
Time-Space Tradeoff Lower Bounds for Integer
Multiplication and Graphs of Arithmetic Functions

(Extended Abstract)

Martin Sauerhoff
∗

FB Informatik, LS 2, Univ. Dortmund, Germany

martin.sauerhoff@cs.uni-dortmund.de

Philipp Woelfel
FB Informatik, LS 2, Univ. Dortmund, Germany

philipp.woelfel@cs.uni-dortmund.de

ABSTRACT
We prove exponential size lower bounds for nondeterministic
and randomized read-k BPs as well as a time-space tradeoff
lower bound for unrestricted, deterministic multi-way BPs
computing the middle bit of integer multiplication. The
lower bound for randomized read-k BPs is superpolynomial
as long as the error probability is superpolynomially small.
For polynomially small error, we have a polynomial upper
bound on the size of approximating read-once BPs for this
function. The lower bounds follow from a more general re-
sult for the graphs of universal hash classes that is applicable
to the graphs of arithmetic functions such as integer multi-
plication, convolution, and finite field multiplication.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Branching Programs,
Random Access Machines; F.1.2 [Modes of Computa-
tion]: Nondeterminism, Probabilistic Computation; F.2.3
[Analysis of Algorithms and Problem Complexity]:
Tradeoffs between Complexity Measures

General Terms
Theory

Keywords
Integer multiplication, branching program, random access
machine, hash class, lower bound, time-space tradeoff.

1. INTRODUCTION
Branching programs (BPs) are the standard model for

nonuniform, sequential computation (see [21] for a thorough
introduction). We consider BPs for functions defined on
variables taking values in the domain D = {0, . . . , q − 1}.

∗Supported by DFG grant We 1066/9-2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

Definition 1. A (deterministic) q-way branching pro-
gram on the variable set X = {x1, . . . , xn} is a directed
acyclic graph with one source and two sinks. The sinks are
labeled by the constants 0 and 1, resp. Each interior node is
labeled by a variable from X, has q outgoing edges, and each
value from D is assigned to exactly one of these edges as a
label. The BP computes a function f : Dn → {0, 1} defined
on X as follows. For an input a ∈ Dn, f(a) is equal to
the label of the sink reached by the computation path for a,
which is the path from the source to a sink obtained by fol-
lowing the edge labeled by ai for nodes labeled by xi. The
size |G| of a BP G is the number of its nodes. The space is
the logarithm of |G| and the length (or time) is the maxi-
mum number of edges on a computation path.

We call a graph multi-way BP if it is a q-way BP for
some q. For q = 2, we obtain the usual model of boolean BPs.
Nondeterministic BPs and randomized BPs are defined in
the obvious way by introducing additional, unlabeled nodes
at which nondeterministic or randomized decisions, resp.,
are taken. An approximating BP for f with (two-sided) er-
ror ε is a deterministic BP computing an ε-approximation
of f , which is a function that differs from f on at most an
ε-fraction of the inputs.

It is well-known [11] that space S and time T RAMs with

an arbitrary instruction set can be simulated by size 2O(S)

and time T BPs. (Note that the space for a RAM whose
registers are able to hold values from D includes a factor
of log |D| for the width of the registers.) This explains the
importance of proving superpolynomial lower bounds on the
size of general BPs. So far, we still lack sufficiently powerful
methods for obtaining such bounds for functions in P or
NP. Nevertheless, considerable progress in the development
of proof methods has been made by the investigation of less
and less restricted BP models (see [21]).

In particular, there is an extensive amount of literature
on several variants of oblivious BPs and read-k BPs. A
BP is called oblivious, if the underlying graph of the BP is
leveled and the nodes in each level are all labeled by the
same variable or are all sinks. In a (syntactic) read-k BP,
each variable may occur at most k times on each path in the
graph. Note that in the latter model all paths have a length
of at most k times the input length.

A major step towards time-space tradeoff lower bounds
and towards the current proof methods has been the proof
of exponential size lower bounds for nondeterministic read-k
BPs due to Borodin, Razborov, and Smolensky [12]. In a se-

ries of recent breakthroughs, Beame, Jayram, and Saks [4],
Ajtai [2, 3], and Beame, Saks, Sun, and Vee [5] have even
managed to prove exponential size lower bounds for gen-
eral BPs that are only restricted in the length of their com-
putation paths. Some of the results in these papers are
strong enough to give time-space tradeoff lower bounds for
general BPs. The best tradeoffs are from [5] and are even
valid for randomized BPs with small two-sided error. They
are of the form T = Ω(n

�
log(n/S)/ log log(n/S)) for input

length n, space S, and time T in the case of boolean inputs
and of the form T = Ω(n log(n/S)) for input variables tak-
ing values in a domain of linear size in n. Moreover, Beame
and Vee [6] have obtained the even larger time lower bound
T = Ω(n log2 n) for space S ≤ n1−ε log |D| and a function
on a large domain D whose size is exponential in n.

So far, time-space tradeoff lower bounds for general BPs
could only be achieved for a quite limited class of functions.
For the boolean case, the only results are for quadratic
forms based on Hankel matrices [3, 5], while the results
for the large domain case are for the element distinctness
problem, the related Hamming closeness problem, and again
quadratic forms as well as tensor products [2, 4, 5, 6]. Apart
from proving results for the most general BP model pos-
sible, it is therefore also important to apply the existing
methods to a larger class of functions, preferably practically
important ones. This is the line of research followed in the
present paper.

It is natural that integer multiplication as one of the ba-
sic arithmetic functions has been in the focus of several
complexity theoretical investigations. Let MULn : {0, 1}n ×
{0, 1}n → {0, 1}2n denote the (binary) integer multiplica-
tion function that for the inputs x, y ∈ {0, 1}n computes
the binary representation z ∈ {0, 1}2n of the product of
the integers represented by x and y. The boolean function
MULi,n represents the output bit i of integer multiplication,
i. e., MULi,n : {0, 1}n ×{0, 1}n → {0, 1} is the function that
maps the inputs x, y to zi if MULn(x, y) = (z2n−1, . . . , z0).
Note that with respect to read-once projections, the function
MULn−1,n, called the middle bit of integer multiplication,
is the hardest one for space-bounded models of computa-
tion [13, 21].

The branching program complexity of the middle bit
of integer multiplication has been first investigated by
Bryant [13] who has obtained an exponential lower bound
for oblivious read-once BPs, better known as OBDDs (or-
dered binary decision diagrams). Gergov [17] has extended
this to oblivious BPs of linear length. Ablayev and Karpin-
ski [1] have applied Gergov’s reduction to deduce that also
randomized OBDDs require exponential size and they have
shown that, in contrast to this, the graph of integer multipli-
cation has randomized OBDDs of polynomial size. In 1995,
Ponzio [20] has proved that even unrestricted read-once BPs

for MULn−1,n require size 2Ω(
√

n).
The fact that integer multiplication defines a universal

hash class [15, 16, 23], called multiplicative hash class, has
been used in [24] to derive an improved lower bound on the
size of OBDDs for MULn−1,n, and in [9], Ponzio’s lower
bound has been improved to the strongly exponential lower
bound 2Ω(n) for the size of unrestricted read-once BPs. Since
then, exponential lower bounds have been proved only for
slightly more general read-once BP models that allow lim-
ited nondeterminism and for models where some but not all
variables may be tested multiple times [7, 8, 10, 25].

However, even the nondeterministic read-once case re-
mained open, and the lower bound methods did not seem to
be strong enough for BPs that allow all variables to be read
more than once. Moreover, while most of the more recent
results are based on the observation that integer multiplica-
tion defines a universal hash class, nothing could be proved
for single output bit functions belonging to other universal
hash classes. This is not surprising, because for certain uni-
versal hash classes (using, e. g., convolution) it is possible
to design even linear-size read-once BPs that compute an
arbitrary output bit of the functions from this class. Here
we apply universal hashing in a different way.

In Section 2.1 we define two properties of universal hash
classes, called linear c-universality and well-distributedness.
These are natural properties that important hash classes
like those based on integer multiplication, convolution, or
finite field multiplication enjoy. Then we prove that com-
puting the graph of hash functions from linearly c-universal
hash classes is hard for nondeterministic read-k BPs and for
length-restricted q-way BPs, where q is large enough. Show-
ing that the multiplicative hash class has these additional
properties, we obtain that for these two BP models it is
hard to verify whether the output bits n − m, . . . , n − 1 of
integer multiplication have a fixed value, e. g. are all 1. This
improves upon an earlier result in [18] saying that the verifi-
cation of some carefully chosen, non-consecutive output bits
requires exponential size for nondeterministic read-k BPs.
In contrast to [18], our result allows us to construct a re-
duction to the middle bit of integer multiplication, which
then yields exponential lower bounds on the size of nonde-
terministic read-k BPs and length-restricted q-way BPs for
this function. Finally, using the result about the graph of
universal hash classes, also hardness results for the graph of
other arithmetic functions, i. e., convolution and finite field
arithmetic, follow.

In the following, we state our main theorems about in-
teger multiplication. The results about the graph of hash
classes and its applications to convolution and finite field
multiplication are stated in Section 2.2.

In addition to MULn−1,n, we consider the extension
MULq

n−1,n of this function to the q-ary case for q a power
of 2. For x, y ∈ {0, . . . , q − 1}n, let MULq

n−1,n(x, y) = 1 if
zn−1 ≥ q/2 for the q-ary representation z = (z2n−1, . . . , z0) ∈
{0, . . . , q − 1}2n of the product of the numbers represented
by x and y, and MULq

n−1,n(x, y) = 0 otherwise. Note that
since q is a power of 2, MULq

n−1,n is equal to the middle bit
of binary integer multiplication for (n log q)-bit numbers.

Theorem 1.

1. There is a constant γ > 0 such that for any k ≤ γ log n,
each nondeterministic read-k q-way BP for MULq

n−1,n

has size 2Ω(n log q · k−23−4k). In particular, for q = 2,
this bound applies to boolean BPs and MULn−1,n.

2. For any q = nO(1) ≥ 2120 there is a constant γ′ > 0
such that each q-way BP for MULq

n−1,n of length kn ≤

γ′n log q has size 2Ω(n log q · k−23−6k).

The second part implies the time-space tradeoff lower
bound T = Ω(n log((n log q)/S)) for space S and time T on

RAMs with (log q)-bit registers for any q = nΘ(1). In par-
ticular, for space S = (n log q)1−δ for some constant δ > 0,
the time is T = Ω(n log n).

For read-k BPs, we also get a lower bound in the random-
ized case. The bound is superpolynomially large as long as
the error probability is superpolynomially small.

Theorem 2. Let ε = ε(n) be a non-increasing function

in n such that ε ≥ 2−n log q · 3−2k

. There is a constant
γ > 0 such that for any k ≤ γ log n, each randomized
read-k q-way BP for MULq

n−1,n with error ε requires size

2Ω(log(1/ε) · k−23−2k
− log q).

Finally, complementing this result, we prove that if we are
content with a deterministic BP that may err with polyno-
mially small probability on inputs chosen uniformly at ran-
dom, i. e., with an approximating BP, then MULq

n−1,n and
its boolean variant MULn−1,n can be represented in small
size even by read-once BPs.

Theorem 3. The function MULq
n−1,n can be ap-

proximated with error ε by read-k q-way BPs of size

2O((log(1/ε) + log n)/k + log q).

We remark that although the case q = 2` is most natu-
ral, analogous results can be obtained for arbitrary prime
powers q.

2. LOWER BOUNDS

2.1 Universal Hash Classes
Let U and R be two finite sets with |U | ≤ |R|, called

universe and range, resp. We call a family H of functions
U → R hash class. The functions in H are called hash
functions and the elements in the universe are called keys.
We say that two keys x 6= x′ collide under a hash func-
tion h ∈ H if h(x) = h(x′). Carter and Wegman [14, 22]
have introduced the following definitions. A hash class H
is called universal, if any two distinct keys collide under a
randomly chosen hash function from H with a probability of
at most 1/|R|. It is called strongly universal, if for any two
keys x 6= x′ and a randomly chosen h ∈ H the hash values
h(x) and h(x′) are independently and uniformly distributed.
Since then, many generalizations and modifications of the
original definitions have been considered. An example are
c-universal hash classes, where the collision probability of
two keys is bounded by c/|R| instead of 1/|R|.

In conjunction with branching program complexity,
strongly universal hash classes have been considered by
Mansour, Nisan, and Tiwari [19]. Let H be a hash class
with universe U = {0, 1}n and range R = {0, 1}m. The
function fH takes a string describing a hash function h ∈ H
and a key x ∈ U as input and computes the m-bit string
h(x). An extended variant of the usual BP model, called
multi-output BP here, allows to produce output bits at
edges traversed during the computation (see, e. g., [11]).
A multi-output BP can be used to compute the function
fH. For strongly universal hash families H, a time-space
tradeoff lower bound of TS = Ω(mn) for multi-output BPs
representing fH has been shown in [19]. Note that the
hash classes that are called universal in [19] are strongly
universal according to our definition.

Clearly, it is not easier to compute multiple output bits
of a function than to verify a given function value. In this
paper, we are interested in the complexity of single output
bit functions and thus consider the graph of hash classes.

Definition 2. Let H be a hash class with universe U and
range R, where the elements from H, U , and R can be en-
coded by vectors over D = {0, . . . , q − 1}. We define the
graph of H, denoted by GRAPHH, for x ∈ U , y ∈ R,
and h ∈ H by GRAPHH(x, y, h) = 1 if h(x) = y and
GRAPHH(x, y, h) = 0 otherwise. For fixed y ∈ R, we let
GRAPHH,y(x, h) = GRAPHH(x, y, h).

The inputs for GRAPHH are vectors over D encoding
x, y, and h. We will make the encoding precise later on.
We show hardness results for the graph of c-universal hash
classes that fulfill two additional properties.

Definition 3. Let (U, +) be an abelian group. A hash
class H with universe U and range R is called linearly c-
universal, if for any two distinct keys x, x′ and a randomly
chosen hash function h ∈ H,

Prob � ∃z ∈ U : h(x + z) = h(x′ + z) � ≤ c/|R|.

A linearly 1-universal hash class is called linearly universal.
A hash class is called well-distributed, if for any fixed h ∈ H
the hash value h(x) of a randomly chosen x ∈ U is uniformly
distributed over the range.

At the first glance, linear c-universality seems to be much
harder to achieve than only c-universality. In the following
we show, though, that several well-known c-universal hash
classes are in fact linearly c-universal. The following obser-
vation is helpful.

Remark 1. A hash class with universe (U,+) consisting
entirely of homomorphisms is c-universal if and only if it is
linearly c-universal.

For a vector v = (vN−1, . . . , v0), let [v]ji denote the vector
(vj , . . . , vi). We consider the following hash classes.

The Finite Field Class. Let q be a prime power and let � q =
{0, . . . , q − 1} be the finite field of cardinality q and U = � n

q

and R = � m
q be extension fields of � q . The finite field class is

the family F = Fq,n,m,i, 0 ≤ i ≤ n−m, which consists of the
functions fa : U → R, x 7→ [a · x] i+m−1

i , with a ∈ � n
q − {0}.

It is well known that the hash class F ∪ {f0} is a universal
hash class. Hence, F is also universal, since all pairs of keys
collide under f0. Since all its functions are homomorphisms,
it is even linearly universal. (Note that the mapping x 7→
[x]ji is a homomorphism.) If a 6= 0, then a·x and [a·x] i+m−1

i

are uniformly distributed over U and R, resp. (for randomly
chosen x ∈ U). Hence, F is well-distributed.

The Convolution Class. Let q be a prime power and
let U = � n

q , R = � m
q be the groups with component-

wise addition in � q . Let x = (xn−1, . . . , x0) ∈ � n
q and

y = (yn′−1, . . . , y0) ∈ � n′

q . Assuming xj = 0 or yi−j = 0 for
j ≥ n or i−j ≥ n′, resp., the convolution of x and y, written

x ◦ y, is the string z = (zn+n′−2, . . . , z0) ∈ � n+n′−1, where

zi = � i
j=0 xjyi−j . (The multiplications and additions are in

� q .) It has been shown in [19] that for q = 2 the mappings
U → R, x 7→ [a ◦ x] n+m−2

n−1 + b with a ∈ � n+m−1
q and b ∈ � m

q

define a strongly universal hash class, and this is well known
to be true also for all other prime powers q. By the proof
in [19] it is easy to see that the hash class remains universal
(but not strongly universal), if one omits the addition of
the parameter b. While the resulting class is in fact linearly
universal because all its functions are homomorphisms, it is
not well-distributed, though.

Therefore, we use only a subset of the functions by short-
ening the parameter a in such a way that it has the same
length as the keys and by fixing its least significant digit
to 1. The convolution class Cq,n,m consists of all functions
ga : U → R, x 7→ [a ◦ x]n−1

n−m, where a = (an−1, . . . , a1, 1) ∈
� n

q . By similar arguments as in [19], it can be seen that
Cq,n,m is universal. Since all its functions are homomor-
phisms, Cq,n,m is even linearly universal.

It is convenient to identify each b = (bn−1, . . . , b0) ∈ � n
q

with the polynomial � n−1
i=0 biX

i in � q [X]. Then the oper-

ation � defined by a � b = [a ◦ b] n−1
0 corresponds to the

polynomial multiplication modulo Xn and thus � � n
q ,� � is a

monoid. It is easy to see that each a = (an−1, . . . , a1, 1) is
an invertible element of the monoid which implies directly
that x�a takes each value in � n

q exactly once. Hence, Cq,n,m

is well-distributed.

The Multiplicative Class. For a positive integer N ,�
N denotes the (additive) group {0, . . . , N − 1} mod-

ulo N . Let q be a power of the prime p. The fam-
ily Mq,n,m consists of all hash functions fa :

�
qn →�

qm, x 7→ � ((a · x) mod qn)/qn−m � , where a ∈
� ′

qn =
{ip + 1 | 0 ≤ i < qn/p}. It has been proved in [16] that
M2,n,m is 2-universal. A generalization of the proof shows
that Mq,n,m is also 2-universal if p is an arbitrary prime (see
[23]). Following these proofs, it is easy to see that Mq,n,m

is in fact linearly 2-universal and even well-distributed.

We summarize the results about the hash classes in the
following theorem

Theorem 4. The hash classes Fq,n,m,i and Cq,n,m are
linearly universal, Mq,n,m is linearly 2-universal, and all
these hash classes are well-distributed.

There may be other known universal hash classes for which it
can be shown that they are in fact linearly universal. Never-
theless the three classes suggested here are of prime interest
for complexity theoretical investigations.

2.2 The Graphs of Arithmetic Functions
Let q be a prime power and D = {0, . . . , q − 1}. Let U be

one of the groups (� n
q , +) or (

�
qn, +). Define the function

val : Dn → U for x ∈ Dn by val(x) = x if U = (� n
q , +) and

val(x) = � n−1
i=0 xiq

i if U = (
�

qn, +).
We consider the function GRAPHH from the last section

and make the encoding of the inputs over D more explicit.
Let ` = � logq |H| � . For x ∈ Dn, y ∈ Dm, and z ∈ D`, let
GRAPHH(x, y, z) = 1 if z is the code of a hash function
hz ∈ H and hz(val(x)) = val(y) and let GRAPHH(x, y, z) =
0 otherwise.

The following two generic lower bounds for the graphs of
hash classes allow us to obtain our main results for integer
multiplication and the additional results for the graphs of
convolution and finite field multiplication.

Theorem 5. Let H be a linearly c-universal hash class.
Let k be a positive integer with 64k23k+1 ≤ n.

1. Let 644k23k+1 ≤ m ≤ n/3k. Then each nonde-
terministic read-k q-way BP for GRAPHH has size

2Ω((m log q−6 log c) · k−23−k).

2. Let m = � n/3k � ≥ 60. Then there is a constant

λ > 1/100 such that for all q ≥ 2120, each q-way
BP G of length kn ≤ λn log q for GRAPHH has size

2Ω((m log q − 12 log c) · k−23−k).

Theorem 6. Let H be a linearly c-universal, well-dis-
tributed hash class. Let k be a positive integer with
64k23k+1 ≤ n. Let ε > 0 be such that logq(1/16ε) ≥ m + 1.
Let y ∈ Dm be arbitrarily chosen.

1. Let 644k23k+1 ≤ m ≤ n/3k. Then each nondetermin-
istic read-k q-way BP for GRAPHH,y and each read-k
BP approximating GRAPHH,y with error ε has size

2Ω((m log q−6 log c) · k−23−k).

2. Let m = � n/3k � ≥ 60. Then there is a constant

λ > 1/100 such that for all q ≥ 2120, each q-way BP G
of length kn ≤ λn log q computing GRAPHH,y has size

2Ω((m log q − 12 log c) · k−23−k).

The proofs of these theorems are presented in Section 3.
We now consider the families Cq,n,m, Fq,n,m,i, and Mq,n,m

from Section 2.1. Since these families are all linearly c-
universal for constant c and well-distributed, Theorems 5
and 6 yield hardness results for the verification of the un-
derlying arithmetic functions.

Let CONV
[i...j]
n , FMUL

[i...j]
n , and MUL

[i...j]
n be the func-

tions mapping two n-digit strings to the output digits at the
positions i, . . . , j of the convolution, finite field product, or
integer product, resp. More precisely, for x, y ∈ Dn and val

the identity over � n
q , CONV

[i...j]
n = [val(x) ◦ val(y)]ji. The

functions FMUL
[i...j]
n and MUL

[i...j]
n are defined analogously.

For any function f : Dn → Dm, let GRAPHf,y : Dn →
{0, 1} map the input x to 1 if f(x) = 1 and to 0, other-
wise.

Corollary 1. Let k be a positive integer such that
64k23k+1 ≤ n. Let f be any of the functions

FMUL
[i...i+m−1]
n , 0 ≤ i ≤ n − m, CONV

[n−m...n−1]
n , or

MUL
[n−m...n−1]
n and let y ∈ Dm be arbitrarily fixed.

1. Suppose that 644k23k+1 ≤ m ≤ n/3k and that ε > 0
is such that logq(1/16ε) ≥ m + 1. Then each nonde-
terministic read-k q-way BP and each approximating
read-k q-way BP with error ε for GRAPHf,y has a size

of 2Ω(m log q · k−23−k).

2. Let m = � n/3k � ≥ 60 and q ≥ 2120. Then each general
q-way BP of length kn ≤ (n log q)/100 for GRAPHf,y

has a size of 2Ω(m log q · k−23−k).

Proof. We prove the corollary for f = MULn−m...n−1
n .

The results for the other two functions follow with analogous
arguments. Assume the existence of a read-k q-way BP G
of length ` and size s that computes GRAPHf,y with error
ε. The inputs for the BP are the strings x = (xn−1, . . . , x0)
and z = (zn−1, . . . , z0) in Dn. We redirect all edges leaving
a z0-node and which are labeled with a value not equal to
jp+1 for some 0 ≤ j < q/p in such a way that they point to
a 0-sink. Hence, the resulting BP G′ computes the function
g with error ε, where g(x, z) = GRAPHf,y(x, z) if z0 =
jp + 1 (0 ≤ j < q/p), and g(x, z) = 0, otherwise. Note
that val(z) ∈

� ′
qn = {ip + 1 | 0 ≤ i < qn/p} if and only

if z0 = jp + 1 for some j ∈ {0, . . . , q/p − 1}. Since the
multiplicative class M = Mq,n,m consists exactly of the
hash functions hz : x 7→ MULn−m...n−1

n (x, z) with z ∈
� ′

qn,
we have g = GRAPHM,y. Clearly, G′ is read-k, its length

is at most `, and its size is bounded by s. Hence, applying
Theorem 6 with the parameter c = 2 (because M is linearly
2-universal according to Theorem 4), we obtain the claimed
bounds on s.

Hence, it is hard to verify m consecutive output digits of
these basic arithmetic functions for suitable m = Ω(n). We
get no hardness result for m = 1, i. e., for computing only
one output digit. For convolution, this is not surprising
because it is easy to see that any single output digit of the
convolution can be computed by read-once BPs of linear
size. For finite field multiplication, we leave open whether
a lower bound for single output digits can be proved by
different means. In the remainder of the section, we deal
with integer multiplication and show that in this case, single
output digits are indeed hard to compute.

2.3 The Middle Bit of Integer Multiplication
In this section, we consider only the case where q is a

power of 2. Nevertheless, all results can be generalized to
powers of other primes. Let D = {0, . . . , q−1}. Let val now
be the function Dn →

�
qn mapping a q-ary string to the

integer it represents (as defined in the previous section). For
the sake of readability, we write |x| instead of val(x). Recall
that the function MULq

n−1,n computes the middle bit of the
product of two integers given as n-digit q-ary strings.

In order to apply the results about the graph of the multi-
plicative hash class from the previous section, we construct
a reduction from MULq

n−1,n to this function.

Lemma 1. Suppose there is a sequence of (nondetermin-
istic) read-k q-way BPs GN of length `(N) and size s(N)
that compute MULq

N−1,N . Then for any n, m, there is a
y ∈

� m
q and a (nondeterministic) read-(2k) q-way BP of

size O(q · s(2n)) and length `(n) + `(2n) + 1 that computes
GRAPHM,y, M = Mq,n,m. Analogously, if the GN are
randomized BPs with error ε(N), then randomized BPs for
GRAPHM,y with the same restrictions as above and error
ε(n) + ε(2n) exist.

Proof. Suppose the claimed BPs GN for MULq
N−1,N ex-

ist. Let n, m be fixed and let y ∈ Dm be the unique q-ary m-
digit string for which |y| = qm/2. Consider the inputs x, z ∈
Dn for the function GRAPHM,y, where z describes the hash
function fz defined by fz(x) = � � (|x||z|) mod qn � /qn−m � .
Note that according to the definition of M, fz is in M if
and only if |z| ∈

� ′
qn, where

� ′
qn is the set of odd integers in�

qn (due to the assumption that q is a power of 2).
We may assume w. l. o. g. that the BP for GRAPHM,y to

be constructed in this proof first tests whether |z| is odd by
examining the least significant digit of z. If this is not the
case, then fz 6∈ M, and the BP outputs 0 according to the
definition of GRAPHM,y. It is easy to see that each read-k
BP can be modified without destroying the read-k property
in such a way that it performs this test. The length increases
by at most 1, and the size only by a factor of q.

Assume now that fz ∈ M. Let x′, z′ ∈ D2n such that
|x′| = |x| · qn + 1 and |z′| = |z| + q2n/2 − q2n−m. Note that
x′ = (x′

2n−1, . . . , x
′
0) where x′

0 = 1, x′
i+n = xi for 0 ≤ i ≤ n−

1, and all other digits are 0. Similarly, z′ = (z′
2n−1, . . . , z

′
0)

with z′
i = zi for 0 ≤ i ≤ n−1, z′

i = 0 for n ≤ i ≤ 2n−m−1,
z′

i = q − 1 for 2n − m ≤ i ≤ 2n − 2, and z2n−1 = q/2 − 1.

Claim 1. GRAPHM,y(x, z) = 1 if and only if
MULq

n−1,n(x, z) = MULq
2n−1,2n(x′, z′) = 1.

From this claim, the statement of the lemma follows right
away: One can easily construct a (nondeterministic) BP
for MULq

n−1,n(x, z) ∧ MULq
2n−1,2n(x′, z′) by replacing the

1-sink of the BP for MULq
n−1,n with the source of the BP

for MULq
2n−1,2n. This BP is read-(2k) and has a size of

at most 2s(2n) and length `(n) + `(2n). According to the
discussion above one can modify it in such a way that the
resulting BP tests whether fz ∈ M, and the read-(2k) re-
striction and the claimed size and length bounds are valid.
Moreover, according to Claim 1 the resulting BP computes
GRAPHM,y if the input (x, z) and the transformed input
(x′, z′) are plugged into it. If the BPs for the middle bit
function are randomized with error ε(n) and ε(2n), resp.,
then the constructed BP for the graph errs with a proba-
bility of at most ε(n) + ε(2n). Hence, it suffices to show
Claim 1.

We have GRAPHM,y(x, z) = 1 if and only if

|y| · qn−m ≤ (|x||z|) mod qn < (|y| + 1)qn−m.

Since |y| = qm/2,

GRAPHM,y(x, z) = 1

⇔ qn/2 ≤ (|x||z|) mod qn < qn/2 + qn−m

⇔ q2n/2 ≤ (qn|x||z|) mod q2n < q2n/2 + q2n−m.
(1)

Similarly,

MULq
n−1,n(x, z) = 1 ⇔ (qn|x||z|) mod q2n ≥ q2n/2. (2)

Using

|x′||z′| ≡ � qn|x| + 1 � · � |z| + q2n/2 − q2n−m �
≡ qn|x||z| + q2n/2 − q2n−m + |z| (mod q2n),

we obtain

MULq
2n−1,2n(x′, z′) = 1

⇔ � qn|x||z| + q2n/2 − q2n−m + |z| � mod q2n ≥ q2n/2

⇔ � qn|x||z| − q2n−m + |z| � mod q2n < q2n/2.

Together with (2) this means that MULq
n−1,n(x, z) =

MULq
2n−1,2n(x′, z′) = 1 if and only if

� qn|x||z| − q2n−m + |z| � mod q2n

< q2n/2 ≤ � qn|x||z| � mod q2n. (3)

It can be easily seen that for any a, b ∈
�

and 0 ≤ b < N/2,

(a − b) mod N < N/2 ≤ a mod N

⇔ N/2 ≤ a mod N < (N/2 + b) mod N.

Hence, (3) is equivalent to

q2n/2 ≤ (qn|x||z|) mod q2n < q2n/2 + q2n−m − |z|.

This is equivalent to (1), because qn|x||z| is a multiple of qn

and |z| < qn.

We now combine the fact that the multiplicative hash class
is linearly 2-universal and well-distributed, Theorem 6, and
the above reduction to prove our main results about integer
multiplication.

Proof of Theorem 1. We first consider part 2 and deal
with part 1 afterwards.

Part 2: Let a sequence of BPs GN of length kN and size
s(N) for MULq

N−1,N be given. We use these BPs to con-
struct a BP for the graph of the multiplicative hash class
and apply Theorem 6(2) to the latter function.

For any sufficiently large n, let K = K(n) = 3k + 1,
m = m(n) = � n/3K � , and H = Mq,n,m. By the hypothesis
of part 2 of Theorem 1, log q ≤ α log n for sufficiently large n
and a constant α > 0. We claim that the constant parameter
γ′ > 0 in the theorem can be chosen such that for k ≤
γ′ log q,

(i) K ≤ λ log q, where λ > 0 is the constant from Theo-
rem 6(2);

(ii) 64K23K+1 ≤ 2048K332K ≤ n; and

(iii) m = � n/3K � ≥ 60.

We prove this first. For (i), observe that K = 3k + 1 ≤ 4k
for each positive integer k, and thus k ≤ (λ/4) log q implies
the desired bound on K. Now consider (ii). The first in-
equality is obviously true for each integer K ≥ 1 and thus
in particular for each integer k ≥ 1. Furthermore, for each
integer k ≥ 1,

2048K332K ≤ 211(4k)336k+2 = 217 · 32 · k3 · 36k ≤ 319k .

Hence, for k ≤ (log q)/(19 log 3 · α), the second inequality
of (ii) is satisfied. Finally, for sufficiently large n, the latter
bound on k also implies (iii). Altogether, (i)–(iii) are satis-
fied for 1 ≤ k ≤ γ′ log q where γ′ = min{λ/4, 1/(19 log 3·α)}.

Due to Lemma 1, we get a y ∈ Dm and a BP of length
3kn + 1 ≤ Kn and size s′(n) = O(q · s(2n)) for GRAPHH,y.
We want to apply Theorem 6(2) to GRAPHH,y and first
check that the assumptions in the hypothesis are satisfied.
We have m = � n/3K � ≥ 60 by the definition of m and (iii),

64K23K+1 ≤ n by (ii), and Kn ≤ λn log q by (i). We have
q ≥ 2120 by the hypothesis of Theorem 1. Furthermore,
H = Mq,n,m is linearly 2-universal and well-distributed.
Hence, the theorem is applicable and yields

s′(n) ≥ 2 c′m log q · K−23−K

for a constant c′ > 0 and n sufficiently large. Hence,

s′(n)/q ≥ 2 c′(m − (K23K)/c′) log q · K−23−K
.

Now m = � n/3K � and n ≥ 211K332K by (ii). Thus, assum-

ing k ≥ (1/(3·211)) · (2/c′ + 1) and using K ≥ 3k,

m ≥ n/3K − 1 ≥ 211K33K − 1

≥ K23K · (211K − 1) ≥ 2 · (K23K)/c′.

It follows that

s′(n)/q ≥ 2 (1/2)c′m log q · K−23−K

≥ 2 (1/2)c′m log q · k−23−6k

for k ≥ max{1, (1/(3 · 211)) · (2/c′ + 1)}. Since s(2n) =
Ω(s′(n)/q), this gives the claimed result.

Part 1: For each N , let a nondeterministic read-k BP GN of
size s(N) for MULq

N−1,N be given. Let n be any sufficiently
large integer. Let K = 2k and let H = Mq,n,m with m =

� n/3K � . Lemma 1 yields a y ∈ Dm and a read-K BP of size
s′(n) with s′(n) = O(q · s(2n)) for GRAPHH,y.

We choose γ = 1/(19 log 3) for the constant in The-
orem 1(1). Then, by the hypothesis of this theorem,
k ≤ γ log n. We verify that the assumptions in the hy-
pothesis of Theorem 6(1) are satisfied.

By Fact (ii) of the first part, 64K23K+1 ≤ n. Also by
Fact (ii),

n ≥ 2048K332K ≥ 2047K332K + 3K ≥ 644K232K+1 + 3K

and hence

m = � n/3K � ≥ n/3K − 1 ≥ 644K23K+1.

By Theorem 6(1), s′(n) ≥ 2c′m log q · K−23−K

for a constant
c′ > 0 and n sufficiently large. The rest of the proof is done
in the same way as for the first part.

Proof of Theorem 2. We use the lower bound from
Theorem 6(1) for approximating read-k BPs. By Yao’s prin-
ciple, each lower bound for approximating BPs yields a lower
bound of the same size and for the same error probability
for the randomized variant of the considered BP model.

For each N , let a randomized read-k BP GN of size s(N)
and error ε(N) for MULq

N−1,N be given. Let n be any suf-

ficiently large integer, K = 2k, ε′(n) = 2ε(n) ≥ ε(n) +
ε(2n), m = � logq(1/(16ε′(n))) � − 1, and H = Mq,n,m.
Lemma 1 yields a y ∈ Dm and a randomized read-K BP for
GRAPHH,y with size s′(n) = O(q · s(2n)) and error ε′(n).

We now make sure that the assumptions in the hypothesis

of Theorem 6(1) are satisfied. Since ε(n) ≥ 2−n log q · 3−2k

by the hypothesis of Theorem 2,

m ≤ � log(1/ε(n))−5 � /(log q)−1 ≤ n/32k ≤ n/3K ,

as required for Theorem 6(1). Setting γ = 1/(19 log 3)
for the constant in Theorem 2, 1 ≤ k ≤ γ log n implies
64K23K+1 ≤ n and 644K23K+1 ≤ m analogously to the
proof of Theorem 1. By Theorem 6(1), for a constant c′ > 0
and n sufficiently large,

s′(n) ≥ 2c′m log q · K−23−K
= 2Ω(log(1/ε(2n)) · k−23−2k).

Hence, due to the definitions of ε, K, and m and the fact

that ε(n) is non-increasing, s(n) = 2Ω(log(1/ε)·k−23−2k−log q)

as claimed.

Finally, we sketch the proof of the upper bound on the
size of approximating BPs for MULq

n−1,n in Theorem 3. We
need the following lemma from [16]. By gcd(x, y) we denote
the greatest common divisor of two positive integers x and y.

Lemma 2 ([16]). Let N be a positive integer, a ∈�
N − {0}, and γ = gcd(a, N). If x is chosen randomly

from
�

N, then (ax) mod N is uniformly distributed over
{iγ | 0 ≤ i < N/γ}.

Proof of Theorem 3 (sketch). We only consider the
case k = 1 and construct a read-once BP with error ε. Let
m = � logq(2n/ε) � + 1, which is only logarithmic in n for
polynomially small error. We compute the output digits
(zn−1, . . . , zn−m) of integer multiplication correctly for the
situation where the carry from the first n−m digits is zero.
Then we show that the output of MULq

n−1,n is not influenced
by this carry for too many inputs.

More formally, for x, y ∈ Dn let

s = s(x, y) =

n−1�

i=0

yi · |(xn−1−i, . . . , xn−m−i)|,

where xi = 0 for i < 0. Let MUL∗(x, y) = 1 if s mod qm ≥
qm/2 and 0 otherwise. Observe that the x-vector in the
ith term of s is obtained from that in the (i − 1)-th term
by removing xn−i in the front and appending xn−m−i to
the end. It is easy to see how an oblivious read-once BP
can compute s mod qm and thus also MUL∗ by adding the
terms of s for i = 0, . . . , n − 1, storing only the subtotal,
the current digit yi, and m x-digits. The size is bounded by

nq2m+O(1) = 2O(log(1/ε) + log n + log q) as claimed.
It is more difficult to show that MUL∗ approximates

MULq
n−1,n with error ε. Let c(x, y) be the carry from the

computation of the output digits 0, . . . , n − m − 1 of the
product of x and y. More precisely,

c = c(x, y) =

�
� n−m−1

i=0 qi · yi · |(xn−m−i−1, . . . , x0)|

qn−m � .

Further, let c′ = c′(x, y) = qn−m · c, p = (|x||y|) mod qn =
(qn−ms + c′) mod qn, and p∗ = (qn−m · s) mod qn. Then
MUL∗(x, y) 6= MUL(x, y) if and only if p ≥ qn/2 and p∗ <
qn/2 or vice versa. Since (p − p∗) mod qn = c′, MUL(x, y) =
1 and MUL∗(x, y) = 0 implies qn/2 ≤ p < qn/2 + c′.
Analogously, MUL(x, y) = 0 and MUL∗(x, y) = 1 implies
0 ≤ p < c′. Hence, in both cases p is in the set I :=
{0, . . . , c′ − 1}∪{qn/2, . . . , qn/2 + c′ − 1}. Therefore, it suf-
fices to show that for randomly chosen x, y ∈ Dn the prob-
ability of p ∈ I is bounded by ε.

We show that even if x ∈ Dn is fixed arbitrarily and y is
chosen randomly from Dn the probability of p ∈ I is at most
ε. Let x ∈ Dn and γ = gcd(|x|, qn). If γ ≥ qn−m, then |x| is
a multiple of qn−m, and thus (xn−m−1, . . . , x0) = (0, . . . , 0).
It is easy to see that in this case the carry c equals 0 and
thus also c′ = 0. Hence, I = ∅ and the probability of p ∈ I
equals 0. Now assume γ < qn−m and note that in this case
γ divides qn−m because q is a prime power. Since c′ is a
multiple of qn−m we have dc′/γe = c′/γ. By Lemma 2 the
random value p = (|x||y|) mod qn is uniformly distributed
over {iγ | 0 ≤ i < qn/γ}. Hence, the probability that p ∈ I
is exactly

|I ∩ {iγ | 0 ≤ i < qn/γ}|

qn/γ
=

2 dc′/γe

qn/γ
=

2c′

qn
=

2c

qm
.

It is easy to see that c is bounded by qn, and therefore the
probability that p ∈ I is bounded by 2nq1−m ≤ ε.

3. PROOFS OF THE LOWER BOUNDS
Here we prove Theorems 5 and 6 from Section 2.2 on top

of which our remaining lower bounds are built.

3.1 Proof Method
In this section, we describe the method used for proving

lower bounds on the size of q-way BPs of bounded length for
large q. This is a variant of a method due to Beame, Saks,
and Thathachar [4].

First, we introduce some definitions required in the fol-
lowing. We consider functions defined on variables from
the set V with values in D = {0, . . . , q − 1}. For any
S ⊆ V , DS denotes the set of mappings from S to D,
which are called assignments to S and are usually identi-
fied with vectors from D|S|. For a ∈ DV , let a|S be the

assignment obtained by projecting a to S. For A ⊆ DV ,
let A|S = {a|S | a ∈ A}. For assignments a1 and a2 to dis-
joint sets of variables S1, S2 ⊆ V , let a1 ◦ a2 = a1a2 denote

the assignment to S1 ∪ S2 that agrees with a1 on S1 and
with a2 on S2. Extend this to sets A1, . . . , Ak of assign-
ments to disjoint sets of variables S1, . . . , Sk ⊆ V by setting
A1 ◦ · · · ◦ Ak = {a | ∃a1 ∈ A1, . . . , ak ∈ Ak : a = a1 · · · ak}
(the order of the factors does not matter). For S ⊆ V , an
assignment b ∈ DS , and A ⊆ DV , let A|b be the set of as-

signments in DV −S that are completed to assignments in A
by b, i. e., A|b = � x ∈ DV −S �� xb ∈ A � . For a function

f : DV → {0, 1} let f|b : DV −S → {0, 1} denote the sub-
function with respect to b defined by f|b(x) = f(xb) for all

x ∈ DV −S .
As a preparation of the following, we give an outline of the

proof method due to Beame, Jayram, and Saks [4]. Call a
set of input assignments R an (embedded) rectangle if it can
be written in the form R = A ◦ B ◦ {c} for two sets A,B of
assignments to disjoint sets of variables X1, X2 ⊆ V and an
assignment c to the variables in V −X1−X2. Call c the fixed
part of R. Given a short, small q-way BP G, the method
of Beame, Jayram, and Saks guarantees the existence of a
large rectangle R that only contains inputs accepted by G.
In the case of approximations, one obtains a disjoint cover of
a large fraction of the inputs by rectangles that contain only
a small fraction of non-accepted inputs. It then remains to
achieve a good upper bound on the size of the respective
type of rectangles using the properties of the function under
consideration.

Next, we describe our version of this method. For the
whole proof method, fix a set X ⊆ V of important variables
with |X| = n, the set W = V −X, and an integer d ≥ 2. Dif-
ferent from [4], we consider rectangles whose unfixed parts
only consist of assignments to important variables. Fur-
thermore, we work with d-dimensional rectangles instead of
2-dimensional ones. Later on, we will set d = 3 for concrete
applications.

Definition 4. Let X1, . . . , Xd ⊆ X be disjoint sets of
important variables, let X0 = X − (X1 ∪ · · · ∪ Xd), and let
B ⊆ DX∪W . Call {X1, . . . , Xd} a (d-dimensional) variable
partition. Call R = (B, X1, . . . , Xd) a (d-dimensional) rect-
angle (in DX∪W) if there are sets Bi ⊆ DXi , i = 1, . . . , d,
and a ρ ∈ DX0∪W such that B = B1 ◦ · · · ◦ Bd ◦ {ρ}.
Call {X1, . . . , Xd} the variable partition of R and call R
an s-rectangle if |X1| = · · · = |Xd| = s. Let α(R) =

|B|/|D||X1 |+···+|Xd| be the density of R.

For simplicity, we identify rectangles with their associated
sets of inputs B if the variable partition is clear or does not
matter. Exploiting the ideas from [4], one can prove the
following lemma.

Lemma 3. Let V be a finite set of variables, let X ⊆ V
be a set of important variables, and let W = V − X. Let
d, k, r be integers such that d ≥ 2, 2 ≤ k ≤ n = |X|,
and r = 64k2dk+1 ≤ n. Let β = (3/4)d−k and let s ≤
βn be a positive integer. Let pmax be an arbitrarily chosen
positive integer. For each family P of at most pmax variable
partitions {X1, . . . , Xd} with X1, . . . , Xd ⊆ X and |X1| =
· · · = |Xd| = s, let a set A(P) ⊆ DW be given. Let A be the
union of all A(P). Let f be a 0-1-valued function defined on
DX∪W . Let η = minw∈A |(f|w)−1(1)|/|D|n.

1. Let G be a deterministic |D|-way BP for f of length

(k − 1)n. Suppose that t = |G|r ·2d(k log d+2)βn+r log d ≤
pmax. Then there is a w ∈ A and an s-rectangle R ⊆
(f|w)−1(1) with α(R) ≥ (1/t) · |(f|w)−1(1)|/|D|n.

2. Let G be a nondeterministic read-k |D|-way BP for f
with t = (|D||G|)r ≤ pmax. Then there is a w ∈ A
and an s-rectangle R ⊆ (f|w)−1(1) with α(R) ≥ (1/t) ·

|(f|w)−1(1)|/|D|n.

3. Let G be a read-k |D|-way BP that approximates f
with error ε, 0 ≤ ε ≤ η/(16|D|), and satisfies t =
(|D||G|)r ≤ pmax. Suppose that for all A(P), |A(P)| ≥

|D||W |/(2|D|). Then there is a w ∈ A and an s-
rectangle R with |R ∩ (f|w)−1(0)|/|R| ≤ 8|D|ε/η and
α(R) ≥ (1/t) · (η/4).

Due to the space restrictions, we can only give a rough
outline of the technically involved proof of this lemma for
the case of length-restricted BPs (part 1). The details will
be given in the forthcoming full version of the paper.

A key notion required for the proof are so called pseudo-
rectangles. Let X0, X1, . . . , Xd ⊆ X be disjoint sets
of important variables as in Definition 4 above and let
B ⊆ DX∪W . Call Q = (B,X1, . . . , Xd) a d-dimensional
pseudo-rectangle if for each assignment ρ ∈ DX0∪W , R =
(Q|ρ ◦ {ρ}, X1, . . . , Xd) is a rectangle. It is easy to see that,
equivalently, one can require that the characteristic function
χB of the set B can be written as χB = χB,1 ∧ · · · ∧ χB,d

where χB,i only depends on variables in Xi ∪ X0 ∪ W . Call
Q an s-pseudo-rectangle if |X1| = · · · = |Xd| = s.

For technical reasons, we consider BPs that have
length (k − 1)n with k ≥ 2 instead of length kn. This
does not matter for the case of superlinear time bounds
that we are mainly interested in. In the first stage of
the proof of Lemma 3, it is shown that given a BP G of
length at most (k− 1)n and a parameter r as in the lemma,
G can be decomposed into at most |G|r well-structured
sub-BPs whose sets of accepted inputs form a partition of
f−1(1). The set of inputs accepted by each of the sub-BPs

is then again partitioned into at most 2d(k log d+2)βn+r log d s-
pseudo-rectangles, where the parameter s is chosen such that
s ≤ β = (3/4)d−k. Altogether, we obtain a family Q of s-
pseudo-rectangles with |Q| ≤ t that disjointly cover f−1(1).

More precisely, given a BP with at most kn accesses to
the important variables and a parameter r ∈ {1, . . . , kn},
each of the sub-BPs can be described as a forest of decision
trees that each have at most dkn/re important variables
on its paths. The function computed by the forest is the
conjunction of the functions of the respective decision trees.
It can be shown that for each forest F and each input a, the
set of trees in F can be partitioned into subsets F1, . . . , Fd

such that the set of important variables Xi(a) ⊆ X read
exclusively in trees in Fi during the computation for a is
at least � (3/4)d−kn � ≥ s. Furthermore, it is easy to verify
that by grouping together the inputs a with the same sets
X1(a), . . . , Xd(a), one obtains a pseudo-rectangle.

In the second stage, a particular, good pseudo-rectangle
is picked from the family Q. By averaging, it follows that
for any w ∈ DW there is a pseudo-rectangle Q ∈ Q|w =
{Q′

|w | Q′ ∈ Q, Q′
|w 6= ∅} with respect to a variable parti-

tion {X1, . . . , Xd} where |X1| = · · · = |Xd| = s such that
|Q ∩ (f|w)−1(1)| ≥ |(f|w)−1(1)|/t. Again by averaging, we

get a ρ ∈ D(X−(X1∪···∪Xd))∪W such that R = Q|ρ ◦ {ρ} is

an s-rectangle in DX (not a pseudo-rectangle) and satisfies
α(R) ≥ (1/t) · |(f|w)−1(1)|/|D|n.

3.2 Application of the Proof Method
For the whole section, let q be a prime power and

D = {0, . . . , q − 1}. Furthermore, let H be a linearly c-
universal hash class of functions U → Dm, where U =
(� n

q , +) or U = (
�

qn, +). Let GRAPHH be defined on the
sets of variables X, Y , and Z encoding the universe, the
range, and the hash class H, resp., where |X| = n, |Y | = m,
and |Z| = � logq |H| � . Let V = X ∪ Y ∪ Z.

We extend the function val from Section 2.2 to assign-

ments a ∈ DX′

with X ′ ⊆ X by setting val(a) = val(a ◦ z),

where z is the assignment in DX−X′

that sets all variables
in X − X ′ to 0.

In the following, we consider subfunctions GRAPHh,y =
(GRAPHH)|h,y of GRAPHH for carefully chosen h ∈ H and

arbitrary y ∈ DY describing a value in the range. Our aim
is to derive a good upper bound on the density of rectangles
in DX that mainly consist of inputs accepted by such a
subfunction.

Call h ∈ H good for X ′ ⊆ X if for all distinct a, b ∈

DX′

and for all z ∈ U , h(val(a) + z) 6= h(val(b) + z).
Let P be a family of variable partitions {X1, . . . , Xd} with
X1, . . . , Xd ⊆ X. Call h good for P if h is good for all sets
Xi, i = 1, . . . , d, for each {X1, . . . , Xd} ∈ P.

Lemma 4. Let P be a family of variable partitions
{X1, . . . , Xd} with X1, . . . , Xd ⊆ X and |X1| = · · · =
|Xd| = s. Then h ∈ H chosen uniformly at random is good
for P with probability at least 1 − d|P| · cq2s−m.

Proof. Let X ′ ⊆ X, |X ′| = s, and M =� (val(a),val(b)) �� a, b ∈ DX′

, a 6= b � . For fixed
(x, x′) ∈ M , the probability that there is a z ∈ U
such that h(x + z) = h(x′ + z) is bounded above by
cq−m since H is linearly c-universal. Since |M | ≤ q2s,
Prob h∈H(h is not good for X ′) ≤ cq2s−m. Hence, the prob-
ability that a random h is not good for any of the at most
d|P| sets of variables occurring as parts of variable partitions
in P is bounded above by d|P| · cq2s−m.

The following lemma yields the desired upper bound on
the rectangle density.

Lemma 5. Let R = (B,X1, . . . , Xd) be a rectangle in DX .
Then for each h ∈ H that is good for X1, . . . , Xd and any y ∈
DY , |B ∩ GRAPH−1

h,y(0)|/|B| ≥ 1 − |B|−1/d. In particular,

B ⊆ GRAPH−1
h,y(1) implies |B| ≤ 1.

Proof. We claim that for all u, v ∈ GRAPH−1
h,y(1) with

u 6= v, there are different i, j such that u|Xi
6= v|Xi

and
u|Xj

6= v|Xj
. We prove this first. Suppose that, w. l. o. g.,

u|X1
6= v|X1

and u|Xi
= v|Xi

for i = 2, . . . , d. Let x =
val(u|X2∪···∪Xd

), xu = val(u|X1
), and xv = val(v|X1

). Due
to the definition of val for the relevant universes U , it follows
that x + xu = val(u) and x + xv = val(v). Since xu 6= xv

and h is good for X1, h(x + xu) 6= h(x + xv), and thus
GRAPHh,y(u) 6= 1 or GRAPHh,y(v) 6= 1. Hence, the claim
is true.

Now let B = B1 ◦ · · · ◦ Bd ◦ {ρ}, where Bi ⊆ DXi

for i = 1, . . . , d and ρ ∈ DX−(X1∪···∪Xd). Consider the
q|X1| × · · · × q|Xd| matrix M = (m(a1, . . . , ad))a1,...,ad

with m(a1, . . . , ad) = GRAPHh,y(a1 · · · adρ) for ai ∈ DXi

and i = 1, . . . , d. Note that |B ∩ GRAPH−1
h,y(1)|

is equal to the number of 1-entries in the subma-
trix M(B1, . . . , Bd) of M consisting of the entries
with indices in B1 × · · · × Bd. For a ∈ DXi , define
the matrix Mi,a = (mi,a(b1, . . . , bi−1, bi+1, . . . , bd)) with

bj ∈ DXj , j 6= i, by mi,a(b1, . . . , bi−1, bi+1, . . . , bd) =
m(b1, . . . , bi−1, a, bi+1, . . . , bd). The claim from the begin-
ning of the proof implies that for different a, a′, the ma-
trices Mi,a and Mi,a′ do not have a 1-entry at the same
position. Thus, Mi = � a∈Bi

Mi,a is a boolean matrix and

the number of 1-entries in M(B1, . . . , Bd) is equal to the
number of 1-entries in the submatrix of Mi with index set
B1 × · · · × Bi−1 × Bi+1 × · · · × Bd, which is trivially upper
bounded by � j 6=i |Bj |. It follows that |B∩GRAPH−1

h,y(1)| ≤

min1≤i≤d � j 6=i |Bj | ≤ |B|(d−1)/d. This yields the bound in
the lemma.

We are now ready to prove the main theorems from Sec-
tion 2.2.

Proof of Theorem 5. We deal with the second part for
general BPs first. Read-k BPs are handled similarly after-
wards.

Part 2: Let X, Y , and Z be the sets from the definition
of GRAPHH, choose X as the set of important variables, and
let W = Y ∪Z. Let d = 3. For the application of Lemma 3,
choose r = 64k23k+1 ≤ n, s = � (1/5)(2m − logq(6c) � , and

pmax = � 1/(6c) · q−2s+m � . Since m ≤ n/3k , s ≤ (3/4)3−kn
as required for Lemma 3. Let P be a family of variable par-
titions {X1, X2, X3} with |X1| = |X2| = |X3| = s such that
|P| ≤ pmax. By Lemma 4, the probability that a randomly
chosen h ∈ H is good for P is at least 1−3pmaxcq2s−m ≥ 1/2.
Hence, we can fix some h ∈ H which is good for P. Further-
more, by the pigeonhole principle we find a y ∈ DY such
that |h−1(y)| ≥ |U |/|DY | = qn−m. Let A(P) = {yz}, where
z ∈ DZ is the code of h, and let A be the union of all A(P).
Then for each w ∈ A, |((GRAPHH)|w)−1(1)|/qn ≥ q−m.

Our aim is to apply Lemma 3 to BPs of length (k−1)n for
GRAPHH. The size lower bound that we obtain is still good
enough to imply the claimed result for length kn. Thus, let
a BP G of length (k − 1)n for GRAPHH be given and set

t = |G|r · 23(k log 3+2)βn+r log 3 as in Lemma 3(1). We derive
a lower bound on t as follows. We distinguish two cases. In
the first case,

t ≥ pmax + 1 ≥ 1/(6c) · q−2s+m. (1)

In the second case, t ≤ pmax and Lemma 3 yields a
w ∈ A and an s-rectangle R = (B, X1, X2, X3) such that
B ⊆ ((GRAPHH)|w)−1(1) and α(R) ≥ (1/t) · q−m. Due
to the definitions, the hash function encoded in w is good
for X1, X2, and X3. By Lemma 5, |B| ≤ 1 and thus
α(R) = |B|/|D|3s ≤ q−3s. This implies the second lower
bound on t,

t ≥ q3s−m. (2)

Since s ≤ (1/5)(2m − logq(6c)), it follows that 3s − m ≤
−2s + m − logq(6c). Hence, the lower bound for the
first case is always at least large as that for the sec-
ond case, and we have t ≥ q3s−m in any case. Since
βn = (3/4)3−kn ≤ 3−kn − 1 ≤ m = � n/3k � (taking into

account that 64k23k+1 ≤ n), we have

t = |G|r · 23(k log 3+2)βn+r log 3 ≤ |G|r · 23(k log 3+2)m+r log 3.

Substituting this into (2), taking logarithms, and rearrang-
ing yields

r log |G| ≥ −3(k log 3 + 2)m − r log 3 + 3s log q − m log q

By the definition of s, s ≥ (1/5)(2m− logq(6c))− 1. Hence,

r log |G| ≥ − 3(k log 3 + 2)m − r log 3 +
6

5
m log q

−
3

5
log(6c) − 3 log q − m log q

= m

�
1

5
log q − 3k log 3 − 6 �

− r log 3 −
3

5
log(6c) − 3 log q.

Choose λ = 1/(60 log 3) as the constant parameter in the
theorem. We have k ≤ λ log q and log q ≥ 120 due to the
hypothesis. For such k and q,

3k log 3 + 6 ≤
1

20
log q + 6 ≤

1

10
log q.

It follows that

r log |G| ≥
1

10
m log q − r log 3 −

3

5
log(6c) − 3 log q

≥
1

20
m log q −

3

5
log c − O(r)

for m ≥ 60. Hence, since r = 64k23k+1,

log |G| = Ω � m log q − 12 log c)/(k23k) �
as required.

Part 1: We use the same parameters for Lemma 3 as in
the first part. Since m ≤ n/3k, again s ≤ βn with β =
(3/4)3−k, as required for Lemma 3. As in part 2 we obtain
the lower bound t ≥ q3s−m. Then we can substitute t =
(q|G|)r according to Lemma 3(2) for the read-k case. This
yields

r log |G| ≥ (3s − m) log q − r log q.

Substituting again s ≥ (1/5) · (2m − logq(6c)) − 1 as above,
we get

r log |G| ≥

�
1

5
m −

3

5
logq(6c) − 3 � log q − r log q

≥
1

5
m log q −

3

5
log(6c) − (r + 3) log q.

Since m ≥ 644k23k+1 ≥ 640k23k+1 + 30 by hypothesis and
r = 64k23k+1, it follows that (1/10)m log q ≥ (r + 3) log q.
Hence,

log |G| ≥
1

10
(m log q − 6 log(6c))/r

= Ω((m log q − 6 log c)/(k23k)).

Proof of Theorem 6. The proof follows the same pat-
tern as that for Theorem 5. We now consider the function
GRAPHH,y where y is an arbitrarily fixed assignment to
the variables in Y . We apply the proof method from
Section 3 with X as the set of important variables and
W = Z. Let d = 3 and r = 64k23k+1 ≤ n as in the
proof of Theorem 5. Let s = � (1/5) · (2m − logq(6c)) � for
the case of nondeterministic read-k BPs and deterministic
general BPs, and let s = � (1/5) · (2m − logq(6c) − logq c′) �
with c′ = (1/4) · (1 − 8εqm+1)3 for approximating read-k
BPs with error ε. Let pmax = � 1/(6c) · q−2s+m � and
for a family P of variable partitions {X1, X2, X3} with
|X1| = |X2| = |X3| = s such that |P| ≤ pmax, let

A(P) = {zh | h is good for P}, where zh ∈ DZ denotes
the code for h. Since a random h ∈ H is good for P with
probability at least 1/2 by Lemma 4, |A(P)| ≥ |H|/2. Fur-
thermore, at least a 1/q-fraction of all inputs in DZ encode

functions in H. Thus, |A(P)| ≥ |D||Z|/(2q). Since H is
well-distributed, |h−1(y)| ≥ qn−m for all h ∈ H and the y
from the hypothesis. Let A be the union of all A(P). Then
η = minz∈A |((GRAPHH)|y,z)

−1(1)|/qn ≥ q−m. We now
distinguish the case of deterministic and nondeterministic
BPs from the case of approximating BPs.

Deterministic BPs of length kn and nondeterministic
read-k BPs: Analogously to the proof of part 1 and part 2
of Theorem 5, we get the lower bound t ≥ q3s−m, where t
is defined according to Lemma 3 depending on the con-
sidered type of BPs. The lower bounds on the size of
length-restricted and read-k BPs follow in the same way as
above.

Approximating read-k BPs: Let G be the given read-k
BP and let t = (q|G|)r . Since logq(1/16ε) ≥ m + 1 by
the hypothesis of Theorem 6, we have ε ≤ η/(16q) =

(1/16)q−(m+1) as required for Lemma 3(3). Analogously to
the proof of Theorem 5, either t ≥ pmax+1 ≥ 1/(6c)·q−2s+m

or t ≤ pmax and Lemma 3(3) is applicable. The lemma
yields a z ∈ A ⊆ DZ and an s-rectangle R ⊆ DX with
|R ∩ ((GRAPHH)|y,z)

−1(0)|/|R| ≤ ε′ = 8qε/η ≤ 8εqm+1

and α(R) ≥ (1/t) · (η/4) ≥ (1/t) · (1/4) · q−m. By Lemma 5,

|R∩((GRAPHH)|y,z)
−1(0)|/|R| ≥ 1−|R|−1/3 which implies

|R| ≤ (1 − ε′)−3. Using the resulting lower bound on the
density α(R) = |R|/q3s of R, we get

t ≥ (1/4) · (1 − ε′)3 · q3s−m

≥ (1/4) · � 1 − 8εqm+1)3 · q3s−m = c′q3s−m,

where c′ = (1/4) · (1−8εqm+1)3 as defined above. Since s ≤
(1/5) · (2m− logq(6c)− logq(c

′)) for this part, the bound t ≥
pmax+1 is at least as large as the above bound and it suffices
to consider the latter. By the hypothesis, logq(1/16ε) ≥

m + 1, which implies 1 − 8εqm+1 ≥ 1/2 and thus c′ ≥ 1/32.
The lower bound on the size of G now follows analogously to
the proof of part 1 of Theorem 5 using that c′ = Ω(1).

Acknowledgment
Thanks to Ingo Wegener for proofreading of an earlier ver-
sion and for helpful discussions.

4. REFERENCES
[1] F. Ablayev and M. Karpinski. A lower bound for integer

multiplication on randomized ordered read-once branching
programs. In Proc. of 1st CSIT, Electronic Edition, 1999.

[2] M. Ajtai. Determinism versus non-determinism for linear
time RAMs with memory restrictions. In Proc. of 31st
STOC, pages 632–641, 1999.

[3] M. Ajtai. A non-linear time lower bound for Boolean
branching programs. In Proc. of 40th FOCS, pages 60–70,
1999.

[4] P. Beame, T. S. Jayram, and M. Saks. Time-space
tradeoffs for branching programs. Journal of Computer
and System Sciences, 63(4):542–572, 2001.

[5] P. Beame, M. Saks, X. Sun, and E. Vee. Super-linear
time-space tradeoff lower bounds for randomized
computation. In Proc. of 41st FOCS, pages 169–179, 2000.
To appear in Journal of the ACM. See also
www.cs.washington.edu/homes/beame/publications.html.

[6] P. Beame and E. Vee. Time-space tradeoffs, multiparty
communication complexity, and nearest neighbor problems.
In Proc. of 34th STOC, pages 688–697, 2002.

[7] B. Bollig. Restricted nondeterministic read-once branching
programs and an exponential lower bound for integer
multiplication. In Proc. of 25th MFCS, volume 1893 of
Lecture Notes in Computer Science, pages 222–231.
Springer, 2000.

[8] B. Bollig, S. Waack, and P. Woelfel. Parity graph-driven
read-once branching programs and an exponential lower
bound for integer multiplication. In Proc. of 2nd TCS,
pages 83–94, 2002.

[9] B. Bollig and P. Woelfel. A read-once branching program

lower bound of Ω(2n/4) for integer multiplication using
universal hashing. In Proc. of 33rd STOC, pages 419–424,
2001.

[10] B. Bollig and P. Woelfel. A lower bound technique for
nondeterministic graph-driven read-once-branching
programs and its applications. In Proc. of 27th MFCS,
pages 131–142, 2002.

[11] A. Borodin and S. Cook. A time-space tradeoff for sorting
on a general sequential model of computation. SIAM J.
Comp., 11(2):287–297, 1982.

[12] A. Borodin, A. A. Razborov, and R. Smolensky. On lower
bounds for read-k-times branching programs.
Computational Complexity, 3:1–18, 1993.

[13] R. E. Bryant. On the complexity of VLSI implementations
and graph representations of boolean functions with
applications to integer multiplication. IEEE Transactions
on Computers, 40(2):205–213, 1991.

[14] J. L. Carter and M. N. Wegman. Universal classes of hash
functions. Journal of Computer and System Sciences,
18(2):143–154, 1979.

[15] M. Dietzfelbinger. Universal hashing and k-wise
independent random variables via integer arithmetic
without primes. In Proc. of 13th STACS, pages 569–580,
1996.

[16] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and
M. Penttonen. A reliable randomized algorithm for the
closest-pair problem. Journal of Algorithms, 25:19–51,
1997.

[17] J. Gergov. Time-space tradeoffs for integer multiplication
on various types of input oblivious sequential machines.
Information Processing Letters, 51:265–269, 1994.

[18] S. Jukna. The graph of integer multiplication is hard for
read-k-times networks. Technical Report 95-10, Universität
Trier, 1995. Available under ftp://ftp.informatik.uni-
trier.de/pub/Users-Root/reports/95-10.ps.

[19] Y. Mansour, N. Nisan, and P. Tiwari. The computational
complexity of universal hashing. Theoretical Computer
Science, 107:121–133, 1993.

[20] S. Ponzio. A lower bound for integer multiplication with
read-once branching programs. SIAM Journal on
Computing, 28:798–815, 1998.

[21] I. Wegener. Branching Programs and Binary Decision
Diagrams—Theory and Applications. Monographs on
Discrete and Applied Mathematics. SIAM, Philadelphia,
PA, 2000.

[22] M. N. Wegman and J. L. Carter. New classes and
applications of hash functions. In Proc. of 20th FOCS,
pages 175–182, 1979.

[23] P. Woelfel. Efficient strongly universal and optimally
universal hashing. In Proc. of 24th MFCS, pages 262–272,
1999.

[24] P. Woelfel. New bounds on the OBDD-size of integer
multiplication via universal hashing. In Proc. of 18th
STACS, pages 563–574, 2001.

[25] P. Woelfel. On the complexity of integer multiplication in
branching programs with multiple tests and in read-once
branching programs with limited nondeterminism. In Proc.
of 17th Comp. Compl., pages 80–89, 2002.

