
Asymmetric Balanced Allocation with Simple Hash Functions∗

Philipp Woelfel†

Abstract

We show that for the asymmetric sequential allocation

scheme of Vöcking (2003) one can use very simple hash func-

tions. The hash functions we use are a straightforward ex-

tension of the hash functions introduced by Dietzfelbinger

and Woelfel (2003). In order to evaluate a hash function a

few arithmetic operations and table lookups suffice. More-

over, we show that the scheme has essentially the same be-

havior if the same balls are allowed to be inserted multiple

times (i.e. they may be deleted and reinserted afterwards).

1 Balls Into Bins

The classical balls into bins process is the following:
Suppose that there are n balls which are placed into
n bins by sampling a random location for each ball in-
dependently. It is well known that once all balls are
placed, the most heavily loaded bin contains approxi-
mately lnn/ ln lnn balls with high probability. How-
ever, the maximum load can be improved significantly, if
the balls are placed sequentially and each ball has d ≥ 2
random locations to choose from. As shown by Azar,
Broder, Karlin and Upfal (1999), if each ball is placed
in the location which has the minimum load among d al-
ternatives, then the maximum load is ln lnn/ ln d+Θ(1)
w.h.p. (i.e. with probability at least 1−n−α for arbitrary
α > 0). Hence, already d = 2 yields an exponential de-
crease of the load of the fullest bin.

Many variants of the basic scheme have been an-
alyzed, but one of the most significant improvements
was devised by Vöcking (2003). He considered a variant
where the n bins are split into d groups of size r = n/d
(for reasons of simplicity we assume that n is a multi-
ple of d). It is convenient to give each group a unique
number from 1 to d and to assume that the groups are
laid out from left to right with increasing number. Now
a ball is placed as follows: In each of the d groups, a
bin is chosen independently and uniformly at random.
Then the ball is placed into the bin which has the least
load out of the d randomly chosen ones. If there are
multiple such bins (with least load), then the ball is

∗Research supported by DFG grant Wo 1232/1-1
†University of Toronto, Department of Computer Science,

10 King’s College Road, Toronto, ON, M5S 3G4. E-mail:
pwoelfel@cs.toronto.edu

placed into the leftmost bin among them. The rather
surprising result of Vöcking was that now the maximum
load decreases to ln lnn/(d · lnφd) + O(1) w.h.p., where
1.61 < φd < 2 is a constant to be determined more pre-
cisely later. Moreover, contrary to many earlier results,
Vöcking’s analysis also covers continuing processes in
which in each step one arbitrary ball may be inserted or
deleted as long as there are never more than n balls in
the system (however, it must be determined in advance
which ball will be deleted at which time).

In applications the balls are often keys (imagine
the balls to have labels from a given finite universe
U) and their locations have to be determined by hash
functions. This is obviously the case for hashing
schemes (e.g. open hashing) which are among the most
important applications of the balls into bins process.

Here all known results suffer from at least one of
the following two obstacles: First, in many applications
a ball may be removed from a bin and be reinserted
again later. If we determine the ball’s position by the
hash value of its label, then it has exactly the same
bin positions to choose from whenever it is reinserted.
But most proofs of balls into bin processes do not
work if the same balls may be reinserted (after being
removed) multiple times. However, Cole, Frieze, Maggs,
Mitzenmacher, Richa, Sitaraman and Upfal (1998) have
considered a process in which labeled balls may be
inserted and removed in such a way that at any time
each ball label appears at most once in the system.
When a ball is inserted for the first time, it is assigned
two random locations and picks a random bin with
minimal load. If a ball is later reinserted again, then
it has the same two possible locations to choose a
bin from. The authors show that if the insertion and
deletion sequence is fixed in advance, at any time T
the maximum load of a bin is at most (4 ln lnn)/ ln 2
w.h.p. As for all other results it is not known, yet,
whether it also works with simple hash functions using
o(n) space (see the discussion below). Moreover, it is
not known whether the asymmetric scheme of Vöcking
(whose maximum load is even for d = 2 better than the
one mentioned above), works if reinsertions of the same
ball are allowed.

The second obstacle is, that one needs true random
hash functions which for real applications should be

easy to evaluate (i.e. in constant time). Although it
was shown recently how to simulate (with a small error
probability) hash functions behaving truly random on
m keys (see Östlin and Pagh, 2003, and Dietzfelbinger
and Woelfel, 2003), such schemes require at least c ·m,
c > 1, additional space as well as c · m random
words (e.g. in the construction of Östlin and Pagh
c > 8). In particular if a continuous (dynamic) balls into
bins process is investigated, m may be arbitrary large
compared to the number of bins, n. However, it can be
seen that for static balls into bins processes O(log n)-
wise independent random values suffice and there is a
construction of a nγ-wise independent hash family, 0 <
γ < 1, due to Siegel (2004), which uses nε space, ε > 0,
and whose hash functions can be evaluated in constant
time. This “constant” evaluation time, though, is
known to be huge and the construction is extremely
impractical. Moreover, e.g. for the asymmetric scheme
of Vöcking, it is not obvious, whether even nγ-wise
independence suffices for γ < 1. Since the scheme is not
static, after a long sequence of insertions and deletions
the maximum load may be influenced by the random
choices of much more than n balls.

That the problem considered here is of practical rel-
evance is indicated by an experimental work of Broder
and Mitzenmacher (2001), who used the asymmetric
scheme of Vöcking in order to improve IP lookups of
IP routers. Due to the lack of efficient hash functions
which are known to guarantee a small maximum load
in Vöcking’s allocation scheme, they used very simple
functions based on the multiplication over a finite field.
A theoretical analysis of an allocation scheme using such
simple hash functions is not known.

One idea to overcome the limitations of effi-
cient hash families in balanced allocation schemes was
brought up very recently by Dietzfelbinger and Weidling
(2005) – although in a different setting, where all balls
may be rearranged whenever a new ball arrives. The
authors propose to use the high-performance hash fam-
ilies devised by Dietzfelbinger and Meyer auf der Heide
(1992) in order to first split the set of all balls into n1/3

groups such that with high probability each group con-
tains at most (1+ε)n2/3 balls. Then, each of the groups
is assigned a unique set of n2/3 bins and the allocation
algorithm is applied separately for each of the groups.
But for each group the same hash functions (which are
chosen at random from high-performance hash families
similar to those described by Dietzfelbinger and Meyer
auf der Heide, 1992) are used. Then with high prob-
ability this scheme behaves in one group as if all (at
most (1 + ε)n2/3) balls in this group are distributed
completely at random. Thus, the maximum load in this
group can be bounded under the assumption of true

randomness. If w.h.p. the maximum load in one group
does not exceed a certain threshold, then w.h.p. in none
of the groups this threshold is exceeded. It might be
possible to use this “splitting technique” also in our set-
ting of the balls into bins problem. However, while the
splitting trick seems to work for most static allocation
problems, it is not obvious, whether it also works in the
dynamic case (note, that the allocation problem con-
sidered by Dietzfelbinger and Weidling is also a static
one). The reason is, that in the dynamic case, one has
to take all keys into account which end up in one group
over time. Moreover, this splitting trick does of course
not solve the problem of reinsertion of the same balls.
Finally, due to the fact that “two levels” of hash func-
tions have to be used (one for splitting, the other for
the actual ball placing), and each of the levels requires
high-performance hash functions, we assume that the
hash families we chose here are more practical. How-
ever, it seems worth to elaborate this matter in future
investigations.

2 The Result

We reanalyze the allocation scheme of Vöcking and
prove that it has essentially the same behavior even
if very simple random hash functions are used and if
the same balls may be reinserted after being removed.
Throughout this text U and R = [r] are finite sets and
|R| ≤ |U |. A family H of hash functions U → R is said
to be k-wise independent, if for any k different keys
x1, . . . , xk ∈ U and a randomly chosen hash function
h ∈ H the hash function values h(x1), . . . , h(xk) are
uniformly and independently distributed. A family of
hash functions U → R is said to be uniform if it is |U |-
wise independent. For constants k many constructions
of k-wise independent hash families are known whose
functions can be evaluated efficiently (sometimes, k-
wise independency is only achieved approximately, but
this does not change any of our results). Simple
examples are families consisting of polynomials of degree
k − 1 over finite fields (Wegman and Carter, 1979)
or using integer arithmetics (Dietzfelbinger, 1996). In
particular constructions where describe constructions
where (approximate) k-wise independence is achieved
with very few arithmetic operations and some table
lookups are described by Thorup and Zhang (2004) and
Dietzfelbinger and Woelfel (2003).

In the following we assume that Hk
r denotes a k-

wise independent hash family of functions U → R. We
consider the following balls into bins process. There
are n bins which are split into d groups of equal size
r, where r = n/d is an integer. The elements in U
are called balls. A ball x ∈ U may be inserted in a
bin, be removed later and afterwards reinserted again.

However, it is not allowed to exist in the system twice
at the same time and at any time there are at most
n balls in the system. We use a hash function vector
~h = (h1, . . . , hd), hi : U → [r], in order to determine
the balls possible locations. For a ball x ∈ U , the hash
function value hi(x), 1 ≤ i ≤ d, describes the choice
of its bin in the ith group. A ball is alway placed in a
bin which has the least load among the d possibilities.
If among the d locations of a ball there are multiple
bins with minimum load, then the ball is placed in the
leftmost of them. The hash functions remain unchanged
during the process, thus if a ball is reinserted it has the
same locations to choose from as when it was inserted
for the first time. However, the sequence of insertions
and deletions must be fixed before the hash function
vector is chosen at random.

We choose the hash function vector from a family
Rk

`,n(d) which we formally define later. We shall discuss
its properties now, though. Let ~h = (h1, . . . , hd) ∈
Rk

`,n(d). Then hi is described by a hash function g
(which is the same for all hi) from a k-wise independent
hash family Hk

` , a hash function fi from a k-wise
independent hash family Hk

r and a random vector
(zi,1, . . . , zi,`). The function hi is defined by hi(x) =
(fi(x) + zi,g(x)) mod r. Hence, the function values
h1(x), . . . , hd(x) can be determined by evaluating d + 1
hash functions from k-wise independent hash families
(e.g. polynomials of degree k − 1), d table lookups
and d additions modulo r. The family Rk

`,n(d) is the
straightforward generalization of the family of hash
function pairs Rk

`,n(2) introduced by Dietzfelbinger and
Woelfel (2003).

In order to state the result we need a generalization
of the Fibonacci numbers. Let Fd(j) = 0 for j ≤ 0 and
Fd(1) = 1. For j ≥ 2 we define recursively Fd(j) =∑d

i=1 Fd(j − i). Now let φd = limj→∞ Fd(j)1/j . The
value φ2 corresponds to the golden ration. Note that
1.61 < φ2 < φ3 < . . . < 2, and d ln(φd) > (d − 1) · ln 2
(see Vöcking, 2003).

Theorem 2.1. Let α, κ and k be arbitrary constants
and 2 ≤ d = O(log log n). Further, let ~h be chosen ran-
domly from R2k

`,n(d). Suppose that balls are sequentially
inserted into and removed from n bins according to the
process described above, where the d locations of each
ball are determined by ~h. Then at any time T , the prob-
ability that the number of balls in the fullest bin exceeds

ln log2 n + ln(1 + α)
d · lnφd

+ e · d + κ + 3

is at most n−α + n1+o(1)(n−κ + `−k).

The maximum load we achieve in this theorem is
the same as the one Vöcking achieves assuming true
randomness, except for the additive term of e · d. The
difference in the probability bound is the additional
term `−k. Choosing ` = n1−ε and k as a large
enough constant yields an arbitrary small polynomial
probability for encountering an overloaded bin, while
the evaluation time for the hash functions remains
constant. As long as d = O(

√
log log n), the maximum

load of a bin is still bounded by O
(
(log log n)/d

)
with

high probability. If d is a constant we even have
the same maximum load as under true randomness
assumption up to a constant additive term and it is
known that using true randomness one cannot achieve a
better maximum load with this scheme. Super-constant
terms of d seem to be rather unrealistic for applications,
especially if one has to evaluate d hash functions in order
to place a ball. Moreover, having a super-constant value
of d would require that the application fixes the number
of hash functions after it becomes aware of the number
of balls and bins.

In order to give an example of the efficiency of our
hash functions, let us choose k = 2 and ` = n1−ε/2

for some 0 < ε < 1. Then the evaluation time
for the hash functions is dominated by the functions
from the 4-wise independent hash families. These
functions could simply be polynomials of degree 3.
An even more efficient alternative are the functions
from Thorup and Zhang (2004), which were shown to
map e.g. double words into single words by three table
lookups, one addition and one bitwise operation. The
space requirements for the hash function vector is O(d ·
n1−ε/2) = o(n) and with a probability of n−1+ε+o(1) the
maximum load does not exceed (ln lnn)/(d lnφd)+O(1)
for constant d.

In the following section, we first prove the result
under the assumption that the hash functions are chosen
from a uniform hash family. In Section 4, we then show
how to modify this analysis in order to adapt for the
simple hash functions defined there.

3 Analysis under the Uniform Hashing
Assumption

Say that at time T we want to determine the maximum
load of a bin. Let St ⊆ U , 1 ≤ t ≤ T , be the set of all
balls in the system at time t and let ~S = (S1, . . . , ST) be
the vector of active ball sets. Throughout this section
we assume that the d hash functions h1, . . . , hd are
chosen independently at random from a uniform hash
family, i.e. the distribution of all balls into the bins is
completely random. Let ~h = (h1, . . . , hd).

We consider a directed graph F (~S,~h) which is
uniquely determined by ~S and ~h. Each node is labeled

with a time t and with a ball x ∈ St. There is a
directed edge labeled i, 1 ≤ i ≤ d, from a node (x, t)
to a node (x′, t′) if and only if hi(x) = hi(x′). We call
the event that there is an edge labeled i from a node
(x, t) to a node (x′, t′) an edge event. Obviously, for
x 6= x′ such an edge event (for fixed i) occurs with a
probability of 1/r = d/n. However, edge events may
not be independent if they occur between several nodes
labeled with the same ball.

Witness Trees We define a so-called pruned full wit-
ness tree (short: PFWT), which exists as a subgraph
in F (~S,~h) if there is a bin with large load. We start
first with a witness tree in which the same ball label
may appear on multiple nodes. We then merge several
witness trees to a full witness tree. Finally, we prune
the full witness tree in such a way that appearances of
the same ball in the resulting subtree is restricted in an
appropriate way.

The construction of the non-pruned witness tree
is similar to that of Vöcking. One difference concerns
the leaves of the witness tree and is necessary for the
analysis for the simple hash functions. In addition
we have to be more careful about the exact times at
which certain balls are present in order to be able
to make the proof work for reinsertions of the same
balls. The pruned witness trees have to be modified
more significantly in order to analyze the scheme for
reinsertions.

In the following let µ = µ(d) be an integer depend-
ing on d, to be determined later. Suppose that at time
t ball x lies in a bin b at a height of `, i.e. there are `−1
balls below x. Let i be the group of b and let t′ be the
time before t when x was inserted in b (i.e. x 6∈ St′−1

and x ∈ St′ ∩ . . . ∩ St). Let b1, . . . , bd be the d possible
locations of x, where bj is in group j. Then at time t
bin b (= bi) has at least `−1 balls below it. Moreover at
time t′ all bins had a height of at least `− 1 because if
there were a bin of height less than `− 1, then x would
have been placed in this bin instead of in bin bi. Fi-
nally, at time t′ the bins b1, . . . , bi−1 even had a height
of at least ` because otherwise one of these bins would
have been chosen for x due to the preference of groups
further to the left.

We now define the witness tree Wt,`(b) recursively.
In this tree each edge will be directed from a parent to
its child. Let I(t, `, b, x) be the incident that at time t
ball x is located in bin b at height ` (i.e. it has `−1 balls
below it). The following definition ensures that for any
witness tree Wt,`(b) with a root labeled (x, t) incident
I(t, `, b, x) occurs (in italics we describe the properties
of the bins b1, . . . , bd ensuring this). Assume that for
some fixed t, `, b, x, incident I(t, `, b, x) occurs. The

root of Wt,`(b) is a node u labeled (x, t).

Case 1: ` ≤ µ. Wt,`(b) consists only of the vertex u.

Case 2: ` = µ + 1 and 1 ≤ i ≤ 2. (At time t′ each
bin bj, j 6= i, contains at least µ balls and at time t bin
bi contains at least µ balls below x.)
The root u of Wt,`(b) has µ · d children, namely the
roots uj,`′ of the witness trees Wt,`′(bi) and Wt′,`′(bj)
for 1 ≤ j ≤ d, j 6= i, and for 1 ≤ `′ ≤ µ. Each edge
(u, uj,`′) is labeled j.

Case 3: ` = µ + 1 and 3 ≤ i ≤ d. (At time t′ each
bin bj, 1 ≤ j < i, contains at least µ + 1 balls.)
The root u of Wt,µ+1(b) has i− 1 children u1, . . . , ui−1.
These are the roots of Wt′,µ+1(bj) for j = 1, . . . , i − 1
and each edge (u, uj) is labeled j.

Case 4: ` > µ+1. (At time t′ each bin bj contains at
least ` balls for j < i and at least ` − 1 balls for j > i.
At time t the bin bi contains at least ` − 1 balls below
ball x.)
The root u of Wt,`(b) has d children u1, . . . , ud. The
node uj is the root of Wt′,`(bj) for j = 1, . . . , i− 1 and
the root of Wt′,`−1(bj) for j = i + 1, . . . , d. The node
ui is the root of Wt,`−1(bi). Each edge (u, uj) is labeled
j.

It is crucial for our proof that for two adjacent nodes
labeled (x, t) and (x′, t′), if x and x′ are in the same
group, then t = t′.

Properties of a Witness Tree Consider a witness
tree W = WT,L+µ+1(B) for a fixed bin B and a fixed
time T . We call L the order of the witness tree.
Consider an edge (u, u∗) labeled i∗ in the tree W , where
u is labeled (x, t) and u∗ is labeled (x∗, t∗). Assume that
ball x is located in a bin in group i at time t. Then by
construction the following holds:

(W1) x 6= x∗ and hi∗(x) = hi∗(x∗).

(W2) i = i∗ ⇒ t = t∗.

(W3) x ∈ St∗ ∩ · · · ∩ St and x∗ ∈ St∗−1 ∩ St∗ .

(W4) i 6= i∗ ⇒ x 6∈ St∗−1.

The statement x∗ ∈ St∗−1 of property (W3) may need
a justification: According to the construction of the
witness tree, if i 6= i∗, then the insertion of x is the
operation that leads from the set St∗−1 to the set St∗ .
I.e., St∗ = St∗−1 ∪ {x}. Since x∗ ∈ St∗ it follows that
x∗ is also in St∗−1. If i = i∗, then by construction of
the witness tree at time t∗ ball x∗ is below ball x in the
same bin in group i. Hence, ball x∗ must have already
been in the system before time t∗.

Now fix a vector of active ball sets ~S = (S1, . . . , ST)
and a hash function vector ~h = (h1, . . . , hd). Let

W = WT,`(B) be a witness tree obtained from ~S and
~h for some bin B and a height ` at time T . Consider
an arbitrary node u in W with ball label x. Then the
time label t of u is uniquely determined by its parent or
T : It is T for the root. If u is not the root, then it is
determined by the label (xp, tp) of the parent up of u as
follows. If the balls x and xp are placed in the same bin,
then the time labels are equal (i.e. t = tp). Otherwise, t
is the maximum value satisfying t ≤ tp and xp 6∈ St−1.

Moreover, the group in which x is located at time
t is uniquely determined by the edge pointing to u: If
u has no incoming edge, i.e. u is the root, then it is the
group of B. Otherwise it is the jth group, where j is
the label of the edge pointing to u. Finally, the bin b
in which x is placed is uniquely determined by the edge
pointing to u and ~h: It is either B in case u is the root
and it is hj(x) otherwise.

Since in a witness tree for any node u labeled (x, t)
the bin b where x is located at time t as well as the group
i of this bin are uniquely determined, it is justified to
say that b is the bin of u and i is the group of u.

We call the nodes which are parents of leaves in
the witness tree (i.e. the roots of Wt,µ+1(b), where b is
a bin in group 1 or 2) border nodes. If we remove all
leaves from a witness tree (i.e. the border nodes become
leaves) then the resulting tree has the same topology
as that of the asymmetric witness tree considered by
Vöcking (2003). This topology is that of a Fibonacci
tree Td(k) defined recursively as follows: Td(1) and
Td(2) consist of a single node. Td(k), k > 2, is a
rooted tree whose root has as children the roots of
Td(k−1), . . . , Td(max {k − d, 1}). It is easy to see that if
we remove all leaves from a witness tree WT,L+µ+1(B),
then we obtain a tree with the same topology as the
Fibonacci Tree Td(L · d + i), where i is the group of B.

Let q be the number of border nodes, m be the
number of inner nodes and ` be the number of leaves
in a witness tree W = WT,L+µ+1(B). The following
properties of W can be easily derived from the topology
of the Fibonacci Trees (see also Vöcking, 2003):

1. q = Fd(L · d + i) ≥ (φd)d·L+i−2 ≥ (φd)d·L−1.

2. m ≤ 2q.

3. ` = µ · d · q.

4. The depth of W is O(L · d).

Distinct Balls We consider first the case that there
is a witness tree WT,L+µ+1(b) whose ball labels are
all distinct. This ensures that all edge events are
independent. We bound the probability that such a
witness tree with a root labeled with a ball in ST can
be embedded in F (~S,~h). There are n balls in ST to

choose the root from. Now consider a root u of a sub
tree Wt,`(b) with ball label x. Assume first that u is not
a border node and let u1, . . . , ud be the d children of u.
Recall that for each j, 1 ≤ j ≤ d, the time label tj is
uniquely determined by u. For each node uj with ball
label xj it holds xj ∈ Stj and thus there are at most n
possibilities for each ball label of a child uj . If u is a
border node, then it has µ ·d children whose balls are all
in St′ and distinct, where t′ is the insertion time of x.
Hence, there are

(
n

µ·d
)q possibilities to choose the ball

labels of all leaves and d` possibilities to label the edges
pointing to the ` leaves with values i ∈ {1, . . . , d}. The
witness tree has ` + m − 1 edges and each edge exists
with a probability of d/n. To conclude, the probability
that a witness tree WT,L+µ+1(b) exists is at most

nm ·
(

n

µd

)q

· d` · (d/n)`+m−1

≤ (en/µd)µdq · d2`+m−1 · n−`+1

≤ n · (e/µ)µdq · dµdq+m−1 ≤ n · d2q ·
(

ed

µ

)µdq

.

We now choose µ = ed + 2 and obtain a probability
bound of

n · d2q ·
(

1− 2
µ

)µdq

≤ n · d2q · (1/e)2dq

< n · 2−q ≤ n · 2−(φd)d·L−1

(using d ≥ 2 and e−2d ≤ d−3). This is ex-
actly the same probability bound as Vöcking’s. How-
ever, our “root-ball” has height L + µ + 1 while
Vöcking’s has height L + 4. Therefore we get
the following result analogue to Vöcking’s: For
L ≥ (ln log2 n + ln(1 + α)/(d · lnφd) + 1, the probabil-
ity for the existence of a witness tree of order L with
distinct balls is at most n−α.

Pruned Witness Trees Eventually, the witness tree
as described above contains multiple nodes labeled with
the same ball. In this case, the edge events are not
independent and we have to prune some of them. In
order to handle this, we first have to merge multiple
witness trees together to a full witness tree. Assume
that at time T there is a bin b containing at least
L + µ + κ + 2 balls. We may assume w.l.o.g. that the
topmost ball of bin b is inserted at time T . Further we
assume w.l.o.g. that b is in the first (leftmost) group,
because after inserting the topmost ball in a bin with
highest load, one of the bins with highest load is always
in the leftmost group.

Consider the κ+1 topmost balls x0, . . . , xκ (ordered
top-down) in bin b and let bi, 1 ≤ i ≤ κ, be the bin in

the second group in which xi might have been placed.
Note that each ball xi has a height of at least L+µ+2.
Then the root of the full witness tree is a node labeled
(x0, T) which has κ children labeled (x1, T), . . . , (xκ, T).
All edges are labeled 1. In addition each of the nodes
labeled (xi, T) has as a child the root of the witness
tree Wti,L+µ+1(bi), where ti + 1 is the insertion time of
xi and bi is determined by h2(xi) in the second group
(consequently the corresponding edge is labeled 2). The
root of WT,L+µ+1(bi) is guaranteed to exist, because by
construction at the insertion time of xi the bin bi must
have had at least L + µ + 1 balls (otherwise xi would
have been placed in bin bi rather than in bin b).

We now have to prune the full witness tree in order
to ensure that all edge events are independent. We do
this by finding prunable node pairs during a depth first
search. (Note that Vöcking uses a breadth first search,
but this doesn’t yield the desired probability bounds in
our case, because we might not encounter enough border
nodes.)

Definition 3.1. Let u and u′ be different nodes with
labels x and x′ (possibly x = x′). The ordered pair
(u, u′) is called prunable, if there is 1 ≤ j ≤ d such that
hj(x) = hj(x′) and the in-edge of u′ is not labeled j.

In order to remove prunable nodes, we do a depth
first search through the full witness tree and inspect
each node. Whenever we inspect a node u′, we check
whether there was another node u inspected before such
that (u, u′) is a prunable node pair. If this is the case,
we prune the edge (p, u′), where p is the parent of u′.
This means that we cutoff the complete subtree rooted
at u′ and mark the node u′ as a pruning node (the node
u′ and the edge (p, u′) remain in the tree).

Once we have marked κ pruning nodes, we stop the
depth first search early and remove all non-visited nodes
and edges incident to them from the remaining witness
tree. The resulting tree is the pruned full witness tree
(short: PFWT) of order L. If we do not find κ pruning
nodes during the depth first search, then obviously
one of the witness trees Wti,L+µ+1(bi), 1 ≤ i ≤ κ,
contains no pruning node. In this case we can bound
the probability under the assumption of distinct balls
for the witness tree Wti,L+µ+1(bi) (we prove below that
the balls of such a witness tree without pruning nodes
are distinct).

In the following we distinguish between vertical and
diagonal edges in the witness tree. An edge (p, u′) is
vertical, if the ball associated with p is located in the
same group as the ball associated with u′. Otherwise,
the edge is diagonal. Note that if p is not the root, then
the edge (p, u′) is vertical if and only if the edge pointing
to p has the same label as the edge (p, u′).

Claim 3.2. If there is a directed path from a node v1

to a different node v2 such that v1 and v2 are labeled
with the same ball, then this path contains at least one
diagonal edge other than the first edge on the path.

Proof. Let v1 and v2 be two nodes labeled (x1, t1)
and (x2, t2), respectively. Assume first that there
is a directed path of vertical edges leading from v1

over u1, . . . , us to v2. Hence, the groups of all nodes
u1, . . . , us on this path are equal and thus the groups
of v1 and v2 are equal. Let the group of all the nodes
v1, u1, . . . , us, v2 be i. It follows from the properties of
the witness tree (W2) that the time labels of all nodes
on this path are equal and in particular t1 = t2. If
y1, . . . , ys are the ball labels of u1, . . . , us, then property
(W1) ensures that hi(x1) = hi(y1) = · · · = hi(ys) =
hi(x2). Hence, x1 and x2 exist in the same bin at
different heights at the same time t1. This implies
x1 6= x2.

Now assume that the first edge (v1, u1) on the
directed path (v1, u1, . . . , ur, v2) is a diagonal edge and
there are no other diagonal edges on this path. Then
with the same argument as above, the time label of u1 is
the same as that of v2, that is t2. Since the edge (v1, u1)
is diagonal it follows from (W4) that x1 6∈ St2−1. On
the other hand, x2 ∈ St2−1 according to (W3). Hence,
x1 and x2 are different balls.

Claim 3.3. Assume that there is a directed path
u1, . . . , uk of nodes with ball labels x1, . . . , xk such that
all edges (u1, u2), . . . , (uk−1, uk) of this path have the
same label i. Then hi(x1) = · · · = hi(xk) and all balls
x1, . . . , xk are disjoint.

Proof. Each in-edge of a node uj determines the group
in which the corresponding ball xj is and according
to the witness tree property (W1) an edge (uj , uj+1)
labeled i implies hi(xj) = hi(xj+1). Hence, all balls but
possibly x1 are in the ith group. Therefore, all edges
but possibly the first one are vertical. According to
Claim 3.2 the balls are disjoint.

We are now ready to derive a lemma which allows
us to conclude that the edge events in a PFWT are
independent.

Lemma 3.1. In the PFWT any two different nodes
labeled with the same ball are pruning nodes and have
different groups.

Proof. Let v and v′ be two nodes in the PFWT, both
labeled with the same ball x. Assume w.l.o.g. that v is
inspected before v′. Let i and i′ be the groups of v and
v′, respectively. Further, let p(v) be the topmost node in
the tree such that there is a directed path leading from

p(v) to v containing only i-edges. Let p(v′) be defined
analogously for v′ and i′-edges. Finally, let y and y′

be the labels of p(v) and p(v′), respectively. Since v′ is
obviously not the root, p(v′) 6= v′.

Assume that i = i′ contrary to the claim of the
lemma. If p(v) and p(v′) were the same node, then
there would be a directed path from p(v) = p(v′) to
v′ passing over v. Hence, there would be a directed
path from v to v′ consiting entirely of edges labeled i
and the ball labels of v and v′ would differ according
to Claim 3.3. Since this contradicts our assumption, we
know that p(v) 6= p(v′).

Assume first that v is not the root and thus p(v) 6=
v. By Claim 3.3 we obtain hi(y) = hi(x) = hi(y′). Due
to the fact that neither the in-edge of p(v) nor the in-
edge of p(v′) is labeled i, it follows that

(
p(v), p(v′)

)
and

(p(v′), p(v)) are prunable pairs. Hence, either p(v) or
p(v′) must be a pruning node (whichever was inspected
last) and thus either v or v′ does not exist in the PFWT.
If v is the root, we still have hi(x) = hi(y′). In this case(
v, p(v′)

)
is a prunable pair and p(v′) is a pruning node

(it obviously was inspected after the root v) and v′ does
not exist in the PFWT. In any case, i = i′ contradicts
the existence of either v or v′ in the PFWT and thus v
and v′ have different groups.

It remains to show that v and v′ are both pruning
nodes. We have y′ 6= x but hi′(y′) = hi′(x) according to
Claim 3.3. Since the in-edge of p(v′) is by construction
not labeled i′ and the in-edge of v (if v has an in-edge) is
labeled i 6= i′, it follows that

(
v, p(v′)

)
and

(
p(v′), v

)
are

prunable pairs (clearly v 6= p(v′) due to x 6= y′). Then
p(v′) is inspected before v because otherwise it would
be a pruning node and v′ would not exist. Hence, v is a
pruning node. It is obvious that v′ becomes a pruning
node once it is inspected because (v, v′) is a prunable
pair and i 6= i′) and v′ is inspected after v.

Probability of the existence of a PFWT By con-
struction all pruning nodes in the PFWT are leaves.
Consider some (not necessarily distinct) inner nodes
u1, . . . , ur with labels y1, . . . , yr such that ui has as a
child a pruning node vi and all the pruning nodes vi

are distinct but labeled with the same ball x. Accord-
ing to Lemma 3.1 the groups i1, . . . , ir of the nodes
v1, . . . , vr are different. Hence, the events hi1(y1) =
hi1(x), . . . , hir (yr) = hir (x) are all independent. Now
it is easy to see that in the PFWT all edge events are
independent.

Recall that the full witness tree of order L consists
of the root u0 labeled (x0, T), its children u1, . . . , uκ,
labeled (x1, T), . . . , (xκ, T), and that the node ui, 1 ≤
i ≤ κ, has as a child the root of the witness tree
Wti,L+µ+1(bi), where ti is the insertion time of xi and

bi is in the second group.
We now bound the probability that a PFWT of

order L with exactly κ pruning nodes exists. Let N
be the total number of nodes in the full (unpruned)
witness tree. The number of topologies for a PFWT
with κ nodes marked as pruning nodes is at most Nκ.
We fix such a topology. Let M be the number of nodes
in the PFWT and let m be the number of inner nodes
in the PFWT. The set of nodes is partitioned into four
groups: pruning nodes, border nodes, full leaves and
normal nodes. A node is a border node, if it has µd non-
pruning nodes as children which are themselves leaves.
The number of border nodes is denoted q. The children
of border nodes are called full leaves and their number
is `. Hence, the number of normal nodes is M−κ−q−`.

In order to bound the probability that a PFWT
with the fixed topology occurs we first pick a root ball
X ∈ ST and then do a depth first search through the
PFWT picking a ball for each node we visit. At each
step we bound the probability that the ball we picked
may be a child of its parent (i.e. that the corresponding
edge event occurs) by d/n and the probability that it is a
pruning node, if according to the topology it is supposed
to be.

Whenever we visit the next node u, the label (x, t)
of its parent has already been determined. Let i be the
label of u’s in-edge. Recall that the time label t′ of
u is uniquely determined by its parent. Consider first
the case that according to the topology of the PFWT
u is not a pruning node. We choose for the ball label
of u a ball x′ ∈ St′ (hence there are n possibilities to
choose x′) and the probability that the corresponding
edge event occurs is d/n. This event has to occur for all
normal and all border nodes but not for the root (hence
for M −κ− `−1 nodes). In addition, if u is one of the q
border nodes, we choose the balls of all its µ ·d children
at once. They are all in St′ , where t′ is the insertion time
of x′, and are disjoint (because otherwise by Lemma 3.1
at least one of the nodes would be a pruning node).
Hence, there are at most

(
n
µd

)
possibilities to choose the

balls and at most dµd possibilities to label the in-edges
of the nodes with values in {1, . . . , d}. The probability
that all corresponding edge events occur is (d/n)µd.
Hence, using µ = ed + 2, the probability that a border
node has µd appropriate children is at most(

n

µd

)
· dµd ·

(
d

n

)µd

≤
(

en

µd

)µd

· d2µd

nµd

=
(

ed

µ

)µd

≤ (1− 2/µ)µd ≤ e−2d.

Now consider the case that u is one of the κ pruning
nodes and let i be the label of u’s in-edge. We dis-

tinguish the case that the label x′ of u exists some-
where else in the PFWT from the case that u is the
only node with label x′. There are less than κ possibil-
ities to choose the ball x′ in such a way that another
pruning node with the same label has already been vis-
ited before. As with normal nodes, we here just use the
probability bound d/n of the corresponding edge event
hi(x) = hi(x′). Now assume that x′ is not the label
of any other previously visited pruning node. Then ac-
cording to Lemma 3.1 there also is no other previously
visited (non-pruning) node with label x′. Hence, the
hash values hj(x′) with 1 ≤ j ≤ d and i 6= j are random
values independent from all other random choices made
so far. Therefore, the probability that the correspond-
ing edge event occurs and that x′ becomes a pruning
node (i.e., that for some other previously chosen ball
x′′ we have hj(x′) = hj(x′′) for some j 6= i) is at most
(d/n) ·M(d− 1)d/n ≤ M · d3/n2. We count at most n
possible choices for the ball x′.

To conclude, the probability that we can choose all
balls in such a way that we obtain a PFWT with one of
the Nκ possible topologies is at most

p := Nκ · n ·
(

n · d

n

)M−κ−`−1

·
(
e−2d

)q

·
(

κ · d

n
+

n ·M · d3

n2

)κ

≤ n · dM−`−1 · e−2dq ·
(

κ ·N + N ·M · d2

n

)κ

.

We now restrict ourselves to d = O(log log n), κ = O(1)
and L = O

(
log n/(log log n)3

)
. Recall that µ = O(d)

and that the depth of a witness tree of order L is O(Ld).
Hence, the depth of the PFWT is also O(Ld). Since all
non-border nodes have at most d children, we have

M ≤ N ≤ dO(Ld) = (log log n)O(log n/(log log n)2) = no(1).

It is easy to see that a leaf can only be a non-full
leaf for two reasons: Either itself or one of its siblings
(i.e. one of its parents other children) is the last node
visited during the depth first search or itself or one of its
siblings is a pruning node. Therefore, there are at most
(κ + 1) · µ · d = O(d2) leaves which are not full leaves.
Hence, the number of inner nodes is m = M−`−O(d2).
Similarly, there are at most κ + 1 = O(1) parents of
leaves which are not border nodes. Due to the fact that
the inspection was done in a depth first order, there are
always at most O(Ld) nodes with a single child (recall
that O(Ld) is a bound on the depth of the tree). Hence,

2q ≥ m−O(Ld). Therefore,

dM−`−1 · e−2dq ≤ dm+O(d2) · e−dm+O(Ld2)

= e(ln d−d)m+O((L+ln d)·d2) ≤ eO(log n/ log log n)

= no(1).

Hence, we obtain for the probability p that there is a
PFWT of order L and with exactly κ pruning nodes:

p = n1+o(1) ·
(

no(1)

n

)κ

= n−κ+1+o(1).

Combining this with the bound of n−α for the probabil-
ity that a witness tree of order L without pruning nodes
exists, we obtain the following result.

Theorem 3.1. Let α and κ be constants and 2 ≤ d =
O(log log n). Under the assumption that all hash func-
tions h1, . . . , hd are chosen independently at random
from a uniform hash family, the probability that at time
T the load of the maximum bin exceeds

ln log2 n + ln(1 + α)
d · lnφd

+ e · d + κ + 3

is at most n−α + n−κ+1+o(1).

The additive term in the above maximum load is by
e · d larger than the corresponding result of Vöcking.
However, the difference to the proof of Vöcking’s is
that our bound is obtained only by analyzing subgraphs
of F (~S,~h). More precisely, our proof is equivalent
to considering all possible sets V of pairs (x, t) with
x ∈ St and summing up the probabilities that the graph
spanned by these balls and the random hash function
vector ~h is a witness tree of order L and with a root
ball in ST . This is crucial for the next section where
we show that our bound remains valid for simple hash
functions.

4 Analysis for Simple hash functions

Recall that Hk
r is a k-wise independent hash family of

functions mapping U to R. We now define our family
of hash function vectors.

Definition 4.1. Let k ≥ 2 and r, ` ∈ N. For f ∈ Hk
r ,

g ∈ Hk
` and z = (z0, . . . , z`−1) ∈ [r]` the hash function

hf,g,z : U → [r] is defined by x 7→
(
f(x) + zg(x)

)
mod r.

The family Rk
`,r(d) consists of all hash function vectors

~h = (h1, . . . , hd) where hi = hfi,g,z(i) with fi ∈ Hk
r ,

g ∈ Hk
` and z(i) ∈ [r]` for 1 ≤ i ≤ d.

It is important for our proofs, that all hash functions
hi, 1 ≤ i ≤ d of a hash function vector ~h share the same
g-function.

We use the following two claims.

Claim 4.2. Let V ⊆ U and ~h = (h1, . . . , hd) ∈
R2k

`,n(d). Under the condition that g satisfies |V | ≤
max {2k, |g(V)|+ k}, the hash function values hi(x)
with x ∈ V and 1 ≤ i ≤ d are all uniformly and
independently distributed.

Proof. If |V | ≤ 2k, then the claim is obvious because all
hash functions fi, 1 ≤ i ≤ d, are chosen independently
from a 2k-wise independent hash family. Now assume
2k < |V | ≤ |g(V)|+k. Let V ′ be a maximal subset of V
such that g is injective on V ′. Now let V1 be the union of
V −V ′ and the set of elements x′ ∈ V ′ for which there is
x ∈ V − V ′ such that g(x) = g(x′). Since |V − V ′| ≤ k
and g is injective on V ′, there are at most k elements
x′ ∈ V ′ which are added to V1. Hence, |V1| ≤ 2k. It
follows that all hash function values hi(x) with x ∈ V1

and 1 ≤ i ≤ d are uniformly distributed because fi is
chosen from a 2k-wise independent hash family. Now
let V2 = V −V1. Since V2 is a subset of V ′, g is injective
on V2. All hash function values hi(x) with x ∈ V2 and
1 ≤ i ≤ d are uniformly and independently distributed,
because each of them is determined by a unique offset
z
(i)
g(x). Moreover, g(V1)∩g(V2) = ∅ and thus these offsets

do not influence the hash function values of elements
in V1. Hence, all hash function values for x ∈ V are
distributed independently and uniformly.

Claim 4.3. Let V ⊆ U and ~h = (h1, . . . , hd) ∈ R2k
`,n(d).

The probability that |V | ≥ max {2k, |g(V)|+ k} is at
most O

(
|V |2k · `−k

)
.

Proof. Assume that |V | ≥ max {2k, |g(V)|+ k}. We
first show that there is a subset V ′ ⊆ V such that
|V ′| = 2k and |g(V ′)| ≤ k.

Obviously, |V | ≥ 2k. If |V | = 2k, then |g(V)| ≤ k
and we may choose V ′ = V . If |V | > 2k, then
|g(V)| = |V | − k > |V |/2. In this case there is a
key x which collides with no other key x′ ∈ V (i.e.
g(x) 6∈ g(V −{x})). Hence, if we remove this key x from
V , then for the resulting set V ′ = V −{x} we still have
|g(V ′)| = |V ′|−k. Therefore, we may iteratively remove
keys until we obtain a subset V ′ ⊆ V with |V ′| = 2k
and |g(V ′)| = |V ′| − k = k.

There are
(|V |

2k

)
possibilities to choose V ′ ⊆ V . Since

g maps V ′ to [`], there are
(

`
k

)
possibilities to choose

k hash function values in [`]. The probability that a
key x ∈ V ′ is mapped to one of these k positions is
k/`. Since g is chosen from a 2k-wise independent hash
family, the probability that this is the case for all 2k
keys in V ′ is (k/`)2k. Hence, we obtain the following
upper bound for the probability that |g(V)| ≤ |V | − k,

where s = |V | ≥ 2k:

(
`

k

)
·
(

s

2k

)
· (k/`)2k ≤

(
e · `
k

)k

·
(e · s

2k

)2k

·
(

k

`

)2k

≤ s2k

`k
·
(

e3

4k

)k

= O

(
s2k

`k

)
.

We can now prove the main theorem. Choose ~h ∈
R2k

`,n(d) at random and distribute the balls according to
~h. Let as before ~S = (S1, . . . , ST), where St ⊆ U is
the set of balls in the system at time t. We bound the
probability that F (~S,~h) has as a subgraph a PFWT of
order L with the root ball in ST .

Assume that W is such a subgraph. We use a
depth first search in order to inspect each node of W .
Whenever we inspect a new node, we add its ball label
to the set V (which is empty at the beginning). We do
this until either we have inspected the complete PFWT
or until the set V of already visited balls satisfies |V | =
max {2k, |g(V)|+ k}. At the beginning we obviously
have |V | = 0 < max {2k, |g(V)|+ k} and in each step
|V | increases by 1 and |g(V)| may increase by 1 but may
also remain unchanged. Hence, at each step either the
inequality |V | < max {2k, |g(V)|+ k} remains true or
we obtain a set which yields equality.

Assume first that the set V of all balls la-
beling nodes in the witness tree satisfies |V | <
max {2k, |g(V)|+ k}. In this case, according to
Claim 4.2 the hash function vector ~h distributes all balls
in V completely at random. Hence, the probability that
the corresponding subgraph of F (~S,~h) forms a PFWT
of order L can be bounded exactly as if ~h was chosen
from a uniform hash family.

Now assume that we stop the depth first search
with a set V of size M = max {2k, |g(V)|+ k}. Then
according to Claim 4.2 the hash function values hi(x),
x ∈ V , 1 ≤ i ≤ d, are again distributed completely
at random. Let G be the subtree of the PFWT
consisting of the M nodes inspected during the depth
first search and let λ < κ be the number of pruning
nodes found during the inspection. The number of
possible topologies for G is at most Nλ+1 (we have
to multiply the number of topologies for PFWTs with
λ pruning nodes with N due to the fact that there
are N possibilities to stop the depth first search).
It is easy to see that we can bound the probability
that G exists as a subgraph exactly as we did in the
previous section for the PFWT, replacing κ with λ in
the probability bounds and Nκ by Nλ+1 for the number
of topologies. (It is easy to accommodate to the fact
that G contains one additional leaf.) Due to N = no(1)

we obtain almost the same probability bound, namely

n−λ+1+o(1). But since it may be λ = 0 this does not
suffice to obtain a probability smaller than 1. However,
according to Claim 4.3 the probability that the set V
has the cardinality max {2k, |g(V)|+ k} is bounded by
|V |2k · `−k = no(1) · `−k for k = O(1). Note that even
under the condition that this event on V occurs, the
keys in V are distributed completely at random. Hence,
the probability that either a witness tree of order L
or a PFWT of order L with κ pruning nodes of order
L ≥ (ln log2 n+ln(1+α)/(d·lnφd)+1 occurs is bounded
by

n−α + n−κ+1+o(1) + n−λ+1+o(1) · `−k

≤ n−α + n1+o(1) ·
(
n−κ + `−k

)
.

This completes the proof of the main theorem.

Acknowledgment

The author is grateful to Berthold Vöcking for and Joe
Rideout for helpful comments on the text.

References

Y. Azar, A. Broder, A. Karlin and E. Upfal (1999).
Balanced allocations. SIAM Journal on Computing,
volume 29, pp. 180–200.

A. Broder and M. Mitzenmacher (2001). Using multiple
hash functions to improve IP lookups. In INFOCOM,
pp. 1454–1463.

E. R. Cole, A. M. Frieze, B. M. Maggs, M. Mitzen-
macher, A. W. Richa, R. K. Sitaraman and E. Upfal
(1998). On balls and bins with deletions. In Proceed-
ings of the 2nd International Workshop on Random-
ization and Approximation Techniques in Computer
Science (RANDOM), volume 1518 of Lecture Notes
in Computer Science, pp. 145–158.

M. Dietzfelbinger (1996). Universal hashing and k-wise
independent random variables via integer arithmetic
without primes. In Proceedings of the 13th Annual
Symposium on Theoretical Aspects of Computer Sci-
ence (STACS), volume 1046 of Lecture Notes in Com-
puter Science, pp. 569–580.

M. Dietzfelbinger and F. Meyer auf der Heide (1992).
Dynamic hashing in real time. In J. Buchmann,
H. Ganziger and W. J. Paul (eds.), Informatik-
Festschrift zum 60. Geburtstag von Günter Hotz, pp.
95–119. Teubner.

M. Dietzfelbinger and C. Weidling (2005). Balanced
allocation and dictionaries with tightly packed con-
stant size bins. In Proceedings of the 32nd Interna-

tional Colloquium on Automata, Languages, and Pro-
gramming (ICALP), volume 3580 of Lecture Notes in
Computer Science, pp. 166–178.

M. Dietzfelbinger and P. Woelfel (2003). Almost ran-
dom graphs with simple hash functions. In Proceed-
ings of the 35th Annual ACM Symposium on Theory
of Computing (STOC), pp. 629–638.

A. Östlin and R. Pagh (2003). Uniform hashing in
constant time and linear space. In Proceedings of
the 35th Annual ACM Symposium on Theory of
Computing (STOC), pp. 622–628.

A. Siegel (2004). On universal classes of fast high perfor-
mance hash functions, their time-space tradeoff, and
their applications. SIAM Journal on Computing, vol-
ume 33, pp. 505–543.

M. Thorup and Y. Zhang (2004). Tabulation based 4-
universal hashing with applications to second moment
estimation. In Proceedings of the 15th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 615–
624.

B. Vöcking (2003). How asymmetry helps load balanc-
ing. Journal of the ACM, volume 50, pp. 568–589.

M. N. Wegman and J. L. Carter (1979). New classes
and applications of hash functions. In Proceedings of
the 20th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 175–182.

