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Abstract. We solve some fundamental problems in the number-on-
forehead (NOF) k-party communication model. We show that there ex-
ists a function which has at most logarithmic communication complexity
for randomized protocols with a one-sided error probability of 1/3 but
which has linear communication complexity for deterministic protocols.
The result is true for k = nO(1) players, where n is the number of bits on
each players’ forehead. This separates the analogues of RP and P in the
NOF communication model. We also show that there exists a function
which has constant randomized complexity for public coin protocols but
at least logarithmic complexity for private coin protocols. No larger gap
between private and public coin protocols is possible. Our lower bounds
are existential and we do not know of any explicit function which allows
such separations. However, for the 3-player case we exhibit an explicit
function which has Ω(log log n) randomized complexity for private coins
but only constant complexity for public coins.
It follows from our existential result that any function that is complete
for the class of functions with polylogarithmic nondeterministic k-party
communication complexity does not have polylogarithmic deterministic
complexity. We show that the set intersection function, which is complete
in the number-in-hand model, is not complete in the NOF model under
cylindrical reductions.

1 Introduction

The question of how much communication is necessary in order to compute
a function f : X1 × · · · × Xk → O when its input is distributed between k
computationally unbounded players was first introduced in [17] and it has since
been shown to have many diverse applications in complexity theory. The case
of k = 2 players has been studied extensively [11]. For two or more players, we
are interested in the ”number-on-forehead” model (NOF), first introduced by
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Chandra, Furst and Lipton in [7]. In this model, the input is partitioned into k
parts, so that player i can see all parts except for the ith part (since it is ‘written
on his forehead’).

The number-on-forehead communication model is a fascinating and complex
model that is not well understood when k ≥ 3. The complexity of the situation
arises from the fact that every part of the input is seen by multiple players. As the
number of players increases, the sharing becomes increasingly generous. During
the execution of a protocol, the set of inputs consistent with a particular message
sequence is described by a so-called cylinder intersection. Cylinder intersections
appear difficult to understand combinatorially.

Lower bounds for multiparty complexity in the number-on-forehead model
are connected to a major open problem in complexity theory: it has been es-
tablished that superlogarithmic communication complexity lower bounds in the
NOF model for any explicit function with polylogarithmically many players
would imply explicit lower bounds for ACC [6, 10]. The best lower bound ob-
tained so far establishes a lower bound of Ω(n/2k), which breaks down when the
number of players is greater than logarithmic [3, 8, 16, 9]. Lower bounds in this
model have many other important applications as well, including: constructions
of pseudorandom generators for space bounded computation, constructions of
universal traversal sequences, time-space tradeoffs [3], circuit complexity bounds
[10, 15, 14], and proof complexity bounds [4].

The motivation for our work is to pursue a broader understanding of the
NOF complexity model. In particular, we would like to answer some of the basic
questions that are still open for this model, but have well-known solutions in
the 2-party model. For k ≥ 3, we consider the three usual versions of communi-
cation complexity: deterministic, randomized and nondeterministic complexity.
Are there functions separating these three different complexity measures? Sur-
prisingly, the relationships between these complexity measures have not been
resolved previously, even for k = 3.

Our main result is that for any k that is nO(1) there is a function with n
bits on each players’ forehead that is computable with a polylogarithmic com-
plexity by a randomized k-party communication protocol with 1-sided error but
which requires linear complexity for deterministic protocols. We obtain this re-
sult nonconstructively by showing that deterministic protocols for a certain class
of simple functions have a nice normal form and then establishing a lower bound
for such function via a counting argument over protocols in normal form. We
thus separate the randomized 1-sided error and deterministic k-party NOF com-
munication complexity classes RPcc

k and Pcc
k . As a corollary of our lower bounds,

we also establish an optimal separation between the public and private coin
randomized NOF models.

These bounds are nonconstructive but, for k at most logarithmic in the in-
put size, we can also give explicit families of simple functions with Ω(log n)
deterministic k-party complexity in the NOF model. (We believe that they have
superpolylogarithmic deterministic complexity.) The best previous lower bound
for any explicitly defined simple function is the Ω(log log n) lower bound from



[5] for the Exact-T function (originally investigated in [7]) in the special case
of k = 3 players. As a corollary of our bound we obtain that our function fam-
ilies have Ω(log log n) complexity for randomized private coin protocols (with
constant error probability) but only O(1) complexity for public coin protocols.

The problem of separating deterministic from nondeterministic NOF com-
plexity is particularly interesting because of its connection to proof complexity.
In recent work [4], it has been shown that for k = 3, (log n)ω(1) lower bounds
on the randomized NOF complexity of set intersection, which has nondetermin-
istic NOF complexity O(log n), implies lower bounds for polynomial threshold
proof systems, such as the Lovász-Schrijver proof systems, as well as the Chvátal
cutting planes proof system. Moreover, it seems possible that these results can
be modified to show that randomized lower bounds for any function with small
NOF nondeterministic communication complexity would give lower bounds for
related cutting planes proof systems.

This brings us to our second question: is there a ‘complete’ problem for the
class of problems with efficient NOF nondeterministic algorithms under a suit-
able notion of reduction? Given our separation result, such a function would
automatically be hard for deterministic protocols. Following [1], it is not hard
to see that set intersection is complete under communication-free reductions for
the number-in-hand (NIH) model and in [4] it had been assumed that the same
holds for the number-on-forehead (NOF) model. (The number-in-hand model
is an alternative generalization of the 2-player model in which each player gets
his part of the input in his hand, and thus each player sees only his own part.)
However, we prove that under communication-free reductions, set intersection is
not complete in the NOF model.

2 Definitions and Preliminaries

In the NOF multiparty communication complexity game [7] there are k parties
(or players), numbered 1 to k, that are trying to collaborate to compute a func-
tion f : X1 × . . .×Xk → {0, 1} where each Xi = {0, 1}n. The kn input bits are
partitioned into k sets, each of size n. For (x1, . . . , xk) ∈ {0, 1}kn, and for each i,
player i knows the values of all of the inputs except for xi (which conceptually
is thought of as being placed on player i’s forehead).

The players exchange bits according to an agreed-upon protocol, by writing
them on a public blackboard. A protocol specifies, for every possible blackboard
contents, whether or not the communication is over, the output if over and the
next player to speak if not. A protocol also specifies what each player writes as
a function of the blackboard contents and of the inputs seen by that player. The
cost of a protocol is the maximum number of bits written on the blackboard.

In a deterministic protocol, the blackboard is initially empty. A public-coin
randomized protocol of cost c is simply a probability distribution over determin-
istic protocols of cost c, which can be viewed as a protocol in which the players
have access to a shared random string. A private-coin randomized protocol is a
protocol in which each player has access to a private random string. A nondeter-



ministic protocol is a randomized private coin protocol with 1-sided error (only
false negatives) and an error probability less than 1.

The deterministic communication complexity of f , written Dk(f), is the
minimum cost of a deterministic protocol for f that always outputs the correct
answer. For 0 ≤ ε < 1/2, let Rpub

k,ε (f) denote the minimum cost of a public-coin
randomized protocol for f which, for every input, makes an error with probability
at most ε (over the choice of the deterministic protocols). We write Rpub

k (f) for
Rpub

k,1/3(f). Let Rk,ε(f) denote the minimum cost of a private-coin randomized
protocol for f which, for every input, makes an error with probability at most
ε (over the choice of the private random strings). We write Rk(f) for Rk,1/3(f).
For both public-coin and private-coin complexities we add a superscript 1 if
we require that the protocol makes error only on 1-inputs (i.e., false-negatives),
and superscript 0 if we require that the protocol makes error only on 0-inputs
(i.e., false-positives). For example, R0,pub

k,ε (f) is the minimum cost of a k-player
public-coin protocol for f which is always correct on 1-inputs and makes error
at most ε on 0-inputs.

Since the general model laid out above is very powerful, we are also interested
in communication restrictions. A player is oblivious in a certain protocol if the
message he writes on the board is a function of the inputs he sees, but not a
function of the messages sent by other players. Since we are interested in the best
protocol, we may safely assume that all oblivious players write first, and then
non-oblivious players continue to communicate using the information written by
the former. A protocol in which all players are oblivious is called simultaneous.
The simultaneous multiparty model was studied in [2], who proved new lower
bounds, as well as surprising upper bounds in this model.

Since any function fn on kn bits can be computed using only n bits of
communication, following [1], for sequences of functions f = (fn)n∈N, algorithms
are considered “efficient” or “polynomial” if only polylogarithmically many bits
are exchanged. Accordingly, let Pcc

k denote the class of function families f for
which Dk(fn) is (log n)O(1), let NPcc

k denote the class of function families f with
nondeterministic complexity (log n)O(1), and let RPcc

k denote the class of function
families f for which R1

k(fn) is (log n)O(1).
Multiparty communication complexity lower bounds are proven by analyzing

properties of functions on cylinder intersections.

Definition 1. An i-cylinder Ci in X1 × . . . × Xk is a set such that for all
x1 ∈ X1, . . . , xk ∈ Xk, x′

i ∈ Xi we have (x1, . . . , xi, . . . , xk) ∈ Ci if and only if
(x1, . . . , x

′
i, . . . , xk) ∈ Ci. A cylinder intersection is a set of the form

⋂k
i=1 Ci

where each Ci is an i-cylinder in X1 × · · · ×Xk.

3 Separating Pcc
k from RPcc

k

3.1 Oblivious Players, Simple Functions, and a Normal Form

We will be interested in a special type of Boolean functions for which we can
show, that without loss of generality, all but one of the players is oblivious. For



sets X1, . . . , Xk a function f : X1×· · ·×Xk → {0, 1} is simple for player i if for
all (x1, . . . , xi−1, xi+1, . . . xk) ∈ X1 × · · · ×Xi−1 ×Xi+1 × · · · ×Xk there exists
at most one x∗

i ∈ Xi such that f(x1, . . . , xi−1, x
∗
i , xi+1, . . . , xk) = 1.

If f is simple for player i then it is reducible with no communication to 2-
player n-bit equality EQ. Player i can compute the unique value for the input on
its forehead for which the output could be 1 (if it exists), and any other player
sees that input. All the players have to do is to decide whether these strings are
equal. We know that R0

2,1/n(EQ) is O(log n) and R0,pub
2 (EQ) is O(1). Therefore

we get the following.

Lemma 2. For all k and all simple functions f on kn bits, R0
k,1/n(f) is O(log n)

and R0,pub
k (f) is O(1).

The following theorem shows that if a function is simple for one player then
this player can act obliviously with only a small increase in the deterministic
communication complexity.

Theorem 3. Let f : X1 × · · · × Xk → {0, 1} be a function that is simple for
player i and has Dk(f) = d. Then there is a protocol P ′ for f in which player
i first sends d bits and then all players j ∈ {1, . . . , k} − {i} simultaneously send
exactly one bit bj such that f(x1, . . . , xk) = 1 if and only if all bits bj = 1.

Proof (Sketch). Let f be simple for player 1. Let P be a protocol for f with
complexity d. We describe protocol P ′ on input (x1, . . . , xk). Assume that player
1 sees the partial input (x2, . . . , xk) on the other players’ foreheads. Let x∗

1 be
the input in X1 such that f(x∗

1, x2 . . . , xk) = 1, if one exists, an arbitrary input
in X1, otherwise. Player 1 “simulates” protocol P for the input (x∗

1, x2, . . . , xk);
i.e., she writes on the blackboard exactly the string I∗ that would have been
written by players 1, . . . , k if protocol P were executed for that input. Then each
player r, 2 ≤ r ≤ k, verifies that I∗ is consistent with what player r would
have sent in protocol P if it had seen (x1, . . . , xr−1, xr+1, . . . , xk) on the other
players’ foreheads. If player r does not find an error and the output of P is 1
for blackboard contents I∗, then he accepts by sending bit br = 1. Otherwise he
sends br = 0. ut

3.2 Representing Simple Functions by Colorings and Cylinder
Intersections

Most lower bound proofs for Dk(f) use the fact shown in [3] that any k-party
protocol with complexity d for a function f yields a partitioning of the input
into O(2d) disjoint cylinder intersections on which f is constant. For k ≥ 3 play-
ers, the known techniques for proving lower bounds on the number of cylinder
intersections needed for such a partitioning are discrepancy-based and inher-
ently yield lower bounds even for nondeterministic and randomized protocols.
Therefore, these techniques are not suitable for proving good lower bounds for
functions with low nondeterministic communication complexity.



For simple functions we obtain different, although related, structures. These
structures seem to be better suited for lower bound proofs for functions in RPcc

k ,
as they will allow us to separate this class from Pcc

k and to prove Ω(log n) lower
bounds for explicit functions.

Throughout this section, f : X1 × · · · × Xk → {0, 1} is simple for player
1. For any natural number D and a set S, a D-coloring of S is a mapping
c : S → [D]. Since f is simple for player 1 (Alice), there exists a function
g : X2 × · · · × Xk → X1 ∪ {⊥}, where g(x2, . . . , xk) = ⊥ if f(x1, . . . , xk) = 0
for all x1 ∈ X1, and otherwise g(x2, . . . , xk) = x∗

1, where x∗
1 is the the unique

element in X1 with f(x∗
1, x2, . . . , xk) = 1. In fact, any such mapping g uniquely

defines the simple function f .
Assume that f can be computed by a d-bit protocol P . The special protocol

P ′ for f , derived in Theorem 3, can be characterized by a coloring of X2×· · ·×Xk

and cylinder intersections in X2 × · · · × Xk: Let c be the 2d-coloring of X2 ×
· · · ×Xk, where c(x2, . . . , xk) is the message Alice sends if she sees (x2, . . . , xk).
Consider a fixed message m from Alice and a fixed value a ∈ X1 on Alice’s
forehead. The subset of points in X2×· · ·×Xk for which all other players accept
if they see a on Alice’s forehead and receive message m is a cylinder intersection
Im,a. Each such cylinder intersection Im,a may also contain points that are not
colored m. However, it is not possible that a point p = (x2, . . . , xk) ∈ Im,a has
color m but g(p) 6= a because then Alice would send message m if she saw p
and the other players would all accept if they saw a on Alice’s forehead. Hence,
(a, x2, . . . , xk) would be accepted by P ′, a contradiction. We obtain the following.

Lemma 4. Every function f that is simple for player 1 and has k-player com-
munication complexity d can be uniquely represented by cylinder intersections
Im,a ∈ X2 × · · · ×Xk, m ∈ [2d], a ∈ X1, and a 2d-coloring c of X2 × · · · ×Xk,
such that ∀a ∈ X1, y ∈ X2 × · · · ×Xk: f(a, y) = 1 ⇔ y ∈ Ic(y),a.
In particular, Im,a contains all points y ∈ X2 × · · · × Xk with color c(y) = m
and f(a, y) = 1, but no point y′ with color c(y′) = m and f(a, y′) = 0.

Proof. We have already seen how to obtain c and the cylinder intersections Im,a

from the function f . This representation is unique because for any input (a, p)
with a ∈ X1 and p ∈ X2× · · ·×Xk we can retrieve the function value f(a, p) by
checking whether p ∈ Ic(p),a. ut

3.3 The Lower Bound

In the following we consider a family of functions which have logarithmic com-
munication complexity for randomized protocols with one-sided error and error
probability bounded by 1/3. Using Lemma 4 we give an upper bound on the
number of different deterministic protocols for the functions in that class in or-
der to show that at least one such function requires at least linear deterministic
communication complexity.

For positive integers n, m and t, let Gt,n,m be the set of all mappings
g : {0, 1}n·t → {0, 1}m. For any function g ∈ Gk−1,n,m, define fg : {0, 1}m ×



{0, 1}n·(k−1) by fg(x1, . . . , xk) = 1 if and only if g(x2, . . . , xk) = x1. By the proof
of Lemma 2, randomized protocols for functions fg, g ∈ Gk,n,m, have complexity
at most O(log m). Hence, it follows that fg ∈ co-RPcc

k for all g ∈ Gk,n,n/2.

Theorem 5. There is a g ∈ Gk−1,n,n/2 such that Dk(fg) is Ω(n− log k).

Corollary 6. Pcc
k 6= RPcc

k for any k that is nO(1).

Proof (of Theorem 5). Any function g ∈ Gk−1,n,m has a domain of size 2(k−1)n

and a range of size 2m. Therefore, it is not possible to encode every such function
g with less than m · 2(k−1)n bits. Note that if two functions g, g′ are different,
then fg and fg′ are different, too.

Clearly, any function fg, g ∈ Gk−1,n,m, is simple for Alice. Assume that any
such function fg has Dk(fg) ≤ d. Then by Lemma 4, every such function fg can
be uniquely represented by a 2d-coloring of

(
{0, 1}n

)k−1 and 2m · 2d cylinder

intersections in
(
{0, 1}n

)k−1. The 2d-coloring of
(
{0, 1}n

)k−1 can be encoded
with d · 2(k−1)n bits. The number of i-cylinders in X1 × · · · × Xt is 2Πj 6=i|Xj |.
Hence, (k − 1) · 2(k−2)n bits suffice for a unique encoding of any cylinder inter-
section in

(
{0, 1}n

)k−1. Thus, the total number of bits in which any function fg,
g ∈ Gk−1,n,m, can be encoded is bounded above by

d · 2(k−1)n + 2d+m · (k − 1) · 2(k−2)n = d · 2(k−1)n + (k − 1) · 2d+m+(k−2)n

As we have seen above, the number of bits needed to describe a function fg

for g ∈ Gk−1,n,m is at least m · 2(k−1)n. Therefore, if for all fg a protocol with
complexity c exists then

d · 2(k−1)n + (k − 1) · 2d+m+(k−2)n ≥ m · 2(k−1)n.

This is equivalent to 2d ≥ 2n−m · (m− d)/(k− 1). Hence, d ≥ min{m− 1, n−
m−log(k−1)}, which for m =

⌊
(n− log k)/2

⌋
is at least (n−log k)/2−O(1). ut

3.4 Separating Public from Private Coins

We now consider the difference between public-coin and private-coin randomized
protocols. Trivially, any private-coin protocol can be simulated by tossing the
coins in public, so for all f and k, Rpub

k (f) ≤ Rk(f). In the other direction,
Newman [13, 11] provides a simulation of a public-coin protocol by a private-
coin protocol. (Although it is stated for the special case of 2 players, the proof
works for any number of players.)

Proposition 7 ([13]). There is a c > 0 such that for every k ≥ 2 and function
f : {0, 1}kn → {0, 1}, Rk(f) ≤ Rpub

k (f) + cdlog2 ne.

We see that the maximum gap between the public-coin and private-coin
randomized complexities of f is Θ(log n), and it is achieved when Rpub

k (f) is
O(1) and Rk(f) is Θ(log n). The natural question arises, is there a function that
achieves this gap? Our results allow us to answer this question affirmatively.

In order to obtain lower bounds, we need the following extension of
Lemma 3.8 in [11] to k players. We omit the proof due to space constraints.



Lemma 8. If k1/δ < Dk(f) for some δ < 1, then Rk(f) is Ω(log Dk(f)).

Corollary 9. Let δ < 1. For all k such that k < nδ, there exists a kn-bit
function f such that Rpub

k (f) is O(1) and Rk(f) is Θ(log n).

Proof. By Theorem 5 there is a function f that is simple for player 1 such that
Dk(f) is Ω(n). By Lemma 8, Rk(f) is Ω(log n). By Lemma 2, Rk(f) is O(log n)
and Rpub

k (f) is O(1). ut

4 Lower Bounds for Explicit Simple Functions

The separations in Section 3.3 are nonconstructive. We conjecture that there also
exists an explicit simple function that gives a linear or near linear separation
between Dk(fn) and R0

k(fn). In the following we prove Ω(log n) bounds for
the deterministic complexity of some explicit simple functions. This yields a
separation between the deterministic and public coin randomized complexity for
explicit simple functions, though this is much weaker than our conjecture.

We give two constructions of explicit functions, one for k = 3 and, one that
holds for all k ≥ 3. Write Fq for the field of q elements. Let X = F2n , Y = F2m

for some positive integers m and n. For (a, b) ∈ X × Y let the hash function
ha,b : F2n → F2m be defined as ha,b(x) = φ(a ·x)+b, where φ is a homomorphism
from F2n to F2m . Let H be the family of hash functions ha,b for a ∈ X, b ∈ Y .
The explicit function for k = 3 is given by f : Y × X × H → {0, 1}, where
f(y, x, h) = 1 iff h(x) = y which is clearly simple for player 1.

For the other construction let k ≥ 3, let X1 = F2m and X2 = . . . = Xk = Fn
2m

for positive integers n and m with m ≥ log2 n. Let β1, . . . , βn be distinct elements
of F2m and define vi = (βi−1

1 , . . . , βi−1
n ) for 1 ≤ i ≤ n. The explicit function is

fg where g(x2, . . . , xk) =
∑n

i=1

∏k
j=2〈vi, xj〉 and operations are over F2m .

Theorem 10. There is a δ < 1 such that
(a) for m = nδ and f : Y ×X×H → {0, 1} defined as above, D3(f) is Ω(log n),
(b) for any k ≥ 3, n ≥ 4k+1, m = nδ, and fg defined as above, Dk(fg) is
Ω(log n).

Proof. We give the proof for part (a): Let d = D3(f). Fix some ε with 0 < ε < δ
and let m = nδ. Assume for contradiction that d ≤ ε · log2 n.

Consider the 2n+m × 2n matrix M where rows correspond to hash functions
h ∈ H, columns correspond to inputs x ∈ X and the entry Mh,x is the hash
function value h(x). Cylinder intersections in H×X are rectangles. By Lemma 4,
there is a 2d-coloring c of M and there are 2d+m rectangles R`,y, ` ∈ [2d], y ∈ Y ,
such that ∀(y, x, h) ∈ Y ×X ×H : (h, x) ∈ Rc(h,x),y ⇔ h(x) = y. Call an entry
Mh,x an (`, y) entry iff c(h, x) = ` and h(x) = y. Correctness of the protocol
implies that for y′ 6= y, R`,y does not contain any (`, y′) entries.

Consider the coloring c of the matrix entries in M . The proof proceeds in-
ductively decreasing the number of colors that are available and shrinking the
matrix. During each such step, we introduce a number of “holes” in the matrix



(entries that are colored in the original matrix with one of the removed colors).
We show that eventually there are no colors left to use but the matrix still does
not consist only of holes. This will contradict the existence of the initial coloring,
hence of the d-bit protocol.

We prove by induction on i ≥ 0 that, as long as i ≤ 2d = nε, the following
hold for large enough n:
– there exists a rectangle Ri such that |Ri| ≥ 22n+m−i(d+2),
– Ri contains at most i · 22n holes,
– non-hole entries in Ri can be colored with 2d − i colors.

Assuming that we have established this inductive statement, letting i = 2d

we see that there are no colors left for coloring the rectangle R2d . Moreover, for
large enough n, this rectangle has size at least 22n+m−nε(2+ε·log2 n). Since m = nδ

and δ > ε, |R2d | > 22n+d. The number of holes in this rectangle is bounded above
by 2d · 22n, so the rectangle is not empty, which is a contradiction.

We now prove the inductive statement. For i = 0, let R0 = M . The existence
of a d-bit protocol yields a coloring of R0 (with no holes) using 2d colors.

Now assume the inductive statement is true for some 0 ≤ i < 2d. The number
of non-hole entries in Ri is at least 22n+m ·

(
2−i(d+2) − i · 2−m

)
. Since i < 2d and

m−d > nε(d+2) > i(d+2) (for large enough n), the number of non-hole entries
in Ri is larger than 22n+m−i(d+2)−1. Let (`, y) be the most popular color-value
pair from the non-hole entries in Ri and let Ri+1 = Ri ∩ R`,y. The number
of color-value pairs is at most 2d+m, so the number of occurrences of the most
popular pair (`, y) in Ri is at least 22n+m−i(d+2)−1−(m+d) = 22n−(i+1)(d+2)+1.
By construction, |Ri+1| is at least the number of such (`, y) entries. Since Ri+1

is a rectangle, by the Hash Mixing Lemma [12], for any y ∈ Y ,

Pr[h(x) = y] ≤ 1
|Y | +

√
|H|

|Ri+1|·|Y | ≤ 2−m + 2((i+1)(d+2)−n−1)/2 ≤ 2−m+1

since |H|/|Ri+1||Y | ≤ 2n−2n+(i+1)(d+2)−1, (i + 1)(d + 2) ≤ nε log n < nδ = m
and n ≥ 3m for sufficiently large n. Hence, the number of y-valued entries in
Ri+1 is at most |Ri+1| · 2−m+1. By the lower bound from above for the number
of (`, y)-pairs in Ri+1, we have 22n−(i+1)(d+2)+1 ≤ |Ri+1| · 2−m+1 and thus we
obtain the stronger bound |Ri+1| ≥ 22n+m−(i+1)(d+2) as required.

Since Ri+1 ⊆ R`,y, by Lemma 4 all `-colored entries in Ri+1 are (`, y) entries.
Define the holes in Ri+1 to be its (`, y) entries along with all holes in Ri. Thus,
the number of colors available for non-hole entries has been reduced by at least
1. The number of extra holes we introduce is at most the number of entries in
M with value y. Hence, at most 22n new holes can be introduced in a round.
This completes the inductive step, and therefore the proof of (a).

The proof for part (b) is similar but requires the following property of g which
is a natural analogue of the Hash Mixing Lemma [12] over cylinder intersections.
Its proof is in the full paper.

Lemma 11. Let Z = Fn
2m . For k ≥ 3 and any cylinder intersection I ⊆ Zk−1

and any y ∈ F2m , choosing (x2, . . . , xk) from the uniform distribution on Zk−1,∣∣Pr[g(x2, . . . , xk) = y and (x2, . . . , xk) ∈ I]− 2−m|I|/|Z|k−1
∣∣ ≤ 2−(m−2)n/4k−1

.
ut



By Lemma 2, both f and fg defined above have O(1) public-coin randomized
complexity but by Theorem 10 and Lemma 8, we obtain that R3(f) and Rk(fg)
are both Ω(log log n). In fact, we conjecture that the D3(f) and Dk(fg) are
both ω(log n) or even nΩ(1). Proving the latter would yield explicit examples of
function in RPcc

3 but not in Pcc
3 .

5 On Complete Problems for NPcc
k

An alternative approach to separating Pcc
k from RPcc

k with an explicit function
is to find a function that is complete in some sense. If we can prove for some
explicit function that it is “at least as hard” as any function in RPcc

k , then by our
separation result we can conclude that it is not in Pcc

k . Proving a lower bound
for a function complete for NPcc

k has the added benefit of potentially separating
NPcc

k from RPcc
k as well. (Recall that simple functions are in RPcc

k so they cannot
separate NPcc

k from RPcc
k .) The set intersection function is complete for the class

analogous to NPcc
k in the number-in-hand (NIH) model, and thus also for NPcc

2 .
In this section, we prove that this function is not complete for NPcc

k for k ≥ 3.
For sets X1, . . . , Xk, write X for X1 × · · · ×Xk. We write x ∈ X to denote

a k-tuple (x1, . . . , xk) where xi ∈ Xi for all i ∈ [k]. Use ϕ to denote a k-tuple
of functions ϕ1, . . . , ϕk. Furthermore, for i ∈ [k], write α−i for the (k − 1)-tuple
obtained from α by removing the i-th coordinate.

In two-party communication complexity Babai, Frankl, and Simon [1] defined
a natural notion of a reduction between problems called a ‘rectangular’ reduction
that does not require any communication to compute.

Definition 12. For k = 2, let f : X → {0, 1} and g : X ′ → {0, 1}. A pair of
functions ϕ with ϕi : Xi → X ′

i is a rectangular reduction of f to g, written
f v g, if and only if f(x1, x2) = g(ϕ1(x1), ϕ2(x2)).

Furthermore, they defined an appropriate ‘polynomially-bounded’ version of
rectangular reduction for function families.

Definition 13. For function families f = {fn} and g = {gn} where fn, gn :
({0, 1}n)2 → {0, 1}, we write f vp g if and only if there is a function m : N → N
such that for every n, fn v gm(n) and m(n) is 2(log n)O(1)

.

Proposition 14 ([1]). Let f and g be function families. If f vp g and g ∈ Pcc
2

then f ∈ Pcc
2 . If f vp g and g ∈ NPcc

2 then f ∈ NPcc
2 .

Definition 15. A function family g is complete for NPcc
2 under rectangular

reductions if and only if g ∈ NPcc
2 and for all f ∈ NPcc

2 , f vp g.

The set intersection function is Disjk,n : ({0, 1}n)k → {0, 1} defined by
Disjk,n(x) = 1 if and only if there is some i ∈ [n] such that x1,i = . . . = xk,i = 1.
Clearly, Disjk ∈ NPcc

k . Babai, Frankl and Simon observed the following:

Proposition 16 ([1]). Disj2 is complete for NPcc
2 under rectangular reductions.



For k ≥ 3, rectangular reductions extend to cubic reductions in the NIH
model of communication complexity. Moreover, it is easy to see that the com-
pleteness result of Proposition 16 continues to hold in the NIH model under
cubic reductions. One might conjecture that Disjk is also complete for NPcc

k

under a natural extension of rectangular reductions in the NOF model. Such a
notion of reduction should not require any communication between the parties.
This yields the following definition:

Definition 17. Given f : X → {0, 1} and g : X ′ → {0, 1} we say that functions
ϕ are a cylindrical reduction of f to g if and only if for every x ∈ X there is an
x′ ∈ X ′ such that for all i ∈ [k], ϕi(x−i) = x′−i and f(x) = g(x′). Thus each ϕi

maps the NOF view of the i-th player on input x for f to the NOF view of the
i-th player on input x′ for g.

We show that cylindrical reductions must be of a special form, given by
the natural no-communication reductions associated with the number-in-hand
model. A = A1 × · · · ×Ak is a cube, if Ai ⊆ Xi for all i ∈ [k].

Lemma 18. If there is a cylindrical reduction of f : X → {0, 1} to Disjk,m

then f−1(1) is a union of m cubes.
ut

Theorem 19. There is a function f : {0, 1}3n → {0, 1} with deterministic 3-
party NOF communication complexity at most 3 such that any cylindrical reduc-
tion of f to Disj3,m requires m > 2n−3.

Proof. For x, y, z ∈ {0, 1}n, define f(x, y, z) to be 1 if and only if x, y, and
z are pairwise orthogonal in Fn

2 . There is a trivial 3-party NOF protocol for
f in which 3 bits are exchanged, namely, each party checks that the inputs it
sees are orthogonal. We now show that any way to write f−1(1) as a union of
cubes must contain exponentially many cubes since each cube can only cover an
exponentially small portion of f−1(1).

For u, v ∈ {0, 1}n, let h(u, v) = 1 iff 〈x, y〉 = 0 in Fn
2 . Then f(x, y, z) =

h(x, y)h(y, z)h(x, z). Consider the uniform distribution µ over {0, 1}3n.
We first show that f−1(1) is a set of probability more than 1/8. Under µ, for

each pair u, v ∈ {x, y, z}, the probability that h(u, v) = 1 is 1/2 + 1/2n+1 > 1/2
(consider whether or not u = 0n). We claim that the probability that f(x, y, z) =
1 is at least 1/8. Suppose that x 6= 0n. Then the probability that y is orthogonal
to x is precisely 1/2. Now, z is orthogonal to the span 〈{x, y}〉 with probability
at least 1/4. So, conditioned on x 6= 0n, the probability that f(x, y, z) = 1 is
at least 1/8. If x = 0n then the probability that f(x, y, z) = 1 is precisely the
probability that y and z are orthogonal which is at least 1/2. Therefore the
probability that f(x, y, z) = 1 is more than 1/8 overall.

Now since f(x, y, z) = h(x, y)h(y, z)h(x, z), any cube C = A1×A2×A3 with
C ⊆ f−1(1) must, in particular, have, A1 × A2 ⊆ h−1(1). Thus every x ∈ A1

must be orthogonal to every y ∈ A2 and so the dimensions of their spans must
satisfy dim(〈A1〉) + dim(〈A2〉) ≤ n. Therefore |A1 × A2| ≤ |〈A1〉 × 〈A2〉| ≤
2dim(〈A1〉)+dim(〈A2〉) ≤ 2n so |C| ≤ 2n|A1 × A2| ≤ 22n and the probability that
(x, y, z) ∈ C is at most 2−n. The claimed result follows immediately. ut



This argument can be extended to other functions h : {0, 1}2n → {0, 1} that
have only small 1-monochromatic rectangles. It suffices that h(x, y)h(y, z)h(x, z)
be 1 on a large fraction of inputs. Also, although the above Lemma is stated only
for k = 3 it is easy to see that the same bounds hold for larger k.

Given that any function f(x, y, z) of the form h1(x, y)h2(x, z)h3(y, z) has
communication complexity at most 3, it seems unlikely that any function is
complete for NPcc

3 under efficient reductions that do not require communication.
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