
Tight RMR Lower Bounds for Mutual Exclusion
and Other Problems∗

(Extended Abstract)

Hagit Attiya
Department of Comp. Sci.

Technion
hagit@cs.technion.ac.il

Danny Hendler
Department of Comp. Sci.

Ben-Gurion University
hendlerd@cs.bgu.ac.il

Philipp Woelfel
Department of Comp. Sci.

University of Calgary
woelfel@cpsc.ucalgary.ca

ABSTRACT
We investigate the remote memory references (RMRs) complexity
of deterministic processes that communicate by reading and writ-
ing shared memory in asynchronous cache-coherent and distributed
shared-memory multiprocessors.

We define a class of algorithms that we call order encoding. By
applying information-theoretic arguments, we prove that every or-
der encoding algorithm, shared by n processes, has an execution
that incurs Ω(n logn) RMRs. From this we derive the same lower
bound for the mutual exclusion, bounded counter and store/collect
synchronization problems. The bounds we obtain for these problems
are tight. It follows from the results of [10] that our lower bounds
hold also for algorithms that can use comparison primitives and load-
linked/store-conditional in addition to reads and writes. Our mutual
exclusion lower bound proves a longstanding conjecture of Ander-
son and Kim.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent pro-
gramming; F.1.2 [Theory of Computation]: Computation by Ab-
stract Devices—Modes of Computation [Parallelism and concur-
rency]; F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
information theory, shared-memory, lower bound techniques, mu-
tual exclusion, bounded counter, store/collect object

∗The first author is supported in part by the Israel Science Founda-
tion (grant number 953/06).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’08, May 17–20, 2008, Victoria, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-047-0/08/05 ...$5.00.

1. INTRODUCTION
The memory hierarchy in shared-memory multi-processor sys-

tems places some of the memory locally, while the rest of the mem-
ory is remote, e.g., in other processing units or in dedicated storage.
For example, in cache-coherent (CC) systems, each processor main-
tains local copies of shared variables in its cache; the consistency
of copies in different caches is ensured by a coherence protocol. At
any given time, a variable is local to a process if the coherence pro-
tocol guarantees that the corresponding cache contains an up-to-date
copy of the variable, and is remote otherwise. In distributed shared-
memory (DSM) systems, on the other hand, each shared variable is
permanently locally accessible to a single processor and remote to
all other processors.

References to remote memory are orders of magnitude slower
than accesses to the local memory module; they generate traffic on
the processor-to-memory interconnect, which can be a bottleneck
and cause further slow-down. For these reasons, the performance
of many algorithms for shared memory multiprocessor systems de-
pends critically on the number of references to remote memory they
generate [7, 14].

The remote memory references complexity measure, abbreviated
RMR cost, charges an algorithm with one unit for each access of
remote memory, namely, reading from or writing to memory loca-
tions that do not reside locally at the process; writing, reading or
even spinning on a memory location that is locally available is con-
sidered free. The RMR cost is considered to accurately predict the
actual performance of a concurrent algorithms deployed in a multi-
processing system.

The familiar way to measure time complexity, by counting the to-
tal number of shared memory accesses, regardless of whether they
are local or remote, is inadequate for blocking problems such as mu-
tual exclusion: For such problems, a process may perform an un-
bounded number of memory accesses while performing a local spin
loop, waiting for another process [1]. Instead, recent mutual exclu-
sion work mostly uses the RMR cost to evaluate algorithms (see,
e.g., [2, 5, 6, 13]).

We prove tight lower bounds on the RMR cost of key syn-
chronization problems—mutual exclusion, bounded counters, and
store/collect.

Our Technique and Contributions. We define order encod-
ing algorithms. Roughly speaking, an algorithm is order encoding
if, for each of its executions E, the order in which the operations that
were performed in E “took effect” can be determined based on the
state of the shared memory after E terminates.

Our key technical result (Theorems 1 and 9) establishes that ev-
ery n-process order encoding algorithm has an execution that incurs

Ω(n logn) RMRs. To prove this, we construct a set E of n! stylized
executions of the order encoding algorithm. The set E has the prop-
erties that (a) different executions of E result in different shared-
memory states, and (b) each execution E ∈ E can be represented
by a bit-string whose length is bounded from above (up to a constant
factor) by the total number of RMRs performed in E. Since |E |= n!,
a simple information theoretic argument shows that the RMR cost of
at least one of the executions of E is Ω(n logn).

The reader may wonder whether an algorithm implementing one
of the problems we consider, e.g. a mutual exclusion algorithm,
must be order encoding: an execution of a mutual exclusion algo-
rithm does not necessarily record the order of its operations in shared
memory! Indeed, we do not argue directly about the algorithms for
the problems we consider. Rather, we present “wrappers” to obtain
corresponding order encoding algorithms.

The mutual exclusion problem is at the core of distributed com-
puting theory [16]. Using the technique described above, we prove a
lower bound of Ω(n logn) RMRs on any implementation of mutual
exclusion from reads and writes (Theorem 11). This bound, as well
as all other bounds we present, holds for both the CC and the DSM
models. This result confirms a longstanding conjecture of Anderson
and Kim [4]. We then prove a similar result for bounded counters
(Theorem 13) and for store/collect objects (Theorem 15).

In [10] it is proven that any CC or DSM algorithm using read and
write operations, load-linked/store-conditional (LL/SC), and com-
parison primitives, can be simulated by an algorithm that uses only
read and write operations, with just a constant blowup in the RMR
complexity. It follows that the lower bounds hold also if the algo-
rithms can use comparison primitives and LL/SC in addition to reads
and writes.

Related Work. Considerable research has focused on proving
RMR bounds for the mutual exclusion problem. Anderson and Yang
presented an O(logn) RMRs mutual exclusion algorithm [17]. Our
results establish that this is the best possible. Anderson and Kim
proved a lower bound of Ω(logn/ log logn) on the RMR complexity
of mutual exclusion algorithms that use reads and writes only [2],
improving on a previous lower bound of Ω(log logn/ log loglogn)
obtained by Cypher [8].

Fan and Lynch [9] proved an Ω(n logn) lower bound on the state
change cost of mutual exclusion. This does not imply a correspond-
ing RMR lower bound for either the CC or the DSM models. Nev-
ertheless, their technique introduced several novel ideas, which our
technique borrows and extends.

For lack of space, we refer the interested reader to [3] for a com-
prehensive discussion of RMR upper and lower bounds.

2. MODEL
Our model of computation is based on [12]. A concurrent sys-

tem models an asynchronous shared memory system where n deter-
ministic processes communicate by executing operations on shared
variables.

Each process is a sequential execution path that performs a se-
quence of steps, each of which invokes a single operation on a sin-
gle variable and receives a corresponding response. The operations
allowed in our model are read, write, comparison primitives [2, 10]
(a.k.a. conditional operations) and load-linked/store-conditional. If
step σ invokes an operation on variable v we say that σ accesses v.
A variable that supports the read and write operations only is called
a register.

In this paper we consider the cache-coherent (CC) and the dis-
tributed shared-memory (DSM) computation models. Each proces-
sor in a CC machine maintains local copies of shared variables inside

its cache, whose consistency is ensured by a coherence protocol. At
any given time a variable is remote to a processor if the correspond-
ing cache does not contain an up-to-date copy of the variable.

Our lower bounds apply to both families of CC coherence algo-
rithms: write-through and write-back [15]. Quoting from [10]: “In a
write-through protocol, to read a register R a process p must have a
(valid) cached copy of R. If it does, p reads that copy without caus-
ing an RMR; otherwise, p causes an RMR that creates a cached copy
of R. To write R, p causes an RMR that invalidates (i.e., effectively
deletes) all other cached copies of R and writes R to main memory.

In a write-back protocol, each cached copy is held in either
“shared” or “exclusive” mode. To read a register R, a process p
must hold a cached copy of R in either mode. If it does, p reads
that copy without causing an RMR. Otherwise, p causes an RMR
that: (a) eliminates any copy of R held in exclusive mode, typically
by downgrading the status to shared and, if the exclusive copy was
modified, writing R back to memory; and (b) creates a cached copy
of R held in shared mode. To write R, p must have a cached copy
of R held in exclusive mode. If it does, p writes that copy without
causing RMRs. Otherwise, p causes an RMR that: (a) invalidates
all other cached copies of R and writes any modified copy held in
exclusive mode back to memory; and (b) creates a cached copy of R
held in exclusive mode.”

In the DSM model, each processor owns a segment of shared
memory that can be locally accessed without traversing the
processor-to-memory interconnect. Thus, every register is (forever)
local to a single processor and remote to all others. An access of a
remote register is an RMR. For simplicity and without loss of gen-
erality, we assume that each of the processes participating in the
algorithms we consider runs on a unique processor.

We say that a step σ by process p that accesses a variable v is
local if σ can be applied on a local copy of v, without using the
processor-to-memory interconnect. Otherwise we say that σ is a
remote memory reference (RMR).

An execution is a sequence of steps performed by processes as
they execute their algorithms. A process p is idle after an execution
E if, right after E, p is not in the midst of executing its algorithm; that
is, either p did not start performing its algorithm in E or p terminates
its algorithm in E.

3. LOWER BOUND IN THE CC MODEL
The algorithms we consider in the following only use read and

write operations. However, by the results of [10], all our lower
bounds hold also for algorithms that can use also comparison op-
erations and LL/SC.

3.1 Order Encoding Algorithms
and the Main Theorem

We consider a set P = {p1, . . . , pn} of n processes, where each
process pi executes algorithm Ai. Our proof technique assumes that
the algorithms Ai may invoke the following two types of special op-
erations, in addition to reads and writes: A record-operation, per-
formed by pi, receives an arbitrary value as input and records it
by writing it to a register that is only accessible to pi. An order-
operation, by process pi, is a read from a register R∗i , that is only
accessible by pi. We use order-operations to determine the order in
which these operations are executed during the execution, in a way
that is made precise later. The last operation performed by each al-
gorithm Ai is a record-operation. This is the only record-operation
performed by Ai. Ai is also required to perform the order-operation
exactly once.

We emphasize that the above special operations do not limit the
set of algorithms to which our lower bounds apply. They are only

inserted to wrapper versions of these algorithms and our technique
is applied to these wrapper versions.

Let E be the set of all executions in which each process pi either
does not participate or executes its algorithm Ai exactly once. For an
execution E ∈ E , we write pi ≺E p j if process pi executes its order-
operation in E before process p j does. If all n processes complete
their algorithms in E then ≺E is a total order. The record-vector of
an execution E is the vector ~R[E] = (γ1, . . . ,γn), where γi is the value
recorded by process pi in its last step in E; γi is denoted Ri[E].

Let L = (q1, . . . ,qk) be a list of distinct processes in P . The L-solo
execution, denoted Esol(L) ∈ E , is the execution in which the set of
participating processes is {q1, . . . ,qk} and, for 1 ≤ i < k, process qi
terminates its algorithm before process qi+1 executes its first step. If
L is a permutation π ∈ Sn, we simply write Lπ.

DEFINITION 1. A sequence of algorithms (A1, . . . ,An) is called
“order encoding” if for all permutations π ∈ Sn, for all lists L =
(pπ(1), . . . , pπ(k)) of length k, 1 ≤ k ≤ n, and for all executions E in
which exactly the processes pπ(1), . . . , pπ(k) participate and termi-
nate, the following two properties hold:

(a) If there are 1≤ i < j≤ k, such that pπ(j)≺E pπ(i), then ~R[E] 6=
~R[Esol(L)].

(b) If Rπ(k)[E] 6= Rπ(k)[Esol(L)], then Rπ(j)[E] 6= Rπ(j)[Esol(L)],
for some j, 1≤ j < k.

Property (a) implies that at least one process can distinguish be-
tween an execution E and an L-solo execution E ′ if the orders ≺E
and ≺′E differ. Property (b) implies that if the last process in the
permutation L distinguishes between E and E ′, then some earlier
process already distinguishes between them.

The intuition is the following: In an L-solo execution E, where
L = (p1, . . . , pk), we have pi ≺E pi+1, for every i, 1≤ i < k. More-
over, if j > i, then process pi does not “know” whether or not pro-
cess p j participates in E. Now consider another execution E ′, in
which we “speed up” process pk slightly, so that it executes its order-
operation just before pk−1 does but is still “unnoticed” by processes
p1, . . . , pk−2. Properties (a) and (b) imply that the records of both
pk−1 and pk are different in E and E ′. Our proof uses this property
to capture the required communication between pk−1 and pk.

Our results hold for algorithms that satisfy the following weak
progress requirement.

DEFINITION 2. An implementation (A1, . . . ,An) satisfies weak
obstruction-freedom if for every process pi and every execution E
after which all processes other than pi are idle, if pi runs by itself
executing algorithm Ai after E then it eventually terminates.

Weak obstruction-freedom may be satisfied by an implementa-
tion regardless of whether or not it uses locks. It is easily seen that
both deadlock-freedom and obstruction-freedom [11] imply weak
obstruction-freedom. In what follows, we consider algorithms that
satisfy weak obstruction-freedom. The rest of this section is devoted
to proving the following theorem.

THEOREM 1. Let (A1, . . . ,An) be order encoding algorithms
that satisfy weak obstruction-freedom. Then there is an execution
E ∈ E with Ω(n logn) RMR cost.

In the following we define the concept of critical operations. The
number of critical operations performed during an execution is a
lower bound on the number of RMRs incurred during that execution.
Our proof technique encodes executions such that the code length is
proportional to the number of critical operations.

DEFINITION 3. Consider an operation σ of process p on register
R, that occurs right after some execution prefix E. If σ is a read-
operation, then it is critical if p has not accessed R in E, or p has
accessed R in E, and some other process has written R since p’s last
access of R. If σ is a write-operation, then it is critical if p has not
written R in E, or if p has written R in E and some other process has
written R since p’s last write to R.

A similar notion of critical events was used by Anderson and Kim
[2]; all operations that are critical according to our definition are also
critical according to their definition (but not vice versa). A critical
operation incurs an RMR in both write-through and write-back CC
systems [2, pp. 226–227].

The general structure of our proof is the following. We construct
n! different executions, each corresponding to a permutation π ∈ Sn
and denoted Eπ. Our construction maintains the property that each
process pπ(i) does not “know” whether any processes pπ(j), for j > i,
participate in Eπ. In that case, it is easily seen (as we prove later) that
process pπ(1) has to act exactly as it does in Esol(Lπ) and must also
produce the same record. By an inductive argument, we show that all
processes must produce the same record in Eπ and in Esol(Lπ). In-
deed, assume that processes pπ(1), . . . , pπ(i) produce the same record
in both executions. Process pπ(i+1) does not “know” whether any
process other than pπ(1), . . . , pπ(i), pπ(i+1) participates in Eπ. Hence
if it records different values in Eπ and in Esol(Lπ) it might violate
property (b) of Definition 1. It follows that the record-vectors of Eπ
and Esol(Lπ) are equal.

Since for each permutation π the record vectors of Eπ and Esol(Lπ)
are equal, it follows that all executions Eπ are different. We then
show that we can uniquely encode each execution Eπ and that the
bit-length of each such encoding is bounded from above (up to a
constant factor) by the total number of critical operations that are
executed during Eπ. Hence, the n! different executions Eπ lead to
n! different codes. Therefore, the total number of critical operations
in at least one of these executions is asymptotically at least the log-
arithm of the number of different records produced by these execu-
tions, i.e., Ω(log(n!)) = Ω(n logn). Below, we describe in detail the
structure of the executions Eπ.

3.2 Codes and their Interpretation
In this section, we define the structure of the executions Eπ, and

we define commands, such that a sequence of commands can be
interpreted as an execution.

Consider an execution E. We say that a process p loops locally
after E, if p does not terminate nor does it execute any critical oper-
ations in a solo-run that starts after E.

3.2.1 Rounds and Sub-Rounds.
In any execution Eπ, processes proceed in rounds. Each round

is composed of a sequence of 4 sub-rounds: read, early-write, late-
write, and non-critical sub-rounds. The very first sub-round is a read
sub-round, followed by an early-write, then a late-write, and finally,
a non-critical sub-round. After a round completes, the next round (if
any) starts with another read sub-round, and so on.

The idea is that critical operations occur in one of the first three
sub-rounds. If the critical operation is a read, then it occurs in the
read sub-round, and if it is a write, it occurs in one of the write
sub-rounds. The two different types of write sub-rounds allows to
control which of the writes may become “visible” in the sense that
they are not overwritten before some other process may read what
was written. The executions we construct guarantee that whenever a
process writes to a register in the early-write round, then some other
process writes to the same register in the late-write round. Hence,
writes in the early-write rounds are always “invisible”.

Each process may or may not wait during a round. If it waits,
then it does not execute any steps in any of the four sub-rounds of
the round. If it does not wait, it may execute at most one single step
during the read, early-write, and late-write sub-rounds altogether,
and then it may execute additional steps during the non-critical sub-
round.

Now consider a round, and let P⊆ P be the set of processes par-
ticipating in that round. For process p ∈ P, let σp be the operation
p is about to perform. Formally, σp is a pair (op,reg), where op
is either “read” or “write”, and reg identifies the register on which
this operation operates. Let λp ∈ {“critical”,“non-critical”} denote
whether σp would be a critical operation, if it were executed as the
first operation of the next round. Note that although λp may be “non-
critical”, σp may be critical when p actually executes it, because by
that time some other process may have already accessed the register
which σp accesses (our construction guarantees that this does not
occur). On the other hand, from Definition 3, if λp =“critical” then
σp is guaranteed to be a critical operation when p performs it.

Let P′ = {p ∈ P|λp = “critical”}. During the first three sub-
rounds of a round (namely, the read, early-write, and late-write sub-
rounds) each of the processes in P′ performs its operation σp. No
other operations are performed during these three sub-rounds. Those
processes p∈ P′ for which σp is a read-operation execute that opera-
tion in the read sub-round. We let these processes perform their read
steps in increasing order of process IDs. After the read sub-round,
those processes p ∈ P′ for which σp is a write-operation perform
their writes. Some of these writes will be designated as early writes,
and these will be performed in the early-write sub-round in increas-
ing process ID order. The remaining writes are late writes and will
be performed in the late-write sub-round, in increasing process ID
order. As we prove later, the early writes performed in each round
are overwritten by the late writes of that round.

The final sub-round is the non-critical sub-round, in which we
schedule each of the remaining processes of P′ in increasing order
of their ID. We let each such process p perform steps in the non-
critical sub-round only if it is not about to loop locally.1 In this case,
we let p run solo until it is either about to perform a critical operation
or until it terminates.

Order-operations play a special role by forcing processes to de-
viate from the round-scheme described above. A process p that ex-
ecutes its order-operation continues to run solo until it terminates.
We prove that, in the executions we consider below, p cannot loop
locally in such a solo run.

3.2.2 Commands
We associate a sequence si of commands with each process pi

such that a list s1, . . . ,sn of command sequences determines an ex-
ecution Eπ. Each command is associated with a specific round of
Eπ, in which it becomes effective. It may then remain effective dur-
ing some of the following rounds, until it ceases to be effective after
some round.

Two types of commands exist: Wait commands and Participate
commands. A Participate command indicates that the process will
participate in the round in which the command becomes effective.
The Participate command receives a single argument. If the process’
first operation in that round is a critical write, then the argument
indicates whether the write step is scheduled in the early-write or in
1If the algorithms are finite-state, then it can be determined by sim-
ulation whether a process will loop locally or not. We do not assume
that, however. Thus, if the algorithms are infinite-state, then our
proof is existential rather than constructive. In this case our proof
assumes the existence of an oracle that determines whether or not a
process will loop locally starting from a certain point.

the late-write sub-round. If the first operation of the process is not
a critical write, then the argument is ignored. Thus, the Participate-
commands are (1) Participate(late), and (2) Participate(early).

A Wait command indicates that the process should wait in the
round in which the command becomes effective. The process may
have to wait also in some of the following rounds. Thus, once the
Wait command becomes effective, it may remain effective in a few
additional rounds.

We now describe the Wait commands in detail and explain how
we determine how long they remain effective. Consider a Wait com-
mand of process p that becomes effective in round i. Let R be the
register that is about to be accessed by p’s next operation.

1. Wait(next late-write): This command remains effective until
(and including) the first round j ≥ i, such that in round j + 1
some process (other than p) will write to R in the late-write
sub-round.

2. Wait(reader/writer termination): This command remains ef-
fective until (and including) the first round j > i, in which one
of the processes that access (read or write) R during a round
i′ ∈ {i+1, . . . , j} terminates.

Roughly speaking, Wait commands are used as follows. The first
type of Wait commands is used for “hiding” a critical write by pro-
cess p. If process p is about to perform a critical write to register R
and this register is later written by an “earlier” process q (i.e., q≺ p)
whose write is not “hidden”, then a Wait(next-write) command will
make sure that p’s write will be scheduled as an early write in the
same round in which q writes to R. Thus p’s early write will be
overwritten by q’s late write.

Hiding critical writes is not always possible and the second type
of Wait commands is used in such situations. If process p is
about to write to a register that is read later in the execution by an
“earlier” process q, and if p’s write cannot be “hidden”, then the
Wait(reader/writer termination) command is used to make sure that
p waits until q terminates before it is allowed to perform its critical
write. This way we can eliminate information flow from p to “ear-
lier” processes. Another situation, where we use this second type of
Wait command is the following: If R is local to process q at the time
when p writes to R, then p’s write operation changes the locality of
R. Hence, q’s next write operation on R would now become a crit-
ical operation. The way we encode the commands, we have to be
sure that the “criticality” of q’s operation is not affected by “later”
processes. We ensure this, by letting p wait until q’s execution is
finished.

3.2.3 The Interpretation of Commands
We now describe how command sequences uniquely specify exe-

cutions. An execution E = C(s1, . . . ,sn), described by the command
sequences s1, . . . ,sn, is determined as follows.

Assume for some z≥ 1, that the first z−1 rounds of execution E
have been determined and let E ′ denote the execution consisting of
the first z−1 rounds (round 0 is defined to be the empty execution).
Let σp denote p’s next step after E ′, i.e., σp is a pair (op,reg), where
op indicates whether the step is a read- or write-operation, and reg
identifies the register on which this operation operates. Further, let
λp ∈ {critical, non-critical} indicate whether or not σp is critical if
it is scheduled immediately after E ′.

For each process p, we now determine which command (if any)
will be effective in round z. The exact behavior of process p is then
uniquely determined by the structure of rounds described above and
by the following rules:

1. If a Wait command is effective in round z, then process p does
not take any steps in this round.

2. If a Participate(x) command (x ∈ {early, late}) is effective in
round z, then process p executes σp in the read sub-round
if it is a read-operation, and otherwise it executes σp in the
x-write sub-round. It also executes non-critical steps in the
non-critical sub-round (as described in Section 3.2.1), unless
it is about to loop locally.

3. If no command is effective in round z, then process p exe-
cutes only non-critical steps in the non-critical sub-round (as
described in Section 3.2.1), unless it is about to loop locally.

Hence, to establish the uniqueness of the execution specification,
it suffices to show how to determine which command (if any) is ef-
fective in each round. Let c′p denote the last command of p that
became effective in E ′ (if such a command exists), and let cp de-
note the command following c′p in p’s sequence of commands (if it
exists). If c′p and cp do not exist, then no command is effective in
round z.

In round z, command c′p may either remain effective or it may
cease to be effective before round z starts. Even if c′p ceases to be
effective (or does not exist), cp might not become effective in round
z. In fact, cp becomes effective in round z if and only if c′p ceased to
be effective before the start of round z and if λp = critical.

It remains to describe how to decide whether c′p ceases to be ef-
fective right after round z−1, or whether it remains effective during
round z. If c′p is a Wait(reader/writer termination) command that was
effective in round z−1 then it is uniquely determined by the previous
rounds whether it remains effective in round z (see the description of
the Wait commands in Section 3.2.2). It remains to consider the case
where c′p =Wait(next late-write).

Let P′ denote the set of processes p for which c′p =Wait(next late-
write) and c′p was effective in round z−1. For all processes not in P′
it is already known, which command is effective in round z, so we
know whether a process q∈ P−P′ writes in the late-write sub-round
of round z. Thus, we can apply the following rule:

For p ∈ P′ and σp = (op,R), command c′p ceases to be
effective right after round z−1, if and only if there is a
process q∈P−P′ that writes in the late-write sub-round
of round z to register R.

This rule would not be compatible with our commands definition, if
there were a process p′ ∈ P′ that would now write in the late-write
sub-round of round z to register R. But this cannot happen, as our
encodings will guarantee that no process p′ ∈ P′ will “write late” in
round z. This is ensured by the following invariant:

Every Wait(next late-write) in the commands
sequence of a process is immediately followed
by a Participate(early) command.

(1)

Hence, we know whether or not there is a process that “writes late”
to R in round z before considering the processes of P′.

The specifications of rounds and commands and their interpre-
tation guarantees that every list (s1, . . . ,sn) of command sequences
uniquely determines an execution C(s1, . . . ,sn). Note that this does
not imply that all processes terminate in this execution.

3.3 Execution Encoding
In this section we show how to find for every permutation π com-

mand sequences s1, . . . ,sn defining an execution Eπ = C(s1, . . . ,sn)
which has the same record vector as Esol(Lπ).

DEFINITION 4. Let E and E ′ be two executions, and let σi and
σ′i, for i ∈N, be the i-th step a process p makes during executions E
and E ′, respectively; If p makes fewer than i steps in E (E ′), then σi
(σ′i) is defined to be ⊥. The executions E and E ′ are indistinguish-
able for process p, denoted E ∼p E ′, if the following statements hold
for every i ∈N:

1. σi =⊥ if and only if σ′i =⊥.

2. If σi and σ′i are read-operations, then both operations return
the same response.

3. σi is a critical operation if and only if σ′i is a critical opera-
tion.

The first property ensures that both processes perform an equal
number of steps in E and E ′. The second and third properties ensure
that p is in the same state after performing i steps in E and in E ′. If p
is in the same state after i steps in E and E ′, then, clearly, the type of
operation in the (i +1)’th step (i.e., read or a write) and the register
on which it operates are the same in E and E ′. Hence, σi+1 = σ′i+1.

For the rest of this section we fix a permutation π. Every pro-
cess pi executes algorithm Ai, and the sequence (A1, . . . ,An) of algo-
rithms is order encoding and satisfies weak obstruction-freedom. We
encode processes’ steps in the order prescribed by π. That is, first we
construct the command sequence sπ(1) for pπ(1), then the command
sequence sπ(2) for pπ(2), and so on. The sequences sπ(1), . . . ,sπ(k)
determine an execution C(s1 . . .sn), where sπ(j) is the empty com-
mand sequence for j > k. Thus, the processes pπ(k+1), . . . , pπ(n) do
not take any steps in C(s1 . . .sn) (recall that the first operation of
a process is always critical, and if a process’ command sequence
is empty, then it can only participate in the non-critical sub-rounds
where it can’t execute a critical operation).

In order to simplify notation, we let qi = pπ(i) and ai = sπ(i)
for 1 ≤ i ≤ n. We also let D(a1, . . . ,ak) denote the execution
C(s1, . . . ,sn), where for all j > k, sπ(j) is the empty command se-
quence.

3.3.1 Invariants
Our encoding needs to ensure that Invariant (1), defined in Sec-

tion 3.2.3, holds. In addition, our encoding will maintain (as
we prove) the following invariants. Assume we have constructed
s1, . . . ,sk, then

D(a1, . . . ,ai)∼qi D(a1, . . . ,a j)
for every i, j, 1≤ i≤ j ≤ k, and

(2)

in D(a1, . . . ,ak), all processes q1, . . . ,qk terminate. (3)

When k = n we have

D(a1, . . . ,ai)∼qi D(a1, . . . ,an) (= C(s1, . . . ,sn)),

for every i, 1≤ i≤ n.

PROPOSITION 2. Let Ek
π = D(a1, . . . ,ak) and Lk

π = (q1, . . . ,qk).
If Invariants (2) and (3) hold then

(a) ~R[Ek
π] = ~R[Esol(Lk

π)].

(b) Each process qi, 1 ≤ i < k, terminates before process qi+1
executes its order operation.

PROOF. (a) Let (α1, . . . ,αk) = ~R[Ek
π] and (β1, . . . ,βk) =

~R[Esol(Lk
π)]. From Invariant (2), executions Ek

π and D(a1) are in-
distinguishable to process q1. They are thus also indistinguishable

to q1 from a solo-execution. Since q1 terminates in Ek
π by Invariant

(3), it has to record β1. Thus, α1 = β1.
Now assume that (α1, . . . ,αi) = (β1, . . . ,βi) for 1 ≤ i ≤ k.

We prove that αi+1 = βi+1. First note that, by Invariant (2),
~R[D(a1, . . . ,ai+1)] = (α1, . . . ,αi+1). Moreover, from definitions,
~R[Esol(Li+1

π)] = (β1, . . . ,βi+1), where Li+1
π = (q1, . . . ,qi+1). Thus,

by Definition 1 (b), if αi+1 6= βi+1 then (α1, . . . ,αi) 6= (β1, . . . ,βi),
which is a contradiction.
(b) We prove the claim by induction on i. For i = 0 the claim holds
vacuously. Assume i ≥ 1. Consider the point in execution Ek

π when
qi executes its order operation. By induction hypothesis, processes
q1, . . . ,qi−1 have already terminated. By definition of the round
scheme, qi runs solo starting from this point until it terminates, if
it ever does. Since algorithms Ai satisfy weak obstruction-freedom,
qi eventually terminates when it runs solo after its order operation
in D(a1, . . . ,ai). By Invariant (2), qi cannot distinguish Ek

π from
D(a1, . . . ,ai). It follows that qi eventually terminates when it runs
solo after its order operation also in Ek

π. Finally note that qi+1 could
not have executed its order-operation before qi: assuming otherwise
implies qi+1 ≺E qi, and, by Definition 1 (a), the records of ~R[Ek

π] and
~R[Esol(Lk

π)] must differ. This would contradict part (a).

Part (a) of Proposition 2 establishes that every process pi records
the same values in executions C(s1, . . . ,sn) and Esol(Lπ). Let Eπ =
C(s1, . . . ,sn), then the record-vector of Eπ can be encoded by a string
of length O(∑n

i=1 |si|). Assuming the above invariants hold (as we
prove in the following section), it follows from Proposition 2 and
Definition 1 (a) that every execution Eπ yields a distinct record-
vector.

3.3.2 Realization of the Encoding
We now describe how we construct the executions Eπ and encode

them so as to maintain Invariants (1)-(3) for k = 1, . . . ,n. For k = 1,
we consider a solo run of process q1, and we let t be the total number
of critical operations it executes. We then let a1 be the concatenation
of t Participate(late) commands. Thus, D(a1) is a complete solo-
run of process q1, and during each round q1 is performing exactly
one critical operation (either a read in the read sub-round, or a late-
write in the late-write sub-round). Moreover, by weak obstruction-
freedom and since s1 contains no Wait commands, Invariants (1), (2)
and (3) hold for k = 1.

Now assume that a1, . . . ,ak−1, for k≥ 2, have been determined, so
that Invariants (1), (2), and (3) hold. We construct the commands se-
quence ak = (c1, . . . ,c`) of process qk. In order to satisfy (1), when-
ever we add a command Wait(next late-write), we add a command
Participate(early) immediately after it. In this case, we abuse nota-
tion and let ci denote a sequence consisting of both these commands.

Assume that we have constructed at
k := (c1, . . . ,ct). We have to

ensure the following two invariants.

D(a1, . . . ,ai)∼qi D(a1, . . . , . . . ,ak−1,a
t
k)

for every i, 1≤ i < k, and
(4)

in D(a1, . . . , . . . ,ak−1,a
t
k), all commands in at

k

first become effective and then cease to be effective.
(5)

Note that this implies that Invariant (2) is true if we let ak = at
k,

but Invariant (3) is not necessarily true since qk might not termi-
nate during that execution. Certainly this is the case for t = 0 (i.e.,
if at

k is the empty sequence of commands) because in that case
D(a1, . . . ,ak−1,a0

k) is the same execution as D(a1, . . . ,ak−1) but ak
takes no steps in this execution.

However, if we can continuously extent the command sequence
at

k such that (4) and (5) remain true, then we will eventually ob-

tain a command sequence at∗
k , such that process qk terminates in

D(a1, . . . ,ak−1,at∗
k), too. This is because there exists an integer T

such that after T rounds all processes q1, . . . ,qk−1 have terminated,
and thus all commands in at∗

k that become effective in a round later
than T must be Participate commands in order not to violate (5). By
weak obstruction-freedom, process qk must eventually terminate.

So assume we have constructed Dt = D(a1, . . . ,ak−1,at
k) for some

t ≥ 0, such that (4) and (5) hold. If process qk terminates in Dt , then
we are done and we let ak = at

k. Invariants (2) and (3) now hold.
Assume now that qk does not terminate in Dt . Invari-

ant (4) ensures that processes q1, . . . ,qk−1 act in Dt exactly as in
D(a1, . . . ,ak−1). Hence, they all terminate. Moreover, by Invariant
(5), there exists some round z− 1 of execution Dt after which the
last command of at

k ceases to be effective.
Consider the following round z. Let σ denote the operation that qk

is about to perform, and let λ =“critical” if and only if σ is critical
when executed as the first operation of round z. Let R be the register
accessed by σ. In the following we determine the next command
ct+1 to be appended to qk’s sequence of commands. I.e., at+1

k is the
concatenation of at

k and ct+1, and Dt+1 = D(a1, . . . ,ak−1,a
t+1
k). We

then argue that

∀1≤ i < k : Dt ∼qi Dt+1. (6)

This will imply Invariant (4) by transitivity of ∼qi . If ct+1 is a Wait
command, we will also argue that Invariant (5) remains true. Poten-
tially, there are three ways in which appending a command ct+1 to
qk’s commands sequence may lead to a violation of Invariant (6):

1) σ is a write to R: then some other process qi, i < k, may either
read what qk writes, or it may notice a “change in locality” of R (one
of qi’s non-critical commands on R may become critical due to qk’s
write).

2) σ is a write or read command and process qk terminates: then
this may change the semantics of the command sequence of some
process qi, i < k. This may only happen if, during the round in
which qk terminates, qi’s effective command is Wait(reader/writer
termination), and qi is on the verge of writing to register R. In this
case, qi’s Wait command may cease to be effective in execution Dt+1

before it ceases to be effective in Dt .
3) ct+1 is a Participate command, and qk executes a non-critical

write in the non-critical sub-round of round z, that will make the ex-
ecution distinguishable for some process qi, i < k. This cannot hap-
pen: If it does, then qk must have executed a critical write on R in
some earlier round z′ < z, and no other process has written to R since
then. It follows that qk’s write in round z′ has already led to an exe-
cution that can be distinguished by process qi from D(a1, . . . ,ak−1).
This implies in turn that Invariant (4) was violated even before we
added ct+1 to qk’s commands list.

We now prove that Proposition 2 precludes problem 2).

PROPOSITION 3. Let D∗ be the execution obtained from the
command sequences a1, . . . ,ak−1,a

t+1
k by stopping qk just before it

is about to terminate (if it terminates). If Dt ∼qi D∗ for all 1≤ i < k,
then Dt ∼qi Dt+1 for all 1≤ i < k.

PROOF. From the definition of D∗, it is not possible that qk’s ter-
mination in D∗ causes a Wait(reader/writer termination) command
by process qi, i < k, to become effective. If qk is not stopped in
D∗, then D∗ = Dt+1. Assume, then, that qk is stopped in D∗ just
before it terminates. It is enough to show that qk terminates in D∗
only after q1, . . . ,qk−1 terminate. By Invariant (3), all processes qi,
i < k, terminate in Dt and, since Dt ∼i D∗, they terminate also in
D∗. We are therefore under the conditions of Proposition 2. Apply-
ing Proposition 2, we get that processes q1, . . . ,qk−1 terminate in D∗
before process qk executes its order operation.

We now describe how ct+1 is determined. The following cases
exist.
Case A: λ =“critical”. Then σ will be a critical operation when it
is executed. We handle read and write critical operations differently
as follows.
Case A.1: σ is a read operation. Then ct+1 is set to be Partici-
pate(late). Thus, in Dt+1, σ is added to the read sub-round of round
z and qk’s following non-critical operations are added to round z’s
non-critical sub-round. Clearly, σ cannot be observed by other pro-
cesses. Also, from Definition 3, σ cannot change the criticality of
other operations. Hence, Invariant (6) holds and therefore also In-
variant (4). Since ct+1 is not a Wait command, and since qk does not
terminate in Dt , Invariant (5) holds vacuously.
Case A.2: σ is a write operation. We consider several subcases,
depending on execution Dt . In what follows, we let qW

late denote the
first process that writes to R in the late-write sub-round of a round
zW

late ≥ z in Dt . If no such process exists, we denote zW
late = ∞ and

say that qW
late is undefined.

Case A.2.1: zW
late = z. Then we set ct+1 to Participate(early). Con-

sider execution Dt+1. In round z, process qk writes to register R in
the early-write sub-round. In the same round, qk’s write will be over-
written by process qW

late that writes to R in the late-write sub-round.
Since no reads occur in the early- or late-write sub-rounds, no pro-
cess ever reads the value written by qk to R. Moreover, all writes that
occur in the early- and late-write sub-rounds are critical. Thus, after
the late-write of process qW

late to register R, R is local to qW
late regard-

less of the write by qk. Thus Invariant (6) holds, and therefore also
Invariant (4). Finally, since ct+1 is not a Wait command, Invariant
(5) holds vacuously.
Case A.2.2: z < zW

late < ∞. Then ct+1 is a sequence of two com-
mands: a Wait(next late-write) command followed by a Partici-
pate(early) command. Thus, process qk waits in Dt+1 until some
process writes to register R in the late-write sub-round of some
round z′ ≥ z. The Participate(early) command becomes effective in
round z′. Process qW

late writes in execution Dt to register R in round
zW

late > z. Clearly, as long as qk’s Wait(next late-write) command
remains effective, the execution is indistinguishable from Dt to all
processes, so process qW

late writes to R in round zW
late also in Dt+1. It

follows that z′ = zW
late. Thus, after sub-round z′− 1, qk’s Wait(next

late-write) command ceases to be effective and its Participate(early)
becomes effective. Clearly, Invariant (5) holds in this case. More-
over, after round z′− 1 we are under the conditions of Case A.2.1.
and so Invariant (4) also holds.
Case A.2.3: zW

late = ∞.
A.2.3 (a): If none of the processes in {q1, . . . ,qk−1} access regis-

ter R in a round z′≥ z, then we let ct+1 be Participate(late). Invariants
(4) and (5) clearly hold in this case.

A.2.3 (b): Assume that process q j , 1≤ j < k, accesses register R
during round z′ ≥ z. In this case, we must not allow process qk to
write register R since we cannot “hide” this write. Therefore, qk has
to wait until the next process that will read R terminated. We set ct+1
to be Wait(reader/waiter termination). Since this is a Wait command,
Invariant (4) holds. Additionally, it is clear that the Wait command
ceases to be effective after the sub-round in which q j terminates, or
even before that. Hence Invariant (5) holds.
Case B: λ =“non-critical”. From our construction, the next com-
mand does not become effective in round z. Instead, process qk will
simply participate in the following non-critical sub-round. There-
fore no command is encoded for this round. Instead, we consider
the first round z′ > z at which qk’s next command will become effec-
tive. Such a round must exist, since by (3) all processes q1, . . . ,qk−1

terminate in Dt , and once they have all terminated, qk cannot loop
locally.

3.3.3 Length of the Encoding
We now bound the the number of commands in the command se-

quences obtained above in terms of the number of critical operations
that occur in Eπ := D(a1, . . . ,an).

LEMMA 4. The total number of critical operations in execution
D = D(a1, . . . ,an

)
is Ω(∑n

i=1 |ai|), where |ai| is the length of com-
mand sequence ai.

We need the following simple observations.

OBSERVATION 5. In the sequence ak of commands, a
Wait(reader/writer termination) command is always followed
directly either by another Wait(reader/writer termination) com-
mand, or by a Participate(late) command.

PROOF. By construction (Case A.2.3 (b)) after a round in which
a Wait(reader/writer termination) command c becomes effective for
process qk, none of the processes in {q1, . . . ,qk−1} performs a late-
write on register R. (I.e., zW

late = ∞.) This situation cannot change
until the Wait command c ceases to be effective (and not even af-
ter that). Hence, the command that follows c must be either another
Wait(reader/writer termination) command or a Participate(late) com-
mand. Clearly, c is followed by another command, because qk ter-
minates in D(a1, . . . ,ak) (Invariant (3)).

OBSERVATION 6. If k processes access the same register R dur-
ing an execution, then the total number of critical operations in-
curred on register R is at least k−1.

PROOF. It follows right away from Definition 3, that after the
first process has accessed register R, the first operation of each other
process on register R is a critical operation.

The remainder of this section is devoted to the proof of Lemma 4.
First of all note that every command in the command sequences
takes effect in some round. (This is implicit in the construction, but
even if it weren’t, we could simply remove every command that does
not take effect without changing the execution.) By definition of
the round-scheme, process qi executes at least one critical operation
for each Participate command in ai. Moreover, by Invariant (1), the
number of Wait(next late-write) commands in ai is bounded by the
number of Participate(early) commands in ai. Hence, it suffices to
show that the total number of Wait(reader/writer termination) com-
mands in a1, . . . ,an is bounded up to a constant factor by the number
of critical operations.

We can associate each Wait(reader/writer termination) command
with a unique pair (b,z), where b is the process in whose command
sequence this command appears, and z is the round at which the
command takes effect in execution D.

Let W be the set of all pairs (b,z) associated with a
Wait(reader/writer termination) command. Further, let R be the set
of all registers, and recall that P = {p1, . . . , pn} is the set of pro-
cesses, and that qi = pπ(i).

CLAIM 7. There exist two mappings f : W → P and g : W →
R , such that for all (b,z) ∈W it holds

(a) f (b,z) 6= b, and

(b) in execution D, process b writes register g(b) and process f (b)
accesses register g(b), and

(c) for all R ∈ R , function f is injective on g−1(R).

PROOF. Consider a pair (b,z) ∈W , where b = qk. By construc-
tion (see Case A.2.3 above), in round z of execution D process qk
is on the verge of critically writing to a register R, and none of the
processes in {q1, . . . ,qk−1} writes to register R in a late-write sub-
round of a round z′ > z. Also by the assumption of that case, there
exists a process in {q1, . . . ,qk−1} that accesses register R in a round
z′ > z. Among those, let q j be the process that terminates first. We
define f (b,z) := q j and g(b,z) := R. Obviously (a) and (b) are true
because q j 6= b (by construction, b waits until q j terminates), q j ac-
cesses register R and b writes to register R.

We now show that f is injective on WR = g−1(R). For the pur-
pose of a contradiction assume that there exist two pairs (qi,zi)
and (q j,z j) and a process qk ∈ P , such that g(qi,zi) = g(q j,z j) =
R and f (qi,zi) = f (q j,z j) = qk. Let wi and w j be the two
Wait(reader/writer termination) commands associated with the two
pairs.

First assume that i = j, w.l.o.g. z j > zi. Hence, process qi’s Wait
command wi ceases to be effective before the sub-round in which its
Wait command w j takes effect. But by definition of f , wi ceases to be
effective right after the round in which process qk terminates. Hence,
when w j becomes effective, process qk has already terminated, so
f (q j,z j) cannot be that process—a contradiction.

Now assume that i 6= j, w.l.o.g. i < j. Then the assumption
f (qi) = f (q j) = qk implies that qk terminates in a round z′, where
z′ > zi and z′ > z j , and the Wait commands wi and w j remain ef-
fective until then. By Observation 5 the commands wi and w j
are both followed by a (possibly empty) sequence of additional
Wait(reader/writer-termination) commands, and eventually one Par-
ticipate(late) command. Hence, there exists a round z∗i ≥ z′ >
max{z j,zi} in which process qi is writing to register R in a late-write
sub-round.

Now consider the situation when we added command w j to
the command sequence of process q j . Let at

j be the commands
that appear in that command sequence before w j . In execution
D(a1, . . . ,a j−1,at

j), process qi is acting exactly in the same way as
in execution D (because of indistinguishability). When we added
the Wait(reader/writer termination) command w j to the sequence at

j ,
then we must have been in Case A.2.3 (b) for z = z j . But the fact
(recall i < j) that qi is writing in execution D(a1, . . . ,a j−1,at

j) in
round z∗i > z j to register R in a late-write sub-round, means that we
are actually in a case where zW

late ≤ z∗i < ∞. This contradicts the
assumption of Case A.2.3 (b).

We argue that the claim implies that the number of critical opera-
tions during D is Ω(|W |). Let WR = g−1(R) for R ∈ R . Since W is
the disjoint union of all WR, R ∈ R , it suffices to show that the total
number of critical operations on register R is Ω(|WR|). Assume that
|WR|> 0 and let Q = f (WR). By (b), all processes in Q∪WR access
register R during execution D. Hence, by Observation 6 the total
number of critical operations on register R is at least |Q∪WR| − 1.
By (a), |Q∪WR| ≥ 2, and by injectivity of f on WR (c), we have
|Q| = |WR|. Hence, the total number of critical operations on regis-
ter R is at least

|Q∪WR|−1≥max{2, |WR|−1}= Ω(|WR|).
PROOF OF THEOREM 1. Let Eπ be the execution D(a1, . . . ,an)

we have constructed for permutation π. By Proposition 2, the
record-vector of Eπ is the same as that of Esol(Lπ). By Defini-
tion 1, the record-vectors ~R[Esol(Lπ)] are different for all permu-
tations π. Hence, the record-vectors ~R[Eπ], for π ∈ Sn, are all dif-
ferent. Since there are n! permutations, there exists a permuta-
tion π, such that the encoding of Eπ = D(a1, . . . ,an) = C(s1, . . . ,sn)
uses at least log(n!) = Ω(n logn) bits. Since each encoding of a

permutation consists of n sequences s1, . . . ,sn of commands, and
for each command there are only four possibilities, it follows that
|s1|+ · · ·+ |sn| = |a1|+ · · ·+ |an| = Ω(n logn). By Lemma 4, the
number of critical operations executed in Eπ is Ω(n logn).

4. LOWER BOUND IN THE DSM MODEL
In this section we provide a high-level description of how the

proof of Theorem 1, presented in Section 3 for the CC model, can
be adapted in a simple manner to obtain an equivalent result for the
Distributed Shared Memory (DSM) model. The complete proofs are
deferred to the full paper.

Recall that the proof of Theorem 1 for the CC model uses the
concept of critical operations. While the number of CC critical op-
erations (as given in definition 3) is, in general, smaller than the
number of RMRs, for the DSM model we define each RMR as a
critical operation.

DEFINITION 5. An operation σ of process p on register R is crit-
ical in a DSM system, if R is remote to p’s processor.

The general structure of the DSM proof is identical to that of the
CC proof. A set of executions {Eπ|π ∈ Sn} is constructed and main-
tains the same properties maintained by the CC executions. The key
change is in the set of commands used for execution encoding. Re-
call that two types of Wait commands are used for encoding CC exe-
cutions: Wait(next late-write) and Wait(reader/writer termination). A
third type of Wait commands is used for DSM encodings, motivated
by the need to prevent information flow from “later” processes to
“earlier” processes. Fix a permutation π ∈ Sn and consider the steps
taken by q j , the j’th process by π. Assume that a set of earlier pro-
cesses, Q ∈ {q1, . . . ,q j−1}, each access q j’s local registers. For Eπ
to possess the required properties, we schedule q j’s steps so that no
process in Q reads a value written by q j . Specifically, we must pre-
vent processes in Q from reading local writes made by q j . Unlike in
the CC proof, here we cannot enforce this by encoding q j’s accesses
of local registers since then the encoding length may asymptotically
exceed the number of critical steps. Instead, we delay scheduling of
q j’s steps until after all the processes in Q terminate. We use a new
Wait(early-process-termination) command to enforce this. The code
of process q j therefore begins with k such wait commands, where
k = |Q|.2

Another DSM scheduling requirement (symmetric, in a sense, to
the previous one) is that we must not allow a process to communicate
information to earlier processes via their local segments. If the next
access by q j is a write to a register R local to qi, for some i < j, and
if qi accesses R in its execution, then qi must terminate before q j is
allowed to proceed. This requirement is already met, however, by
the encoding and execution construction for the CC model, since in
such a case a Wait(reader/writer termination) command is appended
to q j’s code on account of qi’s access of R. (See Case A.2.3 (b) in
Section 3.3.2.)

The proofs of invariants 1-6 are similar to those for the CC model;
they are actually somewhat simpler, since the locality of registers is
fixed. The following lemma is the DSM equivalent of Lemma 4.

LEMMA 8. The total number of critical operations in a DSM ex-
ecution D = D(a1, . . . ,an

)
is Ω(∑n

i=1 |ai|), where |ai| is the length of
command sequence ai.
2A single parameterized Wait(early-process-termination,k) com-
mand could have been used. We chose the non-parameterized en-
coding version since it simplifies our proofs.

PROOF SKETCH. The proof is very similar to that of Lemma 4
and, likewise, uses Observations 5 and 6. The proof of Observa-
tion 5 works for the DSM model without change. Observation 6
holds trivially in the DSM model, since each register is local to a
single process and remote to all others. The rest of the proof is
identical, except that we should now also prove that the addition
of Wait(early-process-termination) commands does not not violate
the claim. This follows easily from the fact that each Wait(early-
process-termination) added to q j’s code on account of an access by
qi, for some i < j, can be amortized against the first critical step by
qi that accesses q j’s local segment.

THEOREM 9. Let (A1, . . . ,An) be order encoding DSM algo-
rithms that satisfy weak obstruction-freedom. Then there is an ex-
ecution E ∈ E with Ω(n logn) RMR cost.

5. APPLICATIONS

5.1 Mutual Exclusion
The mutex object supports two operations: Enter and Exit. The

Enter operation allows a process to enter the critical section; after
completing the critical section, a process invokes an Exit operation.
Any implementation of a mutex object must meet the following re-
quirements: (1) at most a single process can be at its critical section
in any given time (mutual exclusion), (2) if some process invokes En-
ter then, eventually, some process enters the critical section (dead-
lock freedom), and (3) a process completes the Exit procedure in a
finite number of steps (finite exit).

We show that the algorithms A′i, given in the pseudo-code below,
are order encoding. Algorithms A′i, 1≤ i≤ n use one deadlock-free
mutex object ME, implemented by algorithms A1, . . . ,An, a shared
register counter initialized to 0, and local register `i.

Algorithm 1: Pseudo-code of the algorithm A′i.

ME.Enter;1
`i ←READ(counter);WRITE(`i +1→counter);2
order-operation ;3
ME.Exit;4
RECORD(〈`i〉);5

LEMMA 10. Algorithms A′1, . . . ,A
′
n are order-encoding.

PROOF. Let π ∈ Sn be a permutation and Lk
π = (pπ(1), . . . , pπ(k)).

To prove property (a) of Definition 1, note that, in all executions,
the i-th process entering the critical section records value i. Thus,
in the Lk

π-solo execution Esolo[Lk
π], process pπ(i) records value i, for

1≤ i≤ k. Now let 1≤ i < j≤ k. In an execution E, where pπ(j) ≺E
pπ(i), process pπ(j) enters the critical section before pπ(i) does and
so records a smaller value than is recorded by pπ(i). Hence, ~R[E] 6=
~R[Esolo(Lk

π)].
To prove property (b), note that in any execution in which the pro-

cesses pπ(1), . . . , pπ(k) participate, the record vector is a permutation
of {1, . . . ,k}. Thus, if the record vectors of two executions E and E ′
in which the processes pπ(1), . . . , pπ(k) participate differ, then they
must differ in at least two components.

The definitions imply that a deadlock-free mutual-exclusion im-
plementation satisfies weak obstruction-freedom, and hence, so do
algorithms A′1, . . . ,A

′
n. We get:

THEOREM 11. Any deadlock-free implementation of mutual ex-
clusion from read, write, and conditional operations has an execu-
tion whose RMR cost is Ω(n · logn).

PROOF. Since algorithms A′1, . . . ,A
′
n satisfy weak obstruction-

freedom, by Lemma 10 and Theorem 1, there is an execution E ′
of A′1, . . . ,A

′
n with an RMR cost of Ω(n · logn). Let E be the ex-

ecution obtained from E ′ by removing all the steps performed by
A′1, . . . ,A

′
n that are not performed by A1, . . . ,An. In E ′, each process

performs at most 2 RMRs more than it does in E. It follows that E
is an execution of A1, . . . ,An whose RMR cost is Ω(n · logn).

5.2 Bounded Counters
A b-bounded counter is an object that supports the operations In-

crement and Reset. The object stores a value in {0, . . . ,b} and is
initialized to 0. The operation Increment atomically increments the
value of the object, unless it already has value b (in which case the
value is not changed), and returns its previous value. The opera-
tion Reset resets the value of the object to 0 and returns the previous
value. Using our lower bound technique, we show that the RMR
cost of calling Increment and Reset once is Ω(n · logn).

We prove that the algorithms Bi, given in pseudo-code below, are
order-encoding. Algorithms Bi, 1 ≤ i ≤ n, use a single b-bounded
counter object BC, for some b ≥ 2, a shared integer counter initial-
ized to 0, and registers `i and ri.

Algorithm 2: Pseudo-code of the algorithm Bi.

`i ← −1;1
ri ←BC.Increment;2
order-operation ;3
if ri = 0 then4

`i ←READ(counter);5
`i ← `i +1;6
WRITE(`i → counter);7
ri ← BC.Reset;8

end9
RECORD(〈`i,ri〉);10

LEMMA 12. Algorithms B1, . . . ,Bn are order-encoding.

PROOF. Let π ∈ Sn be a permutation, let Lk
π = (pπ(1), . . . , pπ(k))

and let E be an execution in which only the processes pπ(1), . . . , pπ(k)

participate. Clearly, in Esol(Lk
π) participating processes obtain re-

sponse 0 from the Increment operation in line 3 and then obtain re-
sponse 1 from the Reset operation in line 8. It follows that the value
recorded by process pπ(j) in Esol(Lk

π) is 〈 j,1〉, for j = 1, . . . ,k.
We now prove Property (a) of Definition 1. Let E be an arbitrary

execution and 1 ≤ i < j ≤ k. For the purpose of a contradiction
assume that pπ(j) ≺E pπ(i), and that the record vector of E is the
same as that of Esol(Lk

π). Then the Increment operation must return
0 for both processes, pπ(i) and pπ(j), or otherwise one of them would
record 〈−1,x〉 for x ∈ {1, . . . ,b}. But then pπ(i) cannot execute its
order-operation before pπ(j) resets the counter in line 8. Hence, if
pπ(i) records 〈a1,1〉 and pπ(j) records 〈a2,1〉, then a1 > a2. This is
different from the record-vector produces by Esol(Lk

π), where pπ(i)
records 〈i,1〉 and pπ(j) records 〈 j,1〉.

To prove Property (b), assume that in execution E the record 〈x,y〉
of process pπ(k) is different from 〈k,1〉. We show that there exists
another process pπ(j), j 6= k, whose record is different from 〈 j,1〉.
If x =−1, then process pπ(k)’s Increment operation in line 2 occurs
after some other process pπ(j) increments the counter BC from 0 to
1, and before pπ(j)’s Reset operation in line 8. Thus when that Reset
occurs, then the counter has a value of b, and pπ(j)’s record is 2 in
the second component.

If x 6= k and x 6=−1, pπ(k) is the x-th process that executes line 6,
and not the k-th. Let j = x. Clearly, if process pπ(j) executes line

6, then the first component of its record is not j, and if it does not
execute line 6, then the first component of its record is -1.

Finally, assume that x = k but y 6= 1. Since x 6=−1, process pπ(k)
increments the counter from 0 to 1 in line 2, and no other process can
reset it until pπ(k) executes line 8. Since y 6= 1, this Reset operation
returns 2 (and thus y = 2), and some other process pπ(j) increments
the counter after pπ(k) executes line 2 and before pπ(k) executes line
8. But then pπ(j)’s Increment operation returns 1, and pπ(j)’s record
is 〈−1,1〉.

Since the algorithms B1, . . . ,Bn satisfy weak obstruction-freedom,
we obtain with the same arguments as in the proof of Theorem 11:

THEOREM 13. Any weak obstruction-free implementation of a
b-bounded counter, for b > 2, from read and write operations has
an execution in which each process calls Increment and Reset once,
whose RMR cost is Ω(n · logn).

5.3 Store/Collect Objects
A one-shot (single-writer) store/collect object supports the opera-

tions Store and Collect. The object has n components, initialized to
⊥; each process can either store a value in its associated component
or collect the values from all components; a collect should not miss
a value of a preceding store nor include the value of a store that has
not yet begun.

Formally, the object supports two operations: Store(v) by process
pi makes v be the value stored by pi, while Collect() returns a vector
V of values, one for each process. If a Collect operation returns V
and pi is a process, then V [i] = ⊥ only if no Store operation by pi
completes before the Collect; if V [i] = v 6=⊥, then v is the parameter
of a Store operation op by pi that does not follow the Collect.

We use our lower bound technique, to prove that the RMR cost of
calling store and collect once is Ω(n · logn).

We show that the algorithms given in pseudo-code below, are
order-encoding. Algorithms Ci, 1 ≤ i ≤ n, use a single weak
obstruction-free store/collect object, CL, and registers `i and ri.

Algorithm 3: Pseudo-code of the algorithm Ci.

CL.Store(i); order-operation ;1
ri ←CL.Collect; `i ←number of non-⊥ entries in ri;2
RECORD(〈`i〉);3

LEMMA 14. Algorithms C1, . . . ,Cn are order-encoding.

PROOF. Let π ∈ Sn be a permutation, let Lk
π = (pπ(1), . . . , pπ(k))

and let E be an execution in which only the processes pπ(1), . . . , pπ(k)

participate. Clearly, in Esol(Lk
π), process pπ(j), 1 ≤ j ≤ k, collects

non-⊥ values exactly from processes pπ(1), . . . , pπ(j). Hence, the
value recorded by process pπ(j) in Esol(Lk

π) is 〈 j〉, for j = 1, . . . ,k.
We now prove Property (a) of Definition 1. Let E be an arbitrary

execution and 1≤ i < j ≤ k, such that pπ(j) ≺E pπ(i); assume that i
and j are the minimal indices with this property. Then process pπ(i)
reads a non-⊥ value from process pπ(j), and since i is minimal it
follows that pπ(i) reads non-⊥ values from pπ(1), . . . , pπ(i).

To prove Property (b), assume that in execution E process pπ(k)
records a value different than k, i.e., pπ(k) misses the value stored
by some process pπ(i), 1 ≤ i < k. The definition of a store / collect
object implies that the collect of pπ(k) starts before the store of pπ(i)
completes and hence before the collect of pπ(i) starts. Let pπ(j),
1≤ j < k, be the process whose collect starts last in E, then clearly,
pπ(j) records k 6= j, and Property (b) follows.

Since the algorithms C1, . . . ,Cn satisfy weak obstruction-freedom,
we get in a manner similar to Theorem 11:

THEOREM 15. Any weak obstruction-free implementation of a
store/collect object, from read, write and conditional operations has
an execution in which each process calls Store and Collect once
whose RMR cost is Ω(n · logn).

6. SUMMARY
We used a novel technique for proving lower bounds on the

RMR cost for a variety of synchronization problems to derive an
Ω(n logn) lower bound for mutual exclusion, bounded counters and
store/collect. Further research is to find additional applications
for our technique or extend it to accommodate randomization and
stronger primitives.

Acknowledgements
We would like to thank the referees for their helpful comments.

7. REFERENCES
[1] R. Alur and G. Taubenfeld. Results about fast mutual

exclusion. RTSS 1992, pp. 12–21.
[2] J. Anderson and Y.-J. Kim. An improved lower bound for the

time complexity of mutual exclusion. Dist. Comp.,
15(4):221–253, 2002.

[3] J. Anderson, Y.-J. Kim, and T. Herman. Shared-memory
mutual exclusion: Major research trends since 1986. Dist.
Comp., 16:75–110, 2003.

[4] J. H. Anderson and Y.-J. Kim. Fast and scalable mutual
exclusion. DISC 1999, pp. 180–194.

[5] J. H. Anderson and Y.-J. Kim. Adaptive mutual exclusion with
local spinning. DISC 2000, pp. 29–43.

[6] J. H. Anderson and Y.-J. Kim. Nonatomic mutual exclusion
with local spinning. PODC 2002, pp. 3–12.

[7] T. Anderson. The performance of spin lock alternatives for
shared-memory multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, 1(1):6–16, 1990.

[8] R. Cypher. The communication requirements of mutual
exclusion. SPAA 1995, pp. 147–156.

[9] R. Fan and N. Lynch. An Ω(n logn) lower bound on the cost
of mutual exclusion. PODC 2006, pp. 275–284.

[10] W. M. Golab, V. Hadzilacos, D. Hendler, and P. Woelfel.
Constant-RMR implementations of CAS and other
synchronization primitives using read and write operations.
PODC 2007, pp. 3–12.

[11] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free
synchronization: Double-ended queues as an example. ICDCS
2003, pp. 522–529.

[12] M. Herlihy and J. M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Trans. Prog. Lang.
Syst., 12(3):463–492, 1990.

[13] Y.-J. Kim and J. Anderson. A time complexity bound for
adaptive mutual exclusion. DISC 2001, pp. 1–15.

[14] J. Mellor-Crummey and M. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM
Trans. Comput. Syst., 9(1):21–65, 1991.

[15] D. A. Patterson and J. L. Hennessy. Computer Organization
and Design: The Hardware/Software Interface. Morgan
Kaufmann, 1994.

[16] G. Taubenfeld. Synchronization Algorithms and Concurrent
Programming. Prentice Hall, 2006.

[17] J.-H. Yang and J. Anderson. A fast, scalable mutual exclusion
algorithm. Dist. Comp., 9(1):51–60, 1995.

