, \neg \mathrm{p}\})=1$ $\mathrm{f}_{\text {wert }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$

$$
\mathrm{s}_{2}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \mathrm{~s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}\}
$$

Resolution between $\neg p \vee s$ and $\neg s$ Resolution between $\mathscr{V} p \vee s$ and $\neg s$ $s \vee q$ can be subsumed into q
$\mathrm{f}_{\text {wert }, 1}(\{\mathrm{q}, \mathrm{s} \vee \mathrm{q}\},\{q\})=0$
$f_{\text {wert, }, 1}(\{\neg p \vee s, \neg s\},\{\neg p \vee s, \neg s, \neg p\})=1$
$\mathrm{f}_{\text {wert }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$

$$
\mathrm{s}_{2}=\{r \vee p \vee s, \triangle \mathrm{~s} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}\}
$$

Resolution between $\neg \mathrm{p} \vee \mathrm{s}$ and $\neg \mathrm{s}$ Resolution between $\mathscr{V} p \vee s$ and $\neg s$ $s \vee q$ can be subsumed into q

$\mathrm{f}_{\text {wert }, 1}(\{\mathrm{q}, \mathrm{s} \vee \mathrm{q}\},\{q\})=0$

$\mathrm{f}_{\text {wert, }, 1}(\{\neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}\},\{\neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{p}\})=1$
$\mathrm{f}_{\text {wert }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$

$s_{2}=\{r \vee p \vee s, s \vee q, \neg p \vee s, \neg s, p \vee \neg r, q\}$

$s_{2}=\{r \vee p \vee s, s \vee q, \neg p \vee s, \neg s, p \vee \neg r, q\}$

$s_{2}=\{r \vee p \vee s, s \vee q, \neg p \vee s, \neg s, p \vee \neg r, q\}$

$$
s_{3}=\{r \vee p \vee s, \neg p \vee s, \neg s, p \vee \neg r, q\}
$$

$$
\mathrm{s}_{3}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}\}
$$

Resolution between $\neg \mathrm{pVs}$ and $\neg s$ Resolution between rVpvs and $\neg s$
$\mathrm{f}_{\text {wert }, 1}(\{\neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}\},\{\neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{p}\})=1$ $f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$

$$
s_{3}=\{r \vee p \vee s, \neg p \vee s, \neg s, p \vee \neg r, q\}
$$

Resolution between $\neg p \vee s$ and $\neg s$ Resolution between rVpvs and $\neg s$
$\mathrm{f}_{\text {wert }, 1}(\{\neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}\},\{\neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \neg \mathrm{p}\})=1$
$\mathrm{f}_{\text {wert, }, 1}(\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}\},\{r \vee p \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{r} \vee \mathrm{p}\})=2$

$$
\mathrm{s}_{3}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg p \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}\}
$$

$$
\mathrm{s}_{3}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg p \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}\}
$$

$$
s_{3}=\{r \vee p \vee s, \neg p \vee s, \neg s, p \vee \neg r, q\}
$$

$$
s_{4}=\{r \vee p \vee s, \neg p \vee s, \neg s, p \vee \neg r, q, \neg p\}
$$

$$
s_{4}=\{r \vee p \vee s, \neg p \vee s, \neg s, p \vee \neg r, q, \neg p\}
$$

Resolution between rvp \vee and $\neg s$

$$
f_{\text {wert }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2
$$

$$
\mathrm{s}_{4}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}\}
$$

Resolution between rVpVs and $\neg s$

$$
f_{\text {werr, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2
$$

$$
\mathrm{s}_{4}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}\}
$$

Resolution between $\mathrm{rVp} \mathrm{\vee s}$ and $\neg s$

$$
f_{\text {wert }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2
$$

$\mathrm{S}_{4}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}\}$
 Resolution between rvpvs and $\neg s$

$$
f_{\text {werr, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2
$$

$$
\mathrm{s}_{4}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}\}
$$

Resolution between rVpvs and $\neg s$

 Resolution between $p \vee \neg r$ and $\neg p$$f_{\text {wert }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$

$$
\mathrm{s}_{4}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}\}
$$

Resolution between rvpvs and $\neg s$

 Resolution between $p \vee \neg r$ and $\neg p$$\mathrm{f}_{\text {wert, }, 1}(\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}\},\{r \vee p \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{r} \vee \mathrm{p}\})=2$

$$
\mathrm{s}_{4}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}\}
$$

Resolution between rvpvs and $\neg s$

 Resolution between $p \vee \neg r$ and $\neg p$$\mathrm{f}_{\text {wert, }, 1}(\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}\},\{r \vee p \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{r} \vee \mathrm{p}\})=2$

$$
\mathrm{s}_{4}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}\}
$$

Resolution between rvpvs and $7 s$

 Resolution between $p \vee \neg$ rand $\neg p$$\mathrm{f}_{\text {wert, }, 1}(\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}\},\{r \vee p \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{r} \vee \mathrm{p}\})=2$

$\mathrm{s}_{4}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}\}$

Resolution between rvpvs and s

 Resolution between $p \vee \neg$ rand $\neg p$ Resolution between $r \vee p \vee s$ and $\neg p$$\mathrm{f}_{\text {wert, }, 1}(\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}\},\{r \vee p \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{r} \vee \mathrm{p}\})=2$

$s_{4}=\{r \vee p \vee s, \neg p \vee s, \neg s, p \vee \neg r, q, \neg p\}$

Resolution between rvpvs and $\neg s$

 Resolution between $p \vee \neg$ and $\neg p$ Resolution between $r \vee p \vee s$ and $\neg p$$\mathrm{f}_{\text {wert, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$

$$
s_{4}=\{r \vee p \vee s, \neg p \vee s, \neg s, p \vee \neg r, q,
$$

Resolution between rvpvs and $\neg s$

 Resolution between $p \vee \neg$ and $\neg p$ Resolution between $r \vee p \vee s$ and $\neg p$$\mathrm{f}_{\text {wert, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$

$$
s_{4}=\{r \vee p \vee s, \neg p \vee s, \neg s, p \vee \neg r, q,
$$

Resolution between rvpvs and $-s$ Resolution between $p \vee \neg$ rand $\neg p$ Resolution between $r \vee p \vee s$ and $\neg p$

$$
\mathrm{f}_{\text {wert }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2
$$

$$
s_{4}=\{r \vee p \vee s, \neg p \vee s, \neg s, p \vee \neg r, q,
$$

Resolution between rvpvs and $-s$ Resolution between $p \vee \neg$ and $\neg p$ Resolution between $r \vee p \vee s$ and $\neg p$ $\neg p \vee s$ can be subsumed into $\neg p$

$$
f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2
$$

$$
s_{4}=\{r \vee p \vee s, \neg p \vee s, \neg s, p \vee \neg r, q,
$$

Resolution between rvpvs and $-s$ Resolution between $p \vee \neg$ and $\neg p$ Resolution between $r \vee p \vee s$ and $\neg p$ $\neg p \vee s$ can be subsumed into $\neg p$

$$
\mathrm{f}_{\text {wert }, 1}(\{\neg \mathrm{p}, \neg \mathrm{p} \vee \mathrm{~s}\},\{\neg p\})=0
$$

$f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$

$$
s_{4}=\{r \vee p \vee s, \neg p \vee s, \neg s, p \vee \neg r, q,
$$

ค)
Resolution between rvpvs and $7 s$ Resolution between $p \vee \neg$ rand \neg Resolution between rvpvs and $\neg p$ $\neg p \vee s$ can be subsumed into $\neg p$

$$
\mathrm{f}_{\text {wert }, 1}(\{\neg \mathrm{p}, \neg \mathrm{p} \vee \mathrm{~s}\},\{\neg p\})=0
$$

$$
f_{\text {wert }, 1}(\{p \vee \neg r, \neg p\},\{p \vee \neg r, \neg p, \neg r\})=1
$$

$f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$

$$
s_{4}=\{r \vee p \vee s, \neg p \vee s, \neg s, p \vee \neg r, q,
$$

ค)
Resolution between rvpvs and $7 s$ Resolution between $p \vee \neg$ rand \neg Resolution between $r \vee p \vee s$ and $\neg p$ $\neg p \vee s$ can be subsumed into $\neg p$ $f_{\text {wert }, 1}(\{\neg p, \neg p \vee s\},\{\neg p\})=0$
$\mathrm{f}_{\text {wert }, 1}(\{\mathrm{p} \vee \neg \mathrm{r}, \neg \mathrm{p}\},\{\mathrm{p} \vee \neg \mathrm{r}, \neg \mathrm{p}, \neg r\})=1$
$f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$
$f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg p\},\{r \vee p \vee s, \neg p, r \vee s\})=2$

$$
s_{4}=\{r \vee p \vee s, \neg p \vee s, \neg s, p \vee \neg r, q,
$$

Resolution between rvpvs and $7 s$ Resolution between $p \vee \neg$ rand \neg Resolution between $r \vee p \vee s$ and $\neg p$ $\neg p \vee s$ can be subsumed into $\neg p$ $\mathrm{f}_{\text {wert }, 1}(\{\neg \mathrm{p}, \neg \mathrm{p} \vee \mathrm{s}\},\{\neg p\})=0$
$f_{\text {wert }, 1}(\{p \vee \neg r, \neg p\},\{p \vee \neg r, \neg p, \neg r\})=1$
$f_{\text {wert, }, 1(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2}$
$f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg p\},\{r \vee p \vee s, \neg p, r \vee s\})=2$

$s_{4}=\{r \vee p \vee s, \neg p \vee s, \neg s, p \vee \neg r, q, \neg p\}$

$s_{4}=\{r \vee p \vee s, \neg p \vee s, \neg s, p \vee \neg r, q, \neg p\}$

$s_{4}=\{r \vee p \vee s, \neg p \vee s, \neg s, p \vee \neg r, q, \neg p\}$

$\mathrm{S}_{5}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}\}$

$$
\mathrm{S}_{5}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}\}
$$

Resolution between $r \vee p \vee s$ and $\neg s$ Resolution between $p \vee \neg r$ and $\neg p$ Resolution between $r \vee p \vee s$ and $\neg p$

$$
f_{\text {werr, }, 1}(\{p \vee \neg r, \neg p\},\{p \vee \neg r, \neg p, \neg r\})=1
$$ $f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$ $\mathrm{f}_{\text {wert }, 1}(\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{p}\},\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{p}, \mathrm{r} \vee \mathrm{s}\})=2$

$$
\mathrm{S}_{5}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}\}
$$

Resolution between $r \vee p \vee s$ and $\neg s$ Resolution between $p \vee \neg r$ and $\neg p$ Resolution between $r \vee p \vee s$ and $\neg p$

$$
f_{\text {wert, }, 1}(\{p \vee \neg r, \neg p\},\{p \vee \neg r, \neg p, \neg r\})=1
$$

$f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$ $\mathrm{f}_{\text {wert }, 1}(\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{p}\},\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{p}, \mathrm{r} \vee \mathrm{s}\})=2$

$\mathrm{S}_{5}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}\}$

$S_{5}=\{r \vee p \vee s, \neg s, p \vee \neg r, q, \neg p\}$

$$
\mathrm{S}_{5}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}\}
$$

$S_{6}=\{r \vee p \vee s, \neg s, p \vee \neg r, q, \neg p, \neg r\}$

$$
\mathrm{s}_{6}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}, \neg r\}
$$

Resolution between rVpvs and $\neg s$ Resolution between $\mathrm{rVp} \mathrm{\vee s}$ and $\neg p$
$\mathrm{f}_{\text {wert, }, 1(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2}$ $\mathrm{f}_{\text {wert, }, 1(\{r \vee p \vee s, \neg p\},\{r \vee p \vee s, \neg p, r \vee s\})=2}$

$$
s_{6}=\{r \vee p \vee s, \neg s, p \vee \neg r, q, \neg p, \neg r\}
$$

Resolution between rvpvs and $\neg s$ Resolution between $\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}$ and $\neg p$
$\mathrm{f}_{\text {wert, }, 1(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2}$ $f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg p\},\{r \vee p \vee s, \neg p, r \vee s\})=2$

$$
\mathrm{s}_{6}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}, \neg\ulcorner \}
$$

Resolution between rvps and $\neg s$

 Resolution between $r \vee p \vee s$ and $\neg p$$\mathrm{f}_{\text {wert, }, 1(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2}$ $f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg p\},\{r \vee p \vee s, \neg p, r \vee s\})=2$

$$
\mathrm{s}_{6}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}, \neg\ulcorner \}
$$

Resolution between rvpvs and \neg s

 Resolution between $r \vee p \nmid s$ and $\neg p$$\mathrm{f}_{\text {wert, }, 1(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2}$ $f_{\text {wert, }, 1(\{r \vee p \vee s, ~ \neg p\}, ~\{r \vee p \vee s, \neg p, r \vee s\})=2}$

$$
\mathrm{s}_{6}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{\neg}\}
$$

Resolution between rvpvs and $\neg s$ Resolution between rvpys and $\neg p$ $p \vee \neg r$ can be subsumed into $\neg r$
$f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$ $\mathrm{f}_{\text {wert, }, 1(\{r \vee p \vee s, \neg p\},\{r \vee p \vee s, \neg p, r \vee s\})=2}$

$$
s_{6}=\left\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}, \mathrm{\sim r}^{r}\right\}
$$

Resolution between rvpレs and $\neg s$ Resolution between rvpys and $\neg p$ $\mathrm{p} \vee \neg \mathrm{r}$ can be subsumed into $\neg \mathrm{r}$
$f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$ $\mathrm{f}_{\text {wert, }, 1(\{r \vee p \vee s, \neg p\},\{r \vee p \vee s, \neg p, r \vee s\})=2}$

$$
\mathrm{s}_{6}=\{\mathrm{rvpvs}, \neg \mathrm{~s}, \mathrm{pv} \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}, \neg \mid, \neg\}
$$

Resolution between $r \vee p \vee s$ and $\neg s$ Resolution between rvpys and $\neg p$ $\mathrm{p} \vee \neg \mathrm{r}$ can be subsumed into $\neg \mathrm{r}$
$f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$ $\mathrm{f}_{\text {wert, }, 1}(\{r \vee p \vee s, \neg p\},\{r \vee p \vee s, \neg p, r \vee s\})=2$

$$
S_{6}=\{r \vee p \vee S, \neg s, p \vee \neg r, q, \neg p, \neg r\}
$$

Resolution between rvpvs and/as Resolution between rvpys and $\neg p$ $\mathrm{p} \vee \neg \mathrm{r}$ can be subsumed into $\neg \mathrm{r}$
$f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$ $\mathrm{f}_{\text {wert, }, 1(\{r \vee p \vee s, \neg p\},\{r \vee p \vee s, \neg p, r \vee s\})=2}$

$$
\left.\mathrm{S}_{6}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~S}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{\neg}\}\right\}
$$

Resolution between rvpvs and/ s Resolution between rvpys and $\neg p$ $\mathrm{p} \vee \neg \mathrm{r}$ can be subsumed into $\neg r$
Resolution between $r \vee p \vee s$ and $\neg r$
$f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$ $f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg p\},\{r \vee p \vee s, \neg p, r \vee s\})=2$

$$
\mathrm{S}_{6}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~S}, \neg \mathrm{~S}, \mathrm{p} \mathrm{\vee} \mathrm{\neg r}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{\neg}\}
$$

Resolution between rvpvs and/רs Resolution between rvpys and $\neg p$ $\mathrm{p} \vee \neg \mathrm{r}$ can be subsumed into $\neg r$
Resolution between $r \vee p \vee s$ and $\neg r$

$$
\mathrm{f}_{\text {wert, }, 1}(\{\neg r, \mathrm{p} \vee \neg r\},\{\neg r\})=0
$$

$f_{\text {wert, }, 1(\{r \vee p \vee s, ~ \neg s\}, ~} \quad$ r$\left.\left.\vee p \vee s, \neg s, r \vee p\right\}\right)=2$ $\mathrm{f}_{\text {wert, } 1}(\{r \vee p \vee s, \neg p\},\{r \vee p \vee s, \neg p, r \vee s\})=2$

$$
\mathrm{S}_{6}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~S}, \neg \mathrm{~S}, \mathrm{p} \mathrm{\vee} \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{\neg}\}
$$

Resolution between rvpvs and/רs Resolution between rvpys and $\neg p$ $\mathrm{p} \vee \neg \mathrm{r}$ can be subsumed into $\neg r$
Resolution between $r \vee p \vee s$ and $\neg r$

$$
\mathrm{f}_{\text {wert, }, 1}(\{\neg r, \mathrm{p} \vee \neg r\},\{\neg r\})=0
$$

$f_{\text {wert, }, 1(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2}$ $f_{\text {wert, } 1(\{r \vee p \vee s, ~ \neg p\}, ~\{r \vee p \vee s, \neg p, r \vee s\})=2}$ $\mathrm{f}_{\text {wert, } 1}(\{r \vee p \vee s, \neg r\},\{r \vee p \vee s, \neg r, p \vee s\})=2$

$$
\mathrm{S}_{6}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~S}, \neg \mathrm{~S}, \mathrm{p} \mathrm{\vee} \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{\neg}\}
$$

Resolution between rvpvs andds Resolution between rvpys and $\neg p$ $\mathrm{p} \vee \neg \mathrm{r}$ can be subsumed into $\neg \mathrm{r}$
Resolution between $r \vee p \vee s$ and $\neg r$

$$
\mathrm{f}_{\text {wert, }, 1}(\{\neg r, \mathrm{p} \vee \neg r\},\{\neg r\})=0
$$

$f_{\text {wert, }, 1(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2}$ $f_{\text {wert, } 1(\{r \vee p \vee s, ~ \neg p\}, ~\{r \vee p \vee s, \neg p, r \vee s\})=2}$ $\mathrm{f}_{\text {wert }, 1}(\{r \vee p \vee \mathrm{~s}, \neg r\},\{r \vee p \vee \mathrm{~s}, \neg \mathrm{r}, \mathrm{p} \vee \mathrm{s}\})=2$
$\mathrm{S}_{6}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}, \neg r\}$
$s_{6}=\{r \vee p \vee s, \neg s, p \vee \neg r, q, \neg p, \neg r\}$

$\mathrm{S}_{6}=\{\mathrm{rVp} \mathrm{\vee s}, \neg \mathrm{~s}, \mathrm{p} \vee \neg \mathrm{r}, \mathrm{q}, \neg \mathrm{p}, \neg r\}$

$\mathrm{S}_{7}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \mathrm{q}, \neg \mathrm{p}, \neg r\}$

$$
\mathrm{s}_{7}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg r\}
$$

Resolution between rVpvs and $\neg s$ Resolution between rVpvs and $\neg p$ Resolution between rVpVs and $\neg r$
$f_{\text {wert, }}(\{r \vee p \vee s, \neg s\},\{r \vee p \vee s, \neg s, r \vee p\})=2$ $\left.\left.f_{\text {wert, }, 1(\{r \vee p \vee s, ~}^{\mathrm{p}} \mathrm{p}\right\},\{r \vee p \vee s, \neg p, r \vee s\}\right)=2$ $\mathrm{f}_{\text {wert, } 1}(\{r \vee p \vee s, \neg r\},\{r \vee p \vee s, \neg r, p \vee s\})=2$

$$
\mathrm{s}_{7}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg r\}
$$

Resolution between rVpvs and $\neg s$ Resolution between rVpvs and $\neg p$ Resolution between rVpVs and $\neg \mathbf{r}$
$\mathrm{f}_{\text {wert }, 1}(\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{\neg s}\},\{r \vee p \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{r} \vee p\})=2$ $f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg p\},\{r \vee p \vee s, \neg p, r \vee s\})=2$ $f_{\text {wert, } 1}(\{r \vee p \vee s, \neg r\},\{r \vee p \vee s, \neg r, p \vee s\})=2$

$S_{7}=\{r \vee p \vee s, \neg s, q, \neg p, \neg r\}$

$S_{7}=\{r \vee p \vee s, \neg s, q, \neg p, \neg r\}$

$\mathrm{s}_{7}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}\}$

$\mathrm{S}_{8}=\{\mathrm{r} \vee p \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{r} \vee p\}$

$$
s_{8}=\{r \vee p \vee s, \neg s, q, \neg p, \neg r, r \vee p\}
$$

Resolution between $r \vee p \vee s$ and $\neg p$

 Resolution between $\mathrm{rVp} \vee \mathrm{s}$ and $\neg \mathrm{r}$$$
\mathrm{S}_{8}=\{\mathrm{r} \vee p \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{r} \vee \mathrm{p}\}
$$

Resolution between $r \vee p \vee s$ and $\neg p$ Resolution between $r \vee p \vee s$ and $\neg r$

$$
\mathrm{s}_{8}=\{\mathrm{rvp} \mathrm{\vee s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{rvp}\}
$$

Resolution between rvpvs and $\neg p$ Resolution between rVpVs and $\neg r$

$S_{8}=\{r \vee p \vee s, \neg s, q, \neg p, \neg r, r \vee p\}$
 Resolution between rvps and $\neg p$ Resolution between $r \vee p \vee s$ and $\neg r$

$$
\mathrm{S}_{8}=\{\mathrm{rvp} \mathrm{\vee s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{rvp}\}
$$

Resolution between $r \vee p \vee s$ and $\neg p$ Resolution between rVpvs and $\neg r$ $r \vee p \vee s$ can be subsumed into rvp

$$
s_{8}=\{r \vee p \vee s, \neg s, q, \neg p, \neg r, \forall p\}
$$

Resolution between rvps and $\neg p$ Resolution between $r \vee p \vee s$ and $\neg r$ $r v p \vee s$ can be subsumed into rvp

$$
\mathrm{S}_{8}=\{\mathrm{r} \mathrm{\vee p} \mathrm{\vee s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{\operatorname{Vp} p}\}
$$

Resolution between rvpจs and $\neg p$

 Resolution between $r \vee p \vee s$ and $\neg r$ $r \vee p \vee s$ can be subsumed into rvp$$
\mathrm{S}_{8}=\{\mathrm{rvp} \mathrm{\vee s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \neg \mathrm{Vp}\}
$$

Resolution between rvps and $\neg p$ Resolution between $r \vee p \vee s$ and $\neg r$ $r \vee p \vee s$ can be subsumed into rvp

$$
\mathrm{S}_{8}=\{\mathrm{r} \mathrm{\vee p} \mathrm{\vee s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \neg \mathrm{Vp}\}
$$

Resolution between rvps and $\neg p$ Resolution between $r \vee p \vee s$ and $\neg r$ $r \vee p \vee s$ can be subsumed into rvp Resolution between rvp and $\neg p$

$$
\mathrm{S}_{8}=\{\mathrm{rvp} \mathrm{\vee s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \neg \mathrm{Vp}\}
$$

Resolution between rvpvs and $\neg p$ Resolution between $r \vee p \vee s$ and $\neg r$ $r v p \vee s$ can be subsumed into rvp Resolution between rvp and $\neg p$

$$
\mathrm{S}_{8}=\{\mathrm{r} \mathrm{\vee p} \mathrm{\vee s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \neg \mathrm{rvp}\}
$$

Resolution between rvpจs and $\neg p$ Resolution between $r \vee p \vee s$ and $\neg r$ $r \vee p \vee s$ can be subsumed into rvp Resolution between rVp and $\neg p$

$$
\mathrm{S}_{8}=\{\mathrm{r} \mathrm{\vee p} \mathrm{\vee s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \neg \mathrm{Vp}\}
$$

Resolution between rvpvs and $-p$ Resolution between $r \vee p \vee s$ and $\neg r$ $r v p \vee s$ can be subsumed into rvp Resolution between rvp and $\neg p$

$$
\mathrm{s}_{8}=\{\mathrm{rvp} \mathrm{\vee s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{\nabla pp}\}
$$

Resolution between rvpvs and $\neg \rho$ Resolution between $r \vee p \vee s$ and $\neg r$ $r v p \vee s$ can be subsumed into rvp Resolution between rvp and $\neg p$ Resolution between rvpand $\neg r$

$$
\mathrm{S}_{8}=\{\mathrm{rvp} \mathrm{\vee s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \neg \mathrm{rpp}\}
$$

Resolution between rvpvs and $\neg \rho$ Resolution between $r \vee p \vee s$ and $\neg r$ rvpvs can be subsumed into rvp Resolution between rVp and $\neg p$ Resolution between rvpand $\neg r$
$f_{\text {wert }, 1}(\{r \vee p \vee s, r \vee p\},\{r \vee p\})=0$

$$
\mathrm{S}_{8}=\{\mathrm{rvp} \mathrm{\vee s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \neg \mathrm{rvp}\}
$$

Resolution between rvpvs and $\neg \rho$ Resolution between $r \vee p \vee s$ and $\neg r$ $r \vee p \vee s$ can be subsumed into rvp Resolution between rvp and $\neg p$ Resolution between rvpand $\neg r$

$$
\begin{gathered}
f_{\text {wert }, 1}(\{r \vee p \vee s, r \vee p\},\{r \vee p\})=0 \\
f_{\text {wert }, 1}(\{r \vee p, \neg p\},\{r \vee p, \neg p, r\})=1
\end{gathered}
$$

$$
\mathrm{s}_{8}=\{\mathrm{rvp} \mathrm{\vee s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \boxed{\mathrm{Vp}}\}
$$

Resolution between rvpvs and $-p$ Resolution between $r \vee p \vee s$ and $\neg r$ $r \vee p \vee s$ can be subsumed into rvp Resolution between rVp and $\neg \mathrm{p}$ Resolution between rvpand $\neg r$

$$
\begin{gathered}
f_{\text {wert }, 1}(\{r \vee p \vee s, r \vee p\},\{r \vee p\})=0 \\
f_{\text {wert }, 1}(\{r \vee p, \neg p\},\{r \vee p, \neg p, r\})=1 \\
f_{\text {wert }, 1}(\{r \vee p, \neg r\},\{r \vee p, \neg r, p\})=1
\end{gathered}
$$

$$
\mathrm{s}_{8}=\{\mathrm{rvp} \mathrm{\vee s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \neg \mathrm{Vp}\}
$$

Resolution between rvpvs and $\neg \rho$ Resolution between $r \vee p \vee s$ and $\neg r$ $r v p \vee s$ can be subsumed into rvp Resolution between rVp and $\neg p$ Resolution between rvpand $\neg r$

$$
\begin{gathered}
f_{\text {wert }, 1}(\{r \vee p \vee s, r \vee p\},\{r \vee p\})=0 \\
f_{\text {wert }, 1}(\{r \vee p, \neg p\},\{r \vee p, \neg p, r\})=1 \\
f_{\text {wert }, 1}(\{r \vee p, \neg r\},\{r \vee p, \neg r, p\})=1
\end{gathered}
$$

$$
s_{8}=\{r \vee p \vee s, \neg s, q, \neg p, \neg r, r \vee p\}
$$

$\mathrm{s}_{8}=\{\mathrm{r} \vee p \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{r} \vee p\}$

$\mathrm{S}_{8}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{r} \vee p\}$

$$
\mathrm{S}_{9}=\{\neg \mathrm{s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{rvp}\}
$$

$$
s_{8}=\{r \vee p \vee s, \neg s, q, \neg p, \neg r, r \vee p\}
$$

$$
\mathrm{S}_{9}=\{\neg \mathrm{s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{r} \vee \mathrm{p}\}
$$

$\mathrm{f}_{\text {wert, }} 1(\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{p}\},\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{p}, \mathrm{r} \vee \mathrm{s}\})=2$

$\mathrm{S}_{8}=\{\mathrm{r} \vee p \vee \mathrm{~s}, \neg \mathrm{~s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{r} \vee p\}$

$$
\mathrm{S}_{9}=\{\neg \mathrm{s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{r} \vee \mathrm{p}\}
$$

$\mathrm{f}_{\text {wert, }, 1(\{\mathrm{r} \vee p \vee \mathrm{~s}, ~ \neg \mathrm{p}\},\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{p}, \mathrm{r} \vee \mathrm{s}\})=2}$
$f_{\text {werr, }, 1}(\{r \vee p \vee s, \neg r\},\{r \vee p \vee s, \neg r, p \vee s\})=2$

$$
s_{8}=\{r \vee p \vee s, \neg s, q, \neg p, \neg r, r \vee p\}
$$

$$
\mathrm{S}_{9}=\{\neg \mathrm{s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{r} \vee \mathrm{p}\}
$$

$f_{\text {wert, }, 1}(\{r \vee p \vee s, \neg r\},\{r \vee p \vee s, \neg r, p \vee s\})=2$

$\mathrm{S}_{8}=\{\mathrm{r} \vee \mathrm{p} \vee \mathrm{s}, \neg \mathrm{s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{r} \vee p\}$

$$
\mathrm{S}_{9}=\{\neg \mathrm{s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{rvp}\}
$$

$$
\mathrm{s}_{9}=\{\neg \mathrm{s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{r} \vee \mathrm{p}\}
$$

Resolution between rvp and $\neg p$ Resolution between rVp and $\neg \mathrm{r}$

$f_{\text {werr, }, 1}(\{r \vee p, \neg p\},\{r \vee p, \neg p, r\})=1$ $f_{\text {wert, }, 1}(\{r \vee p, \neg r\},\{r \vee p, \neg r, p\})=1$

$$
\mathrm{s}_{9}=\{\neg \mathrm{s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{r} \vee \mathrm{p}\}
$$

Resolution between rvp and $\neg p$ Resolution between rVp and $\neg \mathrm{r}$

$$
\begin{array}{|l}
f_{\text {wert }, 1}(\{r \vee p, \neg p\},\{r \vee p, \neg p, r\})=1 \\
f_{\text {wert, },}(\{r \vee p, \neg r\},\{r \vee p, \neg r, p\})=1
\end{array}
$$

$\mathrm{S}_{9}=\{\neg \mathrm{s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{r} \vee \mathrm{p}\}$
$\mathrm{S}_{9}=\{\neg \mathrm{s}, \mathrm{q}, ~ \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{r} \vee \mathrm{p}\}$
$S 9=\{\neg s, q, \neg p, \neg r, r \vee p\}$

$$
s_{10}=\{\neg s, q, \neg p, \neg r, r \vee p, r\}
$$

$$
s_{10}=\{\neg s, q, \neg p, \neg r, r \vee p, r\}
$$

Resolution between rvp and $\neg p$ Resolution between rvp and $\neg r$
$f_{\text {wert, }, 1}(\{r \vee p, \neg r\},\{r \vee p, \neg r, p\})=1$

$$
s_{10}=\{\neg s, q, \neg p, \neg r, r \vee p, r\}
$$

Resolution between $r \vee p$ and $\neg p$ Resolution between rvp and $\neg r$
$f_{\text {wert, }, 1}(\{r \vee p, \neg r\},\{r \vee p, \neg r, p\})=1$

$$
s_{10}=\{\neg s, q, \neg p, \neg r, r \vee p, r\}
$$

Resolution between rvp and $\neg p$ Resolution between rvp and $\neg r$
$f_{\text {wert, }, 1}(\{r \vee p, \neg r\},\{r \vee p, \neg r, p\})=1$

$$
s_{10}=\{\neg s, q, \neg p, \neg r, r \vee p, r\}
$$

Resolution between $r \vee p$ and $\neg p$ Resolution between rVp and \neg r
$f_{\text {wert, }, 1}(\{r \vee p, \neg r\},\{r \vee p, \neg r, p\})=1$

$$
s_{10}=\{\neg s, q, \neg p, \neg r, r \vee p, r\}
$$

Resolution between rvp and $\neg p$ Resolution between rVp and \neg r Resolution between r and $\neg r$
$f_{\text {wert, },}(\{r \vee p, \neg r\},\{r \vee p, \neg r, p\})=1$

$$
s_{10}=\{\neg s, q, \neg p, \neg r, r \vee p, r\}
$$

Resolution between $r \vee p$ and $\neg p$ Resolution between rvp and \neg r Resolution between r and $\neg r$
$f_{\text {wert, },}(\{r \vee p, \neg r\},\{r \vee p, \neg r, p\})=1$

$$
\mathrm{s}_{10}=\{\neg \mathrm{s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{\neg}, \mathrm{rvp}, \mathrm{r},
$$

Resolution between rVp and $\neg p$ Resolution between rVp and \neg r Resolution between r and $\neg r$
$f_{\text {wert, },}(\{r \vee p, \neg r\},\{r \vee p, \neg r, p\})=1$

$$
\mathrm{s}_{10}=\{\neg \mathrm{s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{\neg}, \mathrm{rvp}, \mathrm{r},\}
$$

Resolution between rVp and p Resolution between rvp and \neg r Resolution between r and $\neg r$
$f_{\text {wert, },}(\{r \vee p, \neg r\},\{r \vee p, \neg r, p\})=1$

$$
s_{10}=\{\neg s, q, \neg p, \neg r, r \vee p, r,\}
$$

Resolution between rvp and p Resolution between rvp and \neg r Resolution between r and $\neg r$ $r \vee p$ can be subsumed into r
$f_{\text {wert, }, 1}(\{r \vee p, \neg r\},\{r \vee p, \neg r, p\})=1$

$$
s_{10}=\{\neg s, q, \neg p, \neg r, r \vee p, r,\}
$$

Resolution between rvp and p Resolution between rvp and \neg r Resolution between r and $\neg r$ $r \vee p$ can be subsumed into r

$$
f_{\text {wert, }, 1}(\{\neg r, r\},\{\square\})=0
$$

$f_{\text {wert, }, 1}(\{r \vee p, \neg r\},\{r \vee p, \neg r, p\})=1$

$$
s_{10}=\{\sim s, q, \neg p, \neg r, r v p, r\}
$$

Resolution between rvp and $\sim \mathrm{p}$ Resolution between rvp and $\neg r$ Resolution between rand \neg r $r v p$ can be subsumed into r

$$
\begin{gathered}
f_{\text {wert }, 1}(\{\neg r, r\},\{\square\})=0 \\
f_{\text {wert }, 1}(\{r \vee p, r\},\{r\})=0 \\
f_{\text {wert }, 1}(\{r \vee p, \neg r\},\{r \vee p, \neg r, p\})=1
\end{gathered}
$$

$$
s_{10}=\{\neg s, q, \neg p, \neg r, r \vee p, r\}
$$

Resolution between rvp and p Resolution between rVp and \neg r Resolution between r and \neg r $r \vee p$ can be subsumed into r

$$
\begin{gathered}
f_{\text {wert }, 1}(\{\neg r, r\},\{\square\})=0 \\
f_{\text {wert, } 1}(\{r \vee p, r\},\{r\})=0 \\
f_{\text {wert, }, 1}(\{r \vee p, \neg r\},\{r \vee p, \neg r, p\})=1
\end{gathered}
$$

$S_{10}=\{\neg s, q, \neg p, \neg r, r \vee p, r\}$

$S_{10}=\{\neg s, q, \neg p, \neg r, r \vee p, r\}$

$$
\mathrm{s}_{10}=\{\neg \mathrm{s}, \mathrm{q}, \neg \mathrm{p}, \neg \mathrm{r}, \mathrm{r} \vee \mathrm{p}, r\}
$$

$$
s_{11}=\{\neg s, q, \neg p, \neg r, r \vee p, r, \square\}
$$

$s_{11}=\{\neg s, q, \neg p, \neg r, r \vee p, r, \square\}$

$s_{11}=\{\neg s, q, \neg p, \neg r, r \vee p, r, \square\}$

$$
\mathcal{G}\left(s_{11}\right)=\text { yes }
$$

