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Abstract. In this paper, the space requirements for the OBDD repre-
sentation of certain graph classes, specifically cographs, several types of
graphs with few P4s, unit interval graphs, interval graphs and bipartite
graphs are investigated. Upper and lower bounds are proven for all these
graph classes and it is shown that in most (but not all) cases a represen-
tation of the graphs by OBDDs is advantageous with respect to space
requirements.

1 Introduction

Some modern applications require such huge graphs that the usual, explicit rep-
resentation by adjacency lists or adjacency matrices is infeasible. E.g., a typical
state transition graph arising in the process of verification and synthesis of se-
quential circuits may consist of 1027 vertices and 1036 edges. Such huge graphs
appear also if the basic graph as e.g. the street network of a city is interlinked
with other components as e.g. traffic amount and time slots.

In order to be able to store huge graphs, implicit representations of graphs
can be used. In the standard implicit representation the vertices of a graph are
labeled in such a way that adjacency of two vertices is uniquely determined by
their labels (a prominent example is the representation of interval graphs, where
the nodes are labeled by intervals and two nodes are adjacent if and only if the
corresponding intervals intersect). However, such an implicit representation is
not a generic graph representation because by each representation only a small
number of graphs can be described (e.g. most graphs are not interval graphs).
Hence, for different graph classes different implicit representations and different
algorithms are needed.

Another approach is to use a generic graph representation (i.e. a represen-
tation which can represent all graphs) which requires less space for sufficiently
structured graphs than for unstructured graphs. One idea is to store the char-
acteristic function of the vertex and the edge set by a generic data structure for
boolean functions. A data structure which is well suited for this task is the Or-
dered Binary Decision Diagram (OBDD), because for all important operations
on boolean functions (e.g. the synthesis operation, substitution by constants or
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satisfiability test) efficient algorithms are known. Such OBDD operations allow
to efficiently convert any graph represented by e.g. an adjacency list or an adja-
cency matrix to a corresponding OBDD representation. Moreover, it has turned
out that several graph problems can be solved with a polylogarithmic number
of OBDD operations, if the input graphs are represented by OBDDs. Recently,
several OBDD algorithms for fundamental graph problems have been devised, as
e.g. for network flow maximization [8, 15], topological sorting [19] or for finding
shortest paths in networks [16].

Since an OBDD representation is a generic representation of graphs, most
graphs cannot be represented in less space by OBDDs than by adjacency ma-
trices or adjacency lists. But one hopes (and we show in this paper) that for
sufficiently structured inputs as they may appear in practical applications, a
good compression can be achieved. Experimental studies have already shown
that in many practical relevant cases OBDD representations of graphs may be
advantageous. However, it has not yet been theoretically investigated for which
general graph classes this is the case. While it is obvious that very simply struc-
tured graphs as e.g. grid networks have a small OBDD representation, this is
not clear for more complicated graph classes. In this paper, we start filling this
gap by investigating several important graph classes with respect to their space
requirements in an OBDD representation.

In the following, let Bn denote the class of boolean functions f : {0, 1}n →
{0, 1}. OBDDs have been introduced by Bryant in 1986 [3] as a representation
type for boolean functions.

Definition 1. Let Xn = {x1, . . . , xn} be a set of boolean variables. A variable
ordering π on Xn is a bijection π : {1, . . . , n} → Xn, leading to the ordered list
π(1), . . . , π(n) of the variables. A π-OBDD on Xn for a variable ordering π is a
directed acyclic graph with one root, two sinks labeled with 0 and 1, respectively,
and the following properties: Each inner node is labeled by a variable from Xn

and has two outgoing edges, one of them labeled by 0, the other by 1. If an edge
leads from a node labeled by xi to a node labeled by xj , then π−1(xi) < π−1(xj).

A π-OBDD is said to represent a boolean function f ∈ Bn, if for any a =
(a1, . . . , an) ∈ {0, 1}n, the path starting at the root and leading from any xi

node over the edge labeled by the value of ai, ends at a sink with label f(a).
The size of a π-OBDD G is the number of its nodes and is denoted by |G|. The
π-OBDD size of a boolean function f (π-OBDD(f)) is the size of the minimum
π-OBDD computing f . The OBDD size of a boolean function f (OBDD(f)) is
the size of the minimum π-OBDD computing f for some variable ordering π.

Let G = (V, E) be a graph. We can use an OBDD for representing the graph G
by letting it represent the characteristic function χE : E → {0, 1} of the edge set,
where χE(v1, v2) = 1 ⇔ {v1, v2} ∈ E. We denote the binary value represented by
the n bit string zn−1 . . . z0 ∈ {0, 1}n by |z| :=

∑n−1
i=0 zi2i. Conversely we denote

by [k]n, n ≥ �log (k + 1)�, the n bit string representing the integer k ≥ 0, i.e.
the string zn−1 . . . z0 ∈ {0, 1}n with k = |z|. In order to encode the vertices by
boolean variables, we use the convention that V = {[0]n, . . . , [N − 1]n}, where
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N ≥ 0 and n = �log N�. Thus, we can store V using n bits or by a π-OBDD for
the characteristic function χV of V , and the minimal π-OBDD for χV has a size
of O(n log n) = O(log N log log N) for all variable orderings π.

Definition 2. The π-OBDD size of a graph G = (V, E) (π-OBDD(G)) is the
size of the minimum π-OBDD computing χE for some labeling of the vertices.
Analogously, the OBDD size of G is the minimum of π-OBDD(G) for all variable
orderings π. The worst-case OBDD size of a graph class G is the maximum of
OBDD(G) over all G ∈ G.

Breitbart, Hunt III and Rosenkrantz have shown in [2] that any function
f ∈ Bn can be represented by a π-OBDD of size (2 + O(1)) 2n/n (for any variable
ordering π). Hence, the π-OBDD size of any graph with N vertices is bounded by
(4 + O(1)) N2/ logN , because n < 2 + 2 log N for appropriately chosen vertex
labels. In order to obtain a general bound which is better for not very dense
graphs, we may use the fact that the π-OBDD size of any function f ∈ Bn

is bounded by roughly n · |f−1(1)|. This yields the following straight forward
proposition.

Proposition 1. Let G = (V, E) be a graph with N := |V | and M := |E|. The
OBDD size of G is bounded above by

min
{
(4 + O(1))N2/ log N, 2M · (2 �log N� − �log M�) + 1

}
.

Note that if a graph G with N edges and M vertices is given by an adjacency
matrix or adjacency list, then the OBDD for G satisfying the size bound of
the above Proposition can be constructed in time O(M log N log2 M). Hence,
OBDDs are a truly generic graph representation.

Obviously, an OBDD B can be uniquely described by O (|B| (log |B| + log n))
bits. Consider a graph G with N vertices and M edges. The above proposition
shows that an OBDD representation for dense graphs needs at most O(N2)
bits and thus is at most a constant factor larger than the representation by
adjacency matrices. Since O (M log N(log M + log log N)) bits are sufficient to
store G an OBDD representation is more space efficient than an adjacency ma-
trix for not very dense graphs. An adjacency list representation of G needs
O ((N + M) log N) bits. However, an adjacency test may take linear time in the
worst case. Here, OBDDs are more efficient because adjacency can be tested
in O(log N) time (start at the root of the OBDD and traverse the graph ac-
cording to the input until the sink is found). Hence, the space requirements of
OBDDs are only little worse than that of adjacency lists and much better than
that of adjacency matrices for sparse graphs, while the adjacency test is less
efficient than that of a matrix representation but much better than that of a list
representation in the worst case.

But Proposition 1 covers only the worst case. In the following we will show
that several very natural and large graph classes have OBDD sizes which yield
a much better space behaviour than that of explicit representations. We start
in Sect. 2 with the investigation of several types of graph classes which do not
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contain many P4s, most prominently cographs. We show that the worst-case
OBDD size of these graphs is between Ω(N/ log N) and O(N log N). In Sect. 3
we investigate interval graphs. We show that the worst-case OBDD size of unit
interval graphs is between Ω(N/ log N) and O(N/

√
log N), while that of general

interval graphs is between Ω(N) and O(N3/2/ log3/4 N). Finally, in Sect. 4 we
try to find a natural graph class which is very hard to represent for OBDDs.
We show that the representation of some bipartite graphs requires OBDDs of
size Ω(N2/ log N). Hence, the OBDD representation of bipartite graphs is not
necessarily more space efficient than that of an adjacency matrix representation.

2 Graphs with Few Induced P4s

Hereinafter P4 denotes a chordless path with four vertices and three edges. Many
graphs with few induced P4s have common properties such as a unique (up to
isomorphism) tree representation. Starting from the tree representation devel-
oped by Lerchs [4] of the well-known class of cographs (graphs with no induced
P4), Jamison and Olariu have developed and studied tree representations for
various graph classes with few induced P4s such as P4-reducible graphs [9], P4-
extendible graphs [10] and P4-sparse graphs [11]. P4-reducible graphs contain no
vertex, that belongs to more than one induced P4, P4-extendible graphs contain
at most one additional vertex for each induced P4 p that induces a different
P4 together with three vertices from p and in P4-sparse graphs every set of five
vertices induces one P4 at most. In the following discussion we omit P4-reducible
graphs, because their class is the intersection of the classes of P4-extendible and
P4-sparse graphs.

All these graph classes have in common that they can be constructed from
single vertex graphs by graph operations which join several vertex disjoint graphs
together. Consider for example two graphs G1 = (V1, E1) and G2 = (V2, E2) on
two disjoint vertex sets. Then the union of G1 and G2 is G1∪G2 := (V1∪V2, E1∪
E2) and the join is G1 + G2 := (V1 ∪ V2, E1 ∪ E2 ∪ E′), where E′ contains all
edges {v1, v2} with v1 ∈ V1 and v2 ∈ V2. It is well-known that any cograph can
be obtained from single vertex graphs by a sequence of ∪ and + operations.

Now consider a set Ω of operations, each of them joining several vertex disjoint
graphs together. Further assume that a graph G can be constructed from single
vertex graphs by using only the joining operations in Ω. Then G has a natural
representation as a rooted tree T (G) which can be constructed recursively as
follows: If G is a single vertex graph, consisting of the vertex v, then T (G) = v.
If G = ω(G1, . . . , Gk) for an operation ω ∈ Ω, then the root of T (G) is a vertex
labeled with ω whose children are the roots of the trees T (G1), . . . , T (Gk) (note
that the order of the children may be important).

In order to obtain upper bounds for the OBDD-size of graph classes which
have a tree representation, we devise an algorithm which has the following prop-
erty: In each step of the algorithm a variable is queried (in the order determined
by the variable ordering π). In the ith step the variable π(i) is queried and after
the query the algorithm stores a state value qi which depends only on the previ-
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ous stored state value and the result of the variable query. Each possible stored
state value qi of the algorithm corresponds to an OBDD node labeled with the
variable π(i+1) and thus the sum of the number of possible state values qi over
all 0 ≤ i ≤ n is the number of OBDD nodes (q0 is the unique starting state
corresponding to the root of the OBDD and the two possible final state values
qn+1 ∈ {0, 1} corresponding to the sinks of the OBDD). It is obvious how to
construct the π-OBDD corresponding to such an algorithm.

A tree representation of a graph is helpful if we want to devise an algorithm
deciding adjacency which can then be turned into an OBDD for the graph. E.g.
if G is a cograph, then two vertices v1 and v2 are adjacent if and only if the least
common ancestor of v1 and v2 in T (G), lca(v1, v2), is labeled with +. Hence,
for the algorithm it suffices to determine the lca of v1 and v2. For P4-extendible
graphs and P4-sparse graphs adjacency is not so simple to determine. However,
we develop a new tree representation for these graphs such that adjacency of
two vertices can be determined by computing the lca of two vertices and some
additional information.

Recall that V = {[0]n , . . . , [N − 1]n}. We label the vertices for our represen-
tation in such a way that |v1| is less than |v2| for two vertices v1, v2, if a preorder
traversal of T (G) traverses the leaf corresponding to v1 first. Furthermore, for
two vertices v1, v2 of a graph G = (V, E) with a tree representation T (G) let
δd (v1, v2) be ||v1| − |v2||, if ||v1| − |v2|| ≤ d and 0 otherwise. Let c : V → IN be
the function with c(v) = i if the vertex v is the ith child of its parent in T (G).

Lemma 1. Let G be the class of either cographs, P4-sparse graphs or P4-
extendible graphs. Then there is a tree representation T (G) for all graphs
G = (V, E) ∈ G such that for any two vertices v1, v2 ∈ V the characteristic
function χE (v1, v2) is uniquely determined by

(a) lca (v1, v2), in the case of cographs,
(b) lca (v1, v2), δ1 (v1, v2), |v1| mod 2, |v2| mod 2 and the information whether

|v1| < |v2|, in the case of P4-sparse graphs,
(c) lca (v1, v2), δ4 (v1, v2), c (v1), |v1| mod 2, |v2| mod 2 and the information

whether |v1| < |v2|, in the case of P4-extendible graphs.

The proof of part (a) follows right away from the definition of cographs. The
proofs of parts (b) and (c) are omitted due to space restrictions and can be found
in the full version of the paper.

The following algorithm determines the lowest common ancestor (lca) of two
nodes in a tree representation. The idea of the algorithm is to search the lca
starting in the leaf corresponding to v1 and ascending successively while reading
the vertex coding of v2.

Algorithm 1. The algorithm is defined for a fixed tree T with N leaves labeled
with values from {0, 1}n, n = �log N�, in such a way that if v0, . . . , vN−1 are the
leaves found in a preorder traversal then |vi| = i. The inputs of the algorithm are
x, y ∈ {0, 1}n and the output is the lca of x and y if x and y are both leaves in
the tree. If either x or y is not a leaf of T , then the output is −∞. The algorithm
queries all input variables once in the order xn−1, . . . , x0, yn−1, . . . , y0 and after
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each query two values b and c are stored. The value of c is one of the relations
“<”, “>” or “=” and b is a node in T .

We describe two invariants which are true after each step of the algorithm
unless the algorithm terminated. Consider a situation in which all variables up
to yi, 0 ≤ i ≤ n − 1, have been queried and the algorithm has not terminated.
The first invariant is that c is the relation between |xn−1 . . . xi| and |yn−1 . . . yi|
(e.g., if c=“<”, then |xn−1 . . . xi| < |yn−1 . . . yi|). Now assume c = “<” and let
y0

i be the leaf yn−1 . . . yi0 . . . 0. The second invariant is that b = lca(x, y0
i ) and

y1
i = yn−1 . . . yi1 . . . 1 is not in the subtree rooted at b. For the case c = “>”,

the invariant is analogous, but the roles of y0
i and y1

i are exchanged. In the case
c = “=”, we have b = x.

Note that if these invariants are true, then by knowing c and b, the value of
yn−1 . . . yi is uniquely determined. For c = “=” this is obvious. For c = “<”,
this follows because due to the enumeration of the leaves, in the right subtree
of the tree rooted at b, there can only be one leaf an−1 . . . ai0 . . . 0 such that
an−1 . . . ai1 . . . 1 is not in this subtree. The case c = “>” is analogous. Hence,
it suffices to describe an algorithm for which these invariants remain true after
each query of a y variable and which – under the assumption that the invariant
remains true – outputs the correct result.

Step 1: Store “=” in c. Query all x variables and let b be the corresponding
leaf of T . If there is no corresponding leaf: output −∞. Clearly, the invariants
remain true after this step unless the algorithm terminates.
Step 2: Query the next y variable, say yi. Since the invariants were true before
querying yi, by knowing b and c we now know yn−1 . . . yi. If c = “=” and yi = bi,
we can proceed with querying the next variable because the invariants remain
true. Hence, we continue with Step 2, again. If c = “=” and yi = bi, then we
have found the most significant bit in which x and y differ. We can change the
value of c to “<” or “>” such that it reflects the relation between |xn−1 . . . xi|
and |yn−1 . . . yi|. Hence, if we reach this point in any case c = “=”. Let b′ be
lca(b, y0

i ) (= lca(x, y0
i )) in the case c = “<” and b′ = lca(b, y1

i ) (= lca(x, y1
i )) in

the case c = “>”. Since we know yn−1 . . . yi and b, b′ is uniquely determined, if
it exists. However, it may happen that such a b′ does not exist. In this case y
cannot be a leaf of the tree and thus we output −∞. Assume c = “<” (the case
c = “>” is analogous with the roles of y1

i and y0
i exchanged). If the leaf y1

i is
not in the subtree rooted at b′, then we replace b with b′. Clearly, the invariants
are now true again and we proceed with the next y variable by going to Step 2.
If on the other hand, y1

i is in the subtree rooted at b′, then obviously all leaves
yn−1 . . . yiai−1 . . . a0 for ai−1 . . . a0 ∈ {0, 1}i are in this subtree. Hence, b′ is the
lca of x and y and we output b′.

Note that after querying the last y variable, the algorithm terminates in Step 2,
because either an appropriate b′ is not found (and the algorithm outputs −∞)
or the found b′ is in fact the lca of x and y.

Theorem 1. The OBDD size of a cograph with N vertices is at most 3N
�log N�.
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Proof. Let V = {v0, . . . , vN−1} and let G = (V, E) be a cograph. Let T (G) be
the tree representation of G as described before Lemma 1. We have shown above
that Algorithm 1 computes for two vertices u, v ∈ V (given by n-bit strings
x, y) the corresponding lca(u, v) in T (G) by querying each x- and y-variable
at most once in the order xn−1, . . . , x0, yn−1, . . . , y0. According to Lemma 1 the
adjacency of u and v in G is uniquely determined by their lca, and thus the algo-
rithm describes a π-OBDD for the variable ordering π with (π(1), . . . , π(2n)) =
(xn−1, . . . , x0, yn−1, . . . , y0). In the following we bound the number of possible
states the algorithm has to store after each variable query.

For Step 1 it suffices to store xn−1 . . . xi once theses variables have been
queried. If it turns out that |xn−1 . . . xi0 . . . 0| is at least N , the algorithm outputs
−∞. Then the π-OBDD has at most as many nodes as a complete binary tree
in the first n levels and the (n + 1)th level has at most N nodes. Hence, there
are at most 2n − 1 < 2N − 1 x nodes and at most N yn−1 nodes

Now consider Step 2. As long as b is a leaf, the value of c is “=” and once b
is no leaf anymore, the value of c is either “<” or “>”. Hence, by knowing c, we
can conclude on whether b is a leaf or not. Since there are N leaves and at most
N − 1 inner nodes, 3N states suffice for storing c and b. Therefore, there are at
most 3N yi nodes for 0 ≤ i < n − 1. To conclude, the total number of y nodes
of the OBDD is bounded by N + (n − 1) · 3N = 3N · �log N� − 2N. ��

In order to obtain OBDDs for P4-sparse and P4-extendible graphs, our Algo-
rithm 1 has to be modified in such a way that it computes in addition to the
lca of two leaves the other information which is needed in order to decide adja-
cency between the vertices v1 and v2, as described in Lemma 1. The necessary
modifications of the algorithm can be found in the full version of the paper.

Theorem 2. The OBDD size of P4-sparse graphs and P4-extendible graphs is
O(N log N).

We contrast the above results by a lower bound for cographs, which also
applies to its superclasses of P4-reducible, P4-extendible and P4-sparse graphs.

Theorem 3. The worst-case OBDD size of cographs is at least 1.832·N/ logN−
O(1).

We prove this with counting arguments. Let in the following NG(N) denote
the number of graphs with N vertices in a graph class G. Note that unless stated
otherwise the graphs in the considered graph classes G are unlabeled.

Proposition 2. Consider functions sN : IN → IR for N ∈ IN and
let G be a graph class that allows the addition of isolated vertices. If
limN→∞(2sN log sN+sN log log N+O(sN) · (NG(N))−1) < 1, then for large enough
N there are graphs with N or more vertices in G such that the OBDD size of
these graphs is more than sN .

Proof. Wegener has shown in [18] that OBDDs of size s can compute at most
sns (s + 1)2s /s! = 2s log s+s log n+O(s) different functions f ∈ Bn. It is easy to see
that if the limit in the claim is less than 1, then for large enough N there are
more graphs than OBDDs for functions in n = 2 · �log N� variables. ��
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An asymptotic formula due to Finch [6] states that the number of graphs in the
class of cographs C satisfies NC (N) ∼ λκNN− 3

2 for the constants λ = 0.4127 . . .
and κ = 3.5608 . . .. Since κN = 2N ·1.8322..., Theorem 3 follows directly from
Proposition 2.

3 Interval Graphs

An interval graph is defined by a set of closed intervals I ⊆ IR2, each of them
corresponding to a vertex in the graph. Two vertices are adjacent if and only if
the corresponding two intervals intersect.

We first analyse unit interval graphs, i.e. interval graphs where the underlying
intervals have unit length. Therefore, we can identify the intervals with just one
endpoint. We assume w.l.o.g. that no two intervals have the same endpoints and
label the vertices in such way that if the interval represented by a vertex v1
starts further left than the interval represented by a vertex v2, then |v1| < |v2|.

Theorem 4. The OBDD size of unit interval graphs with N vertices is bounded
above by O(N/

√
log N).

In order to proof this result we use the characterization of minimal OBDDs
due to Sieling and Wegener [17]: The minimal π-OBDD representing a function f
on x1, . . . , xn has as many nodes labeled with the variable xi, 1 ≤ i ≤ n, as there
are different subfunctions of f essentially depending on xi when all variables xj

with π−1(xj) < π−1(xi) are set to constants (a subfunction essentially depends
on a variable xi, if the substitution xi = 0 leads to a different subfunction than
the substitution xi = 1).

Proof (of Theorem 4). Let G = (V, E) be a unit interval graph labeled as de-
scribed above. For x ∈ {0, 1}n let the interval corresponding to the vertex x
be denoted by I(x) = [a, a + 1], where a ∈ IR. Let π be the variable ordering
where (π(1), . . . , π(2n)) = (xn−1, yn−1, . . . , x0, y0). Further, let f := χE and sk,�,
1 ≤ k < n, � ∈ {k−1, k}, be the number of non-constant subfunctions f|α,β of f ,
where α is an assignment to the variables xn−1, . . . , xn−k and β is an assignment
to the variables yn−1, . . . , yn−�. Then sk,k is an upper bound on the number of
xk nodes and sk,k−1 is an upper bound on the number of yk nodes as stated in
Sect 1. For the sake of simplicity we assume k = � using the simple observation
that sk,k+1 is at most 2sk,k and denote sk,k by sk.

Since there are 22m

boolean functions in m variables, we have

sk ≤ 222n−2k

. (1)

If k is small, we need a better bound. We derive an upper bound for the num-
ber of non-constant subfunctions f|α,β, where α and β are assignments to the
variables xn . . . xn−k and yn . . . yn−k, respectively, and |α| ≤ |β|. Then sk is at
most twice the result. Let (α1, β1), . . . , (αp, βp) be different pairs of assignments
to the x and y variables such that |αi| ≤ |βi| and f|αi,βi

∈ {0, 1} (i.e. these
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subfunctions are not constant) for all 1 ≤ i ≤ p. Furthermore, assume that
(|α1|, |β1|) , . . . , (|αp|, |βp|) are ordered lexicographically. We prove below that

∀ 1 ≤ i ≤ p : |βi| ≤ |βi+1| . (2)

Using the fact that (|α1|, |β1|), . . . , (|αp|, |βp|) are ordered lexicographically, it
is easy to see that the number of these pairs, p, is bounded by |αp| + |βp| + 1.
Hence, we obtain p ≤ 2k+1 − 1 and thus sk ≤ 2k+2 − 2. Using the upper bound
of (1) it follows that sk ≤ min{2k+2 − 2, 222n−2k}. We plug this inequality into
the upper bound 2 +

∑n−1
k=0 (sk + 2sk) on the OBDD size of G, and using simple

algebra obtain an upper bound of O(N/
√

log N).
It remains to prove the claim (2). If |αi| = |αi+1|, this follows right away from

the lexicographical ordering of the pairs (|αj |, |βj |). Hence, assume |αi| < |αi+1|.
If (2) is not true, i.e. |βi+1| < |βi|, then we have |αi| < |αi+1| ≤ |βi+1| < |βi|
(recall that we only count the pairs (αj , βj) where |αj | ≤ |βj |). Since f|αi,βi

is
not the constant 0-function, there is an assignment c to the remaining x variables
xn−k−1, . . . , x0 and an assignment d to the remaining y variables yn−k−1, . . . , y0
such that f|αi,βi

(c, d) = 1. Hence, χE(αic, βid) = 1 and the intervals I(αic)
and I(βid) intersect. Now consider additional arbitrary assignments c′ to the
remaining x variables and d′ to the remaining y variables. Obviously, then |αic| <
|αi+1c

′| < |βid| and |αic| < |βi+1d
′| < |βid|. Hence, the intervals I(αi+1c

′)
and I(βi+1d

′) are neither right of I(βid) nor left of I(αic). But since the latter
intervals intersect, obviously I(αi+1c

′) and I(βi+1d
′) intersect, too. Because this

is true for all c′ and d′ we obtain that f|αi+1,βi+1 = 1, which contradicts the
assumption that this subfunction is not constant. ��

Using a similar idea yields an upper bound for general interval graphs stated
in the following theorem (the proof can be found in the full version of the paper).

Theorem 5. Interval graphs with N vertices have OBDDs of size
O(N3/2/ log3/4 N).

Finch [5] provided an asymptotic formula for the size of the class of unit
interval graphs U , NU (N) ∼ 1

8eκ
√

π
4N

N
3
2
, and Gavoille and Paul [7] obtained

an asymptotic formula for the size of the class of general interval graphs I:
NI (N) ≥ 2N log N−O(N). Thus, the following lower bounds follow directly from
Proposition 2.

Theorem 6. For all ε > 0, the worst-case OBDD size of unit interval graphs
with N vertices is at least (2−ε)N/ logN −O(1) and the worst-case OBDD size
of interval graphs with N vertices is at least (1 − ε)N − O(1).

4 Bipartite Graphs

The goal of this section is to show for a specific graph class that a representa-
tion by OBDDs is not necessarily more space efficient than a representation by
adjacency matrices.
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Theorem 7. For all ε > 0, the worst-case OBDD size of bipartite graphs with
N vertices is at least (1

8 − ε)N2/ logN − O(1).

Proof. We consider the class of labeled 2-coloured graphs, where different colour-
ings of 2-colourable (bipartite) graphs lead to different graphs. The asymptotic
relation between the size of the class of labeled 2-coloured graphs C� and the
class of labeled 2-colourable graphs B� has been proven by Prömel and Steger in
[13] to be as follows: limN→∞ NC�

(N) /NB�
(N) = 2. Therefore, a random bipar-

tite graphs has almost surely only one 2-colouring (and the inverse 2-colouring).
Asymptotics for the number of labeled 2-coloured graphs were given by Wright

[20, 14] as NC�
(N) ∼ κ2

N2
4 2N

√( 2
N ln 2

)
where κ = 1±0.0000013097 . . . is a con-

stant. According to Prömel [12] the relation between the number of labeled and
unlabeled bipartite graphs is bounded by N !. Combining all these results leads
to the following relation for the size of the class of unlabeled bipartite graphs

B: limN→∞ 2(N !)NB (N) /2
N2
4 2N

√( 2
N ln 2

)
≤ 1. The lower bound now follows

directly from Proposition 2. ��
The disadvantage of proving lower bounds with counting arguments is that

they only show the existence of graphs which are hard to represent. However,
such graphs might for large N never appear in applications because e.g. they
are not computable in polynomial time. A statement showing how to construct
such a graph or at least telling us that such a graph is computable in polynomial
time has much more relevance. In order to achieve such results, we show how
any boolean function can be represented by a bipartite graph. This way, we can
conclude from known lower bounds for the OBDD size of boolean function on
lower bounds for the OBDD size of the corresponding bipartite graphs.

Definition 3. Let f ∈ Bn, n even, be a boolean function. The bipartite graph
Gf = (V1∪V2, E) is given by the vertex sets V1 := {v1 ∈ {0, 1} n

2
∣
∣ |v1| < 2

n
2 } and

V2 := {v2 ∈ {0, 1} n
2 +1 | 2 n

2 ≤ |v2| < 2
n
2 +1} and the edge set E := {{v1, v2}|v1 ∈

V1, v2 ∈ V2, f(v1[|v2| − 2
n
2 ]n

2
) = 1}.

Theorem 8. For each function f ∈ Bn there is a bipartite graph Gf = (V, E)
such that the OBDD size of χE is not smaller than the OBDD size of f .

Proof. Let us assume that an OBDD B with smaller size exists for χE . Let{
x0, . . . , xn

2
, y0, . . . , yn

2

}
be the set of variables of χE , then

f
(
x1, . . . , xn

2
, y1, . . . , yn

2

)
= χE

(
0, x1, . . . , xn

2
, 1, y1, . . . , yn

2

)

follows from Definition 3. We therefore can construct an OBDD for f from B by
redirecting all edges leading to a node labeled with x0 or y0 to the appropriate
0-successor or 1-successor of this node, respectively. We represent f with this
OBDD of smaller size, which is a contradiction. ��

Andreev, Baskakov, Clementi and Rolim [1] presented a boolean function
which is computable in polynomial time and has an OBDD size of 2n−O(log2 n).
According to the knowledge of the authors this is the best known lower bound
for the OBDD size of a function in P .
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Corollary 1. There is a bipartite graph Gf , f ∈ B2k, with N = 2k+1 vertices
which is computable in polynomial time and for which the OBDD size of χE is
at least N2/(log N)O(log log N).

Acknowledgment. The authors thank Ingo Wegener for helpful comments on
the paper.
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