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ABSTRACT
We investigate the effects of precision on the efficiency of var-
ious local search algorithms on 1-D unimodal functions. We
present a (1+1)-EA with adaptive step size which finds the
optimum in O(log n) steps, where n is the number of points
used. We then consider binary and Gray representations
with single bit mutations. The standard binary method does
not guarantee locating the optimum, whereas using Gray
code does so in O((log n)2) steps. A (1+1)-EA with a fixed
mutation probability distribution is then presented which
also runs in O((log n)2). Moreover, a recent result shows
that this is optimal (up to some constant scaling factor), in
that there exist unimodal functions for which a lower bound
of Ω((log n)2) holds regardless of the choice of mutation dis-
tribution. Finally, we show that it is not possible for a black
box algorithms to efficiently optimise unimodal functions for
two or more dimensions (in terms of the precision used).

Categories and Subject Descriptors
F.2.1 [Analysis of algorithms and problem complex-

ity]: Numerical Algorithms and Problems; G.1.6 [Numerical

analysis]: Optimization

General Terms
Theory

Keywords
Local search, precision, computational complexity, unimodal
functions
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1. INTRODUCTION
Consider the problem of minimising a unimodal function

f : [a, b] → R defined on some interval [a, b]. We wish to
study the effects of changing the precision with which we
are working. On the one hand, increased precision will en-
able us to get closer to the actual optimum value. On the
other hand, it increases the number of points that have to
be considered during the search process. To study this, we
imagine that we place n equally spaced points in the interval
concerned, and label them 0, 1, . . . , n−1. We denote this set
of points [n]. We say that such a point is an optimum with
respect to f if it has a lower f -value than its neighbours, and
we will be assuming that neighbouring points never have ex-
actly the same f -value. A function is unimodal on [n] if there
is exactly one optimum point.

Algorithms for solving this problem efficiently (that is, in
O(log n) time) are known and indeed date back to the 1950s.
These algorithms, such as Fibonacci search [4], are based on
the idea of using a binary search process to cut away large
parts of the search space. In the following section we present
a (1+1)−EA that follows a somewhat similar approach, in
that the mutation step size halves at each generation. We
then consider the standard method of encoding the points
as binary strings (using either the base-2 or Gray represen-
tations), and study local search based on flipping individual
bits. It is well-known that using base-2 is not desirable since
it can introduce new local optima under this search opera-
tor. However, local search with Gray code is guaranteed to
find the optimum, and we derive upper and lower bounds
on the time for doing so.

Ideally, we would like to create an algorithm which will
work well on multimodal problems. However, the above
techniques will not generally work well on such problems,
as they will become trapped in a local optimum. There are
several strategies for dealing with this situation. For ex-
ample, one may employ random restarts, or use a tabu-list.
Here we consider local search algorithms in which the muta-
tion step size is drawn from a fixed probability distribution.
Such algorithms at least have a chance to escape from local
optima (especially if such optima are clustered together).
The question then remains as to how much this affects the



algortihm’s ability to locate the optimum when the function
is actually unimodal. We present a (1 + 1) − EA based on
this idea, using a scale free distribution, and show that it
optimises unimodal functions in O((log n)2) steps. Recent
research has shown that this is optimal (up to a constant
factor) in that there exist unimodal functions for which the
running time of such a local search algorithm is bounded
below by Ω((log n)2) regardless of the choice of probability
distribution.

We finish by discussing the problem of optimising uni-
modal functions in two (or more) dimensions, and conclude
that black box algorithms are not efficient in this case.

2. BINARY SEARCH ALGORITHMS
Efficient algorithms for optimising unimodal functions are

based on a form of binary search. The basic idea is to start
by evaluating the end points 0 and n−1, and some point x1

in between. We then evaluate a fourth point x2 > x1, and
depending on whether its f -value is higher or lower than
that of x1 we can restrict the next step of the search to
the interval [0, x2] or [x1, n − 1] respectively. This process
continues iteratively until the optimum is found in O(log n)
steps. To maximise the number of points that can be ex-
cluded from the search at each step, it is necessary to place
the new point in a way that balances the intervals created
— it can be shown that using interval sizes in the ratio of
the Fibonacci sequence is the best way to do this [4]. The
same principle is utilised in the Quad Search algorithm [9],
although a binary Gray code representation is used in the
implementation (see also the following section).

Here we present an algorithm that is based on a somewhat
similar idea, but takes the form of a (1+1)-EA, in which the
mutation step size is halved at each iteration. The halving
algorithm is as follows:

1: Let m = 2⌈log
2

n⌉

2: Let k = 1
3: Let x be chosen randomly from [n]
4: Let y = x + m/2k

5: Let z = x − m/2k

6: Let x be the best point from {x, y, z}.
7: Let k = k + 1
8: If k > ⌈log2 n⌉ then stop, else go to 4.

In step 6, “best” means both legal and with the lowest f -
value. It is clear that this algorithm iterates for ⌈log2 n⌉ time
steps and evaluates at most 2⌈log2 n⌉ + 1 points. We now
show that it will terminate at an optimum point (even for a
multimodal function) and so, in particular, will optimise a
unimodal function.

Theorem 1. The halving algorithm terminates on an op-
timum point.

Proof. Let T = ⌈log2 n⌉. Suppose the algorithm termi-
nates at a point xT and that this is not an optimum point.
Without loss of generality, assume the point w = xT +1 has
f(w) < f(xT ). Then on the previous time step, the algo-
rithm must have been in state xT−1 = xT −1, since the move
was of step size 1, and it is impossible that it came from point
w, or that it was a rejected move. Similarly, the time step
before that must have been from state xT−2 = xT−1 − 2 =
xT − 3. In general, the state at time step T − i must have
been xT−i = xT−i+1 − 2i−1 = xT − (2i − 1). In particular,
the initial point chosen must have been x0 = xT − (2T − 1).

This means that w − x0 = xT + 1 − xT + 2T − 1 = 2T .
However, this is impossible since the total number of points
is n ≤ 2T . �

Corollary 1. The halving algorithm optimises a uni-
modal function in O(log n) steps.

An advantage of this algorithm over the Fibonacci algorithm
is that on multimodal functions, different optima may be
found by performing restarts. It is also worth noting that
one can implement a continuous version of this algorithm by
taking m (in step 1) to be the size of the interval on which
the function is defined.

3. BINARY AND GRAY CODE
One approach to constructing evolutionary algorithms for

numerical optimisation is to represent numbers as binary
strings, using either the standard base-2 representation, or a
reflective Gray code. If we assume that n = 2L, then we use
bitstrings of length L to represent the points in the search
space. The local search operator corresponds to randomly
flipping bits one at a time.

If we have a unimodal function in which the optimum is
at 0 or n−1, the using the base-2 encoding is quite efficient.
The target is the all zeros string (or all ones string) and once
a bit is set correctly, we do not accept moves which change
it. Consequently, the problem is equivalent to the one-max
problem and the running time for such a local search algo-
rithm is O(L log L). However, these target strings are rather
special in relation to the base-2 encoding. If we had some
other optimum point, then local search (using this encod-
ing) is not guaranteed to find the global optimum, as there
may be several local optima (with respect to the Hamming
neighbourhood). See [8] for details. Using a reflective Gray
code, however, cannot possibly introduce new optima (since
neighbouring points are guaranteed to remain neighbours
in Gray code) and so, in particular, unimodal functions re-
main unimodal. Local search with Gray code is therefore
guaranteed to optimise such functions. It has previously
been proven that a steepest descent type of algorithm will
locate the optimum in O(L2) function evaluations [6], and
empirical data suggested that a next descent type of algo-
rithm may perform significantly better. Here we show an
upper bound of O(L2) for both steepest and next descent
and a lower bound of Ω(L2/ log L), although we conjecture,
in contrast to [6], that Ω(L2) steps are necessary.

Theorem 2. Next Descent and Steepest Descent algorithms
using Gray code with L bits and with single bit flips require
O(L2) function evaluations to optimise unimodal functions.

Notation: The bits of the Gray code are bL . . . b1. The
bijection between numbers x ∈ [n] and Gray codes in {0, 1}L

can be described as follows: If x has binary representation
cL . . . c0 (with L + 1 bits, and hence cL = 0), then bi =

ci ⊕ ci−1. By x(i) we denote the integer obtained from x by
flipping bit number i in the Gray code representation of x.

We can visualize the correspondence between numbers
and Gray codes as a binary tree, like in Figure 1 for L = 4.
This figure also includes a sketch of a unimodal function.
The goal is to find the point m with f(m) = min{f(x) | x ∈
[n]}.

The next descent search strategy can be described as fol-
lows: Pick a starting point x0 uniformly at random from [n].
Then iterate the following step, for t = 1, 2, . . . :



Figure 1: Gray codes as a binary tree

Choose i ∈ {1, . . . , L} uniformly at random. Let x′ =

x
(i)
t−1. If f(x′) < f(xt−1), let xt = x′, otherwise let xt =

xt−1.
We are interested in the expectation of

T = min{t | xt = m}.

Our aim is to show that E(T ) = O(L2).
We associate an integer value Φ(x) with the situation

where the process sits at x, as follows. Let Φ(m) = 0. The
set Ax = {y | f(y) ≤ f(x)} forms an interval in [n], which
contains m. If |Ax| = 1, we are done; if |Ax| = 2 then m
and x are immediate neighbors (as numbers), in which case
the probability that the correct bit is chosen is 1/L. In this
case, we let Φ(x) = 2. From here, we assume that |Ax| ≥ 3.
We look for the smallest pair of neighboring subtrees of the
same height which include all of Ax. The term“neighboring”
here does not refer to the tree structure but rather to the or-
dering of the natural numbers. For example, in Figure 1 the
subtrees with leaf sets {4, . . . , 7} and {8, . . . , 11} are neigh-
bors (height 2), and the subtrees with leaf sets {8, 9} and
{10, 11} are neighbors (height 1). Each of the two trees has
two subtrees in the standard sense. In this way, we obtain
four subtrees of equal height hx. (See Figure 2 for an ex-
ample.) These subtrees are numbered 1, 2, 3, 4, from left to
right.

Case 1: Ax touches (the leaf sets of) all 4 subtrees. Then
Φ(x) = 2hx.

Case 2: Ax touches (the leaf sets of) only 3 subtrees.
Then Φ(x) = 2hx − 1.

For example, in Figure 2 Case 2 applies; the set Ax touches
trees 1, 2, 3. There are no other cases, since if only 2 trees
out of 1, 2, 3, 4 are touched by Ax, the trees are not minimal.

Claim 1. Let |Ax| ≥ 2. If xt−1 = x, then there is at least

one i such that Φ(x
(i)
t−1) < Φ(xt−1). (Hence Prob(Φ(xt) <

Φ(xt−1) | xt−1 = x) ≥ 1
L
.)

Since Φ(x0) ≤ 2L, and Φ takes only integer values, 2L
successful steps that decrease Φ are sufficient. It is then
clear that the expected waiting time until Φ has become 0
is bounded by 2L/(1/L) = 2L2.
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Figure 2: Four neighboring subtrees covering Ax

Proof. The claim is proved by considering several cases.
For symmetry reasons, we may assume that x is in tree 1
or tree 2. Note that then it is impossible that m < x, since
then f would be increasing to the right of x, and hence Ax

could not touch trees 3 or 4.
Case 1: x is in tree 1.

Consider the bit i that flips x to its “partner” x′ in tree 2.
Case 1a: m is in tree 1, x < m. — Then f is increasing

to the right of x′, hence f(x′) < f(y) for all y in trees 3 and
4. Hence Ax′ is contained in the union of the trees 1 and
2. On the other hand, Ax touched tree 3 (at least). Hence
f(x′) < f(x) and Φ(x′) < Φ(x).

Case 1b: m is in tree 2. — If x′ = m, we have Φ(x′) =
0 < Φ(x). If x′ < m, then f is decreasing to the left of x′,
and hence Ax′ does not touch tree 1, but Ax does. Hence
f(x′) < f(x) and Φ(x′) < Φ(x). If x′ > m, then f is
increasing to the right of x′, hence Ax′ is contained in the
union of trees 1 and 2, and again f(x′) < f(x) and Φ(x′) <
Φ(x).

Case 1c: m is in tree 3 or 4. — Since f is decreasing
to the left of x′, the set Ax′ does not touch tree 1, but Ax

does. Hence f(x′) < f(x) and Φ(x′) < Φ(x).
Case 2: x is in tree 2.

Since x < m, the function f is decreasing to the left of
x, and hence Ax does not touch tree 1. Hence Ax must
touch trees 2, 3, and 4. Consider the bit i that flips x to its
“partner” x′′ in tree 3.

Case 2a: m is in tree 2, x < m. — Then f is increasing
to the right of x′′, hence Ax′′ does not touch tree 4, hence
f(x′′) < f(x), and Φ(x′′) < Φ(x).

Case 2b: m is in tree 3. — If x′′ = m, we have Φ(x′′) =
0 < Φ(x). If x′′ < m, then Ax′′ does not touch tree 2. If
x′′ > m, then Ax′′ does not touch tree 4. In all cases we
have f(x′′) < f(x) and Φ(x′′) < Φ(x).



Case 2c: m is in tree 4. — Then Ax′′ does not touch
tree 2, hence f(x′′) < f(x) and Φ(x′′) < Φ(x).

The claim is proved. �

Remark 1. The steepest descent algorithm [6] uses L

function evaluations to determine the i that minimizes f(x(i)).
One such move will shrink the set Ax at least as much as
the single good move identified in the “Claim”. This yields
an alternative proof for the fact that steepest descent needs
at most 2L2 function evaluations.

An alternative strategy is the Random Bit Climber (RBC)
algorithm [6], which tries bits in a randomized order. Once
all bits have been tried, a new random order is generated.
This strategy, therefore, runs in phases of L rounds each.
Given x = x(s−1)L, we check bit positions according to a
random permutation (i1, . . . , iL), and accept whenever an
improvement for f is found. The resulting sequence of new
points is x(s−1)L+1, . . . , xsL. After phase s, we choose a new
random permutation. The idea is to try to avoid repeatedly
picking previously tried, but unsuccessful, bits.

Consider the four trees 1, 2, 3, 4 that belong to x, as
in the proof of the claim. We ignore bit positions that do
not flip xt−1 to one of its “partners” in trees 1, 2, 3, or
4. Bit flips that lead to points outside these four trees are
never accepted, bit flips that lead to other points in the same
subtree may or may not be accepted.

If x is in tree 1, there are two cases:
Case 1: The bit flip that leads the sequence
x(s−1)L+1, . . . , xsL into tree 4 is tried and accepted
before the move into tree 2. Then the function Φ must
decrease before or at the bit flip that moves the point from
tree 4 into tree 3 (by the proof of the “Claim”, applied to
tree 4 by symmetry).
Case 2: The bit flip that leads the sequence
x(s−1)L+1, . . . , xsL into tree 2 is carried out first. Then the
function Φ must decrease before or at this step (by the
proof of the claim).

Now consider the case that x is in tree 2. Since x < m,
Ax does not touch tree 1, and no bit flip that leads into tree
1 will be accepted. Hence in x(s−1)L+1, . . . , xsL we will see
the bit flip that leads into tree 3 first, and Φ must decrease
before or at this bit flip. (We do not care whether or not
the sequence moves into tree 4 afterwards.)

In any case, after one phase of testing the L bits the func-
tion Φ must have decreased by at least 1. Hence there can
be at most 2L phases.

Remark 2. This argument shows that for the upper
bound to hold it is not necessary to change the order of
the bit flips in each phase.

It is worth noting that the RBC algorithm offers only a
small improvement (bounded by a constant) to the standard
(1 + 1)-ES (in which bits are chosen uniformly at random).
This is because if k of the L bits are improving moves then
the (1 + 1)-ES finds one of them, on average, in L/k time
steps, whereas the RBC takes (L + 1)/(k + 1) steps, as the
following lemma shows.

Lemma 1. If k distinct integers are picked randomly from
the set {1, 2, . . . , L} then the expected value of the smallest
integer chosen is (L + 1)/(k + 1).

Proof. Since we are dealing with positive integers, then
we can use the formula E[X] =

P

i Prob(X ≥ i). So the
expected least integer is

L−k+1
X

i=1

`

L−i+1
k

´

`

L
k

´ =
L
X

m=k

`

m
k

´

`

L
k

´ =

`

L+1
k+1

´

`

L
k

´ =
L + 1

k + 1
�

The improvement is most when k = 1 in which case the
RBC takes half the time to find the right bit to flip. As k
increases, the improvement becomes less and less significant.

Theorem 3. If the “next descent” or the “RBC” algo-
rithm is applied to the identity function [2L] ∋ x 7→ x ∈ [2L],
then E(T ) = Ω(L2/ log L).

Proof (Sketch). We look at the “next descent” algo-
rithm and argue in terms of Gray codes as in the proof of
the upper bound. The target point is (0, . . . , 0). To measure
how far the process still has to go we take the position

h(x) = h((bL, . . . , b1)) = max{i | bi = 1}

of the highest-valued 1-bit in the Gray code x = (bL, . . . , b1)
as indicator.

We define one “phase” of the process as a maximal se-
quence of rounds in which h(xt) = · · · = h(xt+s−1) >
h(xt+s). The expected number of rounds in a phase is ex-
actly L, since the highest-valued 1-bit in the Gray code xt

must be hit, and the probability for this to happen is 1/L.
We claim that the average decrease of h in a phase is not
larger than lnL.

Assume h(x) = i, bi = 1 and bi−1 = · · · = bi−k+1 = 0
and i − k = 0 ∨ bi−k+1 = 1. Let Z be the decrease of h in
this phase. This means that bi−1 = · · · = bi−Z+1 = 0 and
i − Z = 0 ∨ bi−Z+1 = 1 when bit i is chosen. Note that
Prob(Z ≥ j) = 1

j
for 1 ≤ j ≤ k (the 1 in position i is the

first to be chosen out of the positions {i, i−1, . . . , i−j+1}).
Hence

E(Z) =
X

1≤j≤k

Prob(Z ≥ j) =
X

1≤j≤k

1

j
= Hk < 1 + lnL.

Since the progress in each phase is at most 1 + ln L, and
the average position of the leftmost 1 in the Gray code at
the beginning is about L−1, the expected number of phases
to reach the target 0 is at least (L− 1)/(1 + ln L). This can
be seen by applying [3, Lemma 12] (a one-sided variant of
Wald’s identity).

The argument for RBC is similar; the expected length of
a phase is 1

2
(L + 1), though. �

Remark 3. We conjecture (but could not prove yet) that
E(T ) = Ω(L2) for the identity function. This is supported
by the fact that for L = 3, . . . , 11 the quantity E(T ) (which
depends on L) exhibits quadratic behaviour, as can be seen
by calculating these figures by a computer program. This
is in contrast to the conjecture in [6] that O(L log L) steps
are sufficient. It is easy to see that steepest descent needs
one move for every 1 in the Gray code representation of the
starting point, whose expected number is L/2. Thus, steep-
est descent needs Ω(L2) function evaluations on average.

4. FIXED DISTRIBUTION ALGORITHMS
We now consider the class of (1+1)-EAs in which the mu-

tation step size is drawn from a fixed probability distribution
µ, as follows:



1: Let x be a random point in [n]
2: Let d ∈ {1, 2, . . . , n − 1} be drawn according to µ.
3: Let y = x + d
4: Let z = x − d
5: Let x be the best of {x, y, z}
6: Go to 2.

Again, “best” in line 5 indicates both legal and with smallest
f -value. Note that bit mutations on binary strings do not
belong to this class of algorithm, as whether or not you
add or subtract the corresponding number depends on the
current state.

The main motivation for studying algorithms of this form
is that they are less prone to being trapped in local optima
on multimodal functions. There is always some probability
(depending on the distribution µ) of escaping to a better
point. Of course the main problem is that one doesn’t know
where the better points are, and so one should find a balance
between small and large jumps. A probability distribution
which has this kind of scale free property is the Harmonic
distribution:

µ(d) =
1

dHn−1
, where Hn−1 =

n−1
X

k=1

1

k
.

The (1 + 1)-EA using this distribution is analysed in [1] for
a particular unimodal function. Here we present an upper
bound for general unimodal functions.

Theorem 4. The (1 + 1)-EA using the Harmonic dis-
tribution takes on average O((log n)2) iterations to find the
optimum of a unimodal function.

Proof. As previously, given our current point x, we let
Ax = {y | f(y) ≤ f(x)}, which forms an interval, containing
the optimum, with x at one end. Now let Bx be the best
half of these points (sorted by f -value). Then Bx is also an
interval containing the optimum. We estimate the probabil-
ity of moving from x to a point in Bx. Since the probability
of moving a distance d is monotonically decreasing with d,
it follows that the worst case is when the interval Bx is a
distance |Bx| away from x. The probability of moving to a
point in this interval in one iteration is

2|Bx|
X

d=|Bx|

1

dHn−1
=

1

Hn−1

`

H2|Bx| − H|Bx

´

≈
log 2

log(n − 1)

Any other moves can only shorten the distance to be jumped
and so increase this probability. The expected waiting time
to arrive in Bx is therefore O(log n). Since we need to repeat
this at most log n times to locate the optimum, the result
follows. �

This result shows that our Harmonic (1+1)-EA performs
about as efficiently as local search using a Gray code rep-
resentation, without the drawback of getting stuck in local
optima. In fact a continuous version of this algorithm has
been used successfully on a number of benchmark and real-
world problems [5, 2]. One would like to know, however, if
one couldn’t do better by an even cleverer choice of proba-
bility distribution. The following result, reported in [1] in-
dicates that improvements by only a constant scaling factor
are possible.

Theorem 5. There exist unimodal functions for which
the running time of a fixed distribution (1 + 1)-EA requires
Ω((log n)2) steps to find the optimum.

Proof. The function concerned is simply f(x) = x, with
the optimum at 0. See [1] for details. �

5. 2-D UNIMODAL FUNCTIONS
We have so far been concerned with one-dimensional func-

tions and have seen that there exist efficient algorithms for
solving unimodal problems in one dimension using black box
algorithms such as EAs. It is natural to ask whether or
not this continues to be the case if the search space is two-
dimensional (or higher). It is known that black box search
algorithms are not efficient for solving discrete unimodal
functions when the complexity is considered as a function
of the dimension of the problem, but where the precision
(that is, the number of points per dimension) is fixed. This
can be seen, for example, with the class of long-path prob-
lems defined on {0, 1}n described in [?]. In contrast, here we
consider problems with fixed dimension, but varying preci-
sion. We show that for two dimensions (and, therefore, for
problems in higher dimensions as well), there are unimodal
functions which black box algorithms cannot optimise effi-
ciently.

Let [n] = {0, . . . , n−1}. A point p = (x, y) ∈ [n]× [n] has
up to four neighbours, (x − 1, y), (x + 1, y), (x, y − 1), and
(x, y+1). (Such a pair p′ is not a neighbour, if p′ 6∈ [n]×[n].)
A point p ∈ [n]× [n] is a maximum of f , if for all neighbours
p′ of p it holds f(p) ≥ f(p′). The function f is unimodal,
it if has exactly one maximum. Let Fn be the family of
unimodal functions f : [n] × [n] → R.

Theorem 6. For any n ∈ N and any randomized black-
box algorithm A, there exists a unimodal function f ∈ Fn

such that A queries an expected number of Ω(n2/3) points,
before querying the maximum of f .

We use Yao’s Min-Max principle (see for example Chapter 9
of [7]) to prove the theorem. In order to apply the principle,
we have to restrict ourselves to a finite set of functions and
to a finite set of deterministic black-box algorithms.

In the following, n is fixed, and w.l.o.g. k = n1/3 is an
odd integer. Let F ′

n be the family of unimodal functions
f : [n] × [n] → {−2n, . . . , n2}. Further, let A be the family
of deterministic black-box algorithms for functions f ∈ F ′

n,
that do not query any point twice. Clearly, F ′

n and A are
finite, and we can apply Yao’s Min-Max principle. Moreover,
it is easy to see that any black-box algorithm A′ for Fn can
be replaced by a black-box algorithm A ∈ A that finds the
maximum of any function F ′

n with at most as many queries
as A′. (Whenever algorithm A′ queries a point for the second
time, A omits that query.)

For A ∈ A and a probability distribution µ over F ′
n, let

TA,µ be the random variable that denotes the number of
queries A performs until it queries the maximum of f , if f
is picked at random according to probability distribution µ.
Theorem 6 follows immediately from the following lemma.

Lemma 2. There exists a probability distribution µ over
F ′

n, such that for any black-box algorithm A ∈ A

E(TA,µ) = Ω(k2).

The rest of this section is devoted to the proof of the
lemma. We define the probability distribution µ by con-
structing a random function f ∈ F ′

n as described in the
following.



Consider a path p = (v0, . . . , vℓ) in [n] × [n], such that

(i) v0 = (0, 0),

(ii) vi+1 is a neighbour of vi for 0 ≤ i < ℓ, and

(iii) vi 6= vj for i 6= j.

For such a path, we define function fp : [n] × [n] →
{−2n, . . . , n2} by

fp(x, y) =

(

i if (x, y) = vi, 0 ≤ i ≤ ℓ, and

−x − y if (x, y) is not on the path p.
(1)

It is easy to see that fp is unimodal: Clearly vℓ is the unique
maximum, because for every point (x, y) = vi 6= vℓ on the
path, the neighbour vi+1 has a larger function value, and
for every point (x, y) not on the path either (x, y − 1) or
(x − 1, y) is a neighbour and has a larger function value.

We now show how to construct path p at random. This
way, we obtain a random construction for a function fp, and
thus a probability distribution µ over F ′

n.
Recall that k = n1/3. First, we partition the grid into k2

sectors Sa,b, 0 ≤ a, b < k, where each sector is a k2 × k2-
sub-grid. Sector Sa,b consists of the points (x, y), where
ak2 ≤ x < (a + 1)k2 and bk2 ≤ y < (b + 1)k2.

It is helpful to visualize the grid as having the point (0, 0)
in the bottom left and the point (n−1, 0) in the bottom right
corner. Similarly, the sector S0,0 is the k× k sub-grid in the
bottom left corner of the [n] × [n] grid, and Sk−1,0 is in the
bottom right corner. We now order the k2 sectors as follows
in a “snake-like” way. First comes sector S0,0 and then the
sectors S1,0, S2,0, . . . , Sk−1,0 (i.e., the bottom sectors from
left to right). Then follows the sector above Sk−1,0, namely
Sk−1,1, and then all the sectors in the second row from right
to left up to S0,1. Then this continues with the sectors from
the third row, ordered from left to right, and so on, until
the last sector Sk−1,k−1 (recall that k is odd). Formally, the
i-th sector (0 ≤ i < k2) is Si = Sa,b, where b = ⌊i/k⌋ and

a =

(

i mod k if b is even, and

(−i − 1) mod k if b is odd.

As a consequence, Si+1 is either to the left, to the right, or
above of Si. For convenience, we define Si = ∅ for i < 0 and
i ≥ k2.

The idea is the following: Our random path p passes
through the sectors S1, S2, . . . , and ends in sector Sk2−1.
The random construction of p will ensure, that if the algo-
rithm has no information about sectors Sα−1, Sα, Sα+1 for
some 1 < α < k2 − 1, i.e., if it has never queried any points
from these sectors, then it is very unlikely that a query in
Sα will hit the path p. Thus, in order to find the endpoint
of the path, an algorithm must either follow the path from
sector to sector (which requires at least Ω(k2) queries due
to the number of sectors), or it has to search for a point on
p in sector Sk2−1 without having any information about the
location of p in that sector. It will turn out, that the latter
also takes an expected number of Ω(k2) queries.

We now describe how to generate the random path p. In
each sector Si, i 6≡ 0 (mod k), we pick a point qi = (xi, yi)
uniformly at random. We let q0 = (x0, y0) = (0, 0), and for
i ≡ 0 (mod k), i > 0, point qi has the same x-coordinate
as qi−1 and the same y-coordinate as qi+1, i.e., (xi, yi) =
(xi−1, yi+1). (Note that if i ≡ 0 (mod k) and i > 0, then

q0

qk2
−1

qk−1

qk+1
qk

xk = xk−1, yk = yk+1

Figure 3: A random path for k = 5

sector Si is above sector Si−1, so this definition ensures that
qi ∈ Si.)

Finally, we connect each pair of points qi, qi+1, 0 ≤ i <
k2 − 1 by a subpath pi, that first goes from (xi, yi) in y-
direction until it reaches (xi, yi+1), and then in x-direction
until it reaches (xi+1, yi+1). Hence, pi contains exactly the
points (x, y), where either x = xi and min{yi, yi+1} ≤
y ≤ max{yi, yi+1}, or y = yi+1 and min{xi, xi+1} ≤ x ≤
max{xi, xi+1}. Note also that if Si is above Si−1 (i.e., i ≡ 0
(mod k) and i > 0), then the path from pi−1 to pi goes only
in y-direction, and the path from pi to pi+1 goes only in
x-direction. This way it is ensured that pi and pi+1 have
only their connecting point qi+1 in common. Finally, path
p is the concatenation of p0, . . . , pk2−1. See Figure 3 for an
example of a random path p for k = 5.

It is easy to see that Properties (i)–(iii) from above hold.

Claim 2. Let u = (x, y) ∈ Sα for 1 ≤ α < k2 be a point
on path p. If α ≡ k − 1 (mod k), then y = yα or x = xα.
Otherwise, y ∈ {yα, yα+1} or x = xα.

Proof. If α 6≡ k−1 (mod k), then the path p enters sec-
tor Sα at a point with y-coordinate yα and leaves the sector
at a point with y-coordinate yα+1. Inbetween, the path goes
in y-direction only when its points have x-coordinate xα. For
α ≡ k − 1 (mod k), note that the path either ends at qα (if
α = k2 − 1), or goes from qα to qα+1 only in y-direction.

�

As mentioned above, this random construction of p defines
a probability distribution µ over the functions in F ′

n. In the
following, whenever we talk about a random path p or a
random function fp, we mean a path constructed according
to this random experiment, or a function fp picked according
to distribution µ.

We now prove some essential properties of the random
function fp. Recall that by (1) a point u ∈ [n] × [n] is on
path p if and only if fp(u) ≥ 0.

Claim 3. For any point u in Sα, 1 ≤ α < k2 it holds

Prob
µ

`

fp(u) ≥ 0
´

≤
3

k2
.

Proof. Since each of the random numbers xα, yα, and
yα+1, is uniformly distributed over a domain of size k2, the
claim follows immediately from Claim 2. �



We now show that whether or not a point is on the path in
some sector Sα is independent of which points on the path
have been sampled in S1∪· · ·∪Sα−2 and whether or not any
points on the path have been sampled in Sα+2 ∪ · · ·Sk2−1.

For a real number x 6= 0 we define sign(x) = x/|x|, and
sign(0) = 1.

Claim 4. Let α, i, t be integers such that 1 ≤ α < k2, and
0 ≤ r ≤ t. Let u ∈ Sα, 1 < α < k2, and let u1, . . . , ur be
arbitrary points in S0 ∪ · · · ∪Sα−2, and ur+1, . . . , ut be arbi-
trary points in Sα+2∪· · ·∪Sk2−1. Finally, let z1, . . . , zr ∈ R

and σr+1, . . . , σt ∈ {−1, 1} such that the event

E : ∀1 ≤ j ≤ r : fp(uj) = zj ∧∀r < j ≤ t : sign
`

fp(uj)
´

= σj

occurs with a positive probability. Then the events E and
“fp(u) ≥ 0” are independent.

Proof. Let p′ = p∩ (S0, . . . , Sα−2) and p′′ = p∩ (Sα+2 ∪
· · · ∪ Sk2−1). The function values fp(uj), j > r, can depend
on the length of the subpath of p that goes through Sα−1 ∪
Sα ∪ Sα+1, but the sign of fp(uj) only depends p′′. On the
other hand, the function values fp(uj), j ≤ r, are uniquely
determined by p′. Hence, whether or not event E occurs
depends only on p′ and p′′.

By Claim 2, the event “fp(u) ≥ 0” may depend only on
the random variables xα, yα, and, if α 6≡ k − 1 (mod k),
on yα+1. Even if we fix p′ and p′′ arbitrarily, point qα =
(xα, yα) can still be anywhere in sector Sα. Moreover, if
(α+1) 6≡ 0 (mod k), the choice of yα+1 is not restricted by p′

or p′′, either. Hence, the values xα, yα, and, if necessary also
yα+1 are still uniformly distributed (over their respective
domain of size k2). Thus, whether event “fp(u) ≥ 0” occurs
is independent from p′ and p′′, and thus also independent
from E . � �

Claim 5. Let H = {u1, . . . , ut}, where u1, . . . , ut are
points in [n] × [n]. Further, let z1, . . . , zt ∈ R, and α ∈
{1, . . . , k2 − 1}, and r ∈ {0, . . . , t} such that

1. ∀1 ≤ j ≤ r: uj ∈ S1 ∪ · · · ∪ Sα−2.

2. ∀r < j ≤ t: uj ∈ Sα+2 ∪ · · · ∪ Sk2−1 and zj < 0.

Then for any point u ∈ Sα+2 ∪ · · · ∪ Sk2−1 it holds1

Prob
µ

(fp(u) ≥ 0 | ∀1 ≤ j ≤ t : fp(uj) = zj) ≤
1

k2/3 − t + r
.

Proof. Assume that Prob(∀1 ≤ j ≤ t : fp(uj) = zj) > 0,
because otherwise there is nothing to show. For any point
u∗, if fp(u

∗) < 0, then u∗ is not on the path and fp(u
∗) is

uniquely determined by the coordinates of u∗. Since zj < 0
for j > r, we have

∀r < j ≤ t :
`

fp(uj) < 0 ⇔ fp(uj) = zj

´

. (2)

Now consider the following events:

E : ∀1 ≤ j ≤ r : fp(uj) = zj .

E ′: ∀r < j ≤ t : fp(uj) = zj .

By Claim 4, the event “fp(u) ≥ 0” is independent from
event E , and so by Claim 3,

Prob(fp(u) ≥ 0 | E) ≤
3

k2
. (3)

1For any two events E1 and E2 we define Prob(E1|E2) = 0 if
Prob(E2) = 0.

For the same reason, for any r < j ≤ t

Prob(fp(uj) ≥ 0 | E) ≤
3

k2
,

and thus

Prob(E ′ | E)
(2)
= Prob

 

^

r<j≤t

fp(uj) < 0

˛

˛

˛

˛

E

!

≥ 1 −
X

r<j≤t

Prob
`

fp(uj) ≥ 0
˛

˛ E
´

(3)

≥ 1 − (t − r)
3

k2
. (4)

This leads us to

Prob
µ

(fp(u) ≥ 0 | ∀1 ≤ j ≤ t : f(uj) = zj)

= Prob
µ

(fp(u) ≥ 0 | E ∧ E ′)

=
Probµ(E ′ ∧ fp(u) ≥ 0 | E)

Probµ(E ′ | E)

≤
Probµ(fp(u) ≥ 0 | E)

Probµ(E ′ | E)

(3),(4)

≤
3/k2

1 − 3(t − r)/k2
=

1

k2/3 − t + r

�

Now let A ∈ A be a black-box algorithm for functions
in F ′

n. The maximum of fp is vℓ, the last point on path p.
Note that vℓ is in section Sk2−1. We prove that the expected
number of queries A needs until it finds vℓ is Ω(k2).

After algorithm A has made t queries, the query-history
H is the set {u1, . . . , ut} of points that A has queried. We
define a potential function Φ that maps the set of possi-
ble query-histories to N, and that measures the amount of
progress algorithm A has made.

One way for the algorithm to make progress is to find a
point on p in a sector Si that is closer to the destination
than all other sectors in which A has found points on p, yet.
Hence, one component of our potential is ϕ(H), the largest
number of a sector, such that A has queried a point in that
sector that is on path p. That is,

ϕ(H) = max{0, j | ∃u ∈ H ∩ Sj : fp(u) ≥ 0}.

Another way for A to make progress is to query points in
sectors Si, i > ϕ(H), because this eliminates points that
are not on p, and thus increases the chances of finding the
path in a “higher” sector. Thus, the second component of
our potential is γ(H), which denotes the number of points
queried in sectors “above” Sϕ(H)+1, i.e.,

γ(H) = |H ∩ (Sϕ(H)+1 ∪ · · · ∪ Sk2−1)|.

The potential of the query-history H is a weighted sum of
these two components, with a cap at k2/3:

Φ(H) = min



k2

3
, ϕ(H) + 4γ(H)

ff

.

Before A has queried a point, its query-history is empty,
and Φ(∅) = 0. On the other hand, when A has queried the
maximum vℓ, then a point on p ∩ Sk2−1 is in the query-
history H , so ϕ(H) = k2 − 1 and Φ(H) = k2/3. Therefore,
during a run of algorithm A the potential of its query-history
increases from 0 to k2/3. The following claim shows that
with each query the expected increase in potential is at most
constant.



Claim 6. Fix a sequence of points u1, . . . , ut ∈ [n] × [n],
and a sequence of function values z1, . . . , zt ∈ R, and let
H = {u1, . . . , ut}. Then for any u ∈ [n] × [n] it holds

E
µ

`

Φ(H ∪ {u}) − Φ(H)
˛

˛ ∀1 ≤ j ≤ t : fp(uj) = zj

´

≤ 5.

Proof. In the following we work under the condition
that fp(uj) = zj for 1 ≤ j ≤ t. Hence, ϕ(H), γ(H), and
thus also Φ(H) are uniquely determined. All probabilities
below are conditional probabilities, given the event “∀1 ≤
j ≤ t : fp(uj) = zj” (and assuming that this event occurs
with a probability larger than 0).

Let i ∈ {0, . . . , k2 − 1} such that u ∈ Si, and let H ′ =
H ∪ {u}. Clearly,

ϕ(H ′) =

(

i if i > ϕ(H) and fp(u) ≥ 0; and

ϕ(H) otherwise.

Hence, if i ≤ ϕ(H), the potential can increase by at most
4(γ(H ′) − γ(H)) ≤ 4. Thus, assume that i > ϕ(H).

Let s := |H ∩ (Sϕ(H)+1 ∪ · · · ∪ Si)|. In the event that
fp(u) ≥ 0 and thus ϕ(H ′) = i, we have γ(H ′) − γ(H) ≤ −s
because in this case the s elements in H∩(Sϕ(H)+1∪· · ·∪Si)
contribute to γ(H) but not to γ(H ′). Therefore, we have

Φ(H ′) − Φ(H)

(

= i − ϕ(H) − 4s if fp(u) ≥ 0, and

≤ 4 otherwise.
(5)

Hence, if 4s ≥
`

i−ϕ(H)
´

− 4, the increase in potential is at
most 4. Therefore, we assume now that 4s < (i − ϕ(H)) − 4.
Then

s <
i − ϕ(H)

4
− 1 ≤

—

i − ϕ(H)

4

�

.

This implies that among the i−ϕ(H) sets Sϕ(H)+1, . . . , Si,
there are 4 consecutive ones that do not intersect with H .
Hence, there is at least one set Sα, ϕ(H) + 1 < α < i − 1,
such that H ∩ (Sα−1 ∪ Sα ∪ Sα+1) = ∅. In other words, for
all 1 ≤ j ≤ t it holds

uj 6∈ Sα−1 ∪ Sα ∪ Sα+1,

and since ϕ(H) < α − 1

if uj ∈ Sα+2 ∪ · · · ∪ Sk−1, then fp(uj) < 0.

Moreover, u ∈ Sα+2 ∪ · · · ∪ Sk2−1 due to the choice of α <
i − 1.

Thus, we are exactly in the same situation as in Claim 5,
with r ≥ t− γ(H) (because at least t− γ(H) of the t search
points in H are actually in S1 ∪ · · · ∪ Sα−2). Hence, we can
conclude that (recall that the probabilities are conditional,
given the event “∀1 ≤ j ≤ t : fp(uj) = zj”)

ǫ := Prob(fp(u) ≥ 0) ≤
1

k2/3 − t + r
≤

1

k2/3 − γ(H)

Since Φ(H ′) ≤ k2/3 and Φ(H) ≥ 4γ(H), we have in any
case (no matter whether fp(u) ≥ 0 or not)

Φ(H ′) − Φ(H) ≤ k2/3 − 4γ(H).

Moreover, if fp(u) < 0, then Φ(H ′) − Φ(H) ≤ 4 according
to (5). Hence,

Eµ

`

Φ(H ′) − Φ(H)
´

≤ (1 − ǫ)4 + ǫ(k2/3 − 4γ(H))

≤ 4 +
k2/3 − 4γ(H)

k2/3 − γ(H)
≤ 5. �

Utilizing [3, Lemma 12] it follows that A needs an ex-
pected number of Ω(k2) queries until the potential has
increased from 0 to k2/3. This completes the proof of
Lemma 2.

6. CONCLUSIONS
We have investigated the problem of optimising unimodal

functions in terms of the precision used. There exist efficient
algorithms for unimodal functions in one dimension. An evo-
lutionary algorithm which halves its mutation step size at
each iteration optimises unimodal function in O(log n) steps
and, moreover, is guaranteed to find a local optimum in
multi-modal problems. If we use binary strings of length L
to represent the points using the reflective Gray code then
the running time is O(L2), using steepest and next descent
algorithms. A (1 + 1)-ES was given in which the muta-
tion step size is drawn from a fixed probability distribution
(the Harmonic distribution). This optimises unimodal func-
tions in O((log n)2) steps. It has previously been shown that
there exist unimodal functions for which this running time
is optimal (up to a constant factor) for fixed distribution
algorithms. Finally, we considered functions defined on two
dimensions (and higher), and showed that black box algo-
rithms cannot optimise unimodal functions efficiently (as a
function of the precision) on such spaces.

7. REFERENCES
[1] M. Dietzfelbinger, J. E. Rowe, I. Wegener, and

P. Woelfel. Tight bounds for blind search on the
integers. In Proc. 25th International Symposium on
Theoretical Aspects of Computer Science, 2008.
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