
New Results on the Complexity of the Middle
Bit of Multiplication

Ingo Wegener

University Dortmund
Department of Computer Science

44221 Dortmund
Germany

ingo.wegener@uni-dortmund.de

Philipp Woelfel∗

University of Toronto
Department of Computer Science

10 King’s College Road
Toronto, ON M5S 3G4

Canada
pwoelfel@cs.toronto.edu

Abstract

It is well known that the hardest bit of integer multiplication is
the middle bit, i.e. MULn−1,n. This paper contains several new results
on its complexity. First, the size s of randomized read-k branching
programs, or, equivalently, their space (log s) is investigated. A ran-
domized algorithm for MULn−1,n with k = O(log n) (implying time
O(n log n)), space O(log n) and error probability n−c for arbitrarily
chosen constants c is presented.

Second, the size of general branching programs and formulas
is investigated. Applying Nechiporuk’s technique, lower bounds of
Ω
(
n3/2/ log n

)
and Ω

(
n3/2

)
, respectively, are obtained. Moreover,

by bounding the number of subfunctions of MULn−1,n, it is proven
that Nechiporuk’s technique cannot provide larger lower bounds than
O(n5/3/ log n) and O(n5/3), respectively.

∗Supported in part by DFG grant WO 1232/1-1

1 Introduction

Integer multiplication is certainly one of the most important functions for
computer science. Therefore, a lot of effort has been spent in designing
good algorithms and small and shallow circuits and in determining its com-
plexity. Most algorithms such as the Schönhage-Strassen method require at
least linear space in order to compute the product of two n-bit integers. On
the other hand, the school method can easily be implemented with O(log n)
space, but for the price of a higher, almost quadratic Ω(n2/ log n) running
time. This is not surprising, because even in general nonuniform computa-
tion models such as branching programs a time-space product of Ω(n2) is
necessary (see Dietzfelbinger, 1996, and Mansour, Nisan and Tiwari, 1993).
On the other hand, in nonuniform computation models, any boolean function
f : {0, 1}n → {0, 1}m can be implemented in O(n) time and O(m) space by
simply using table-lookups. It is interesting, though, that regarding time-
space tradeoffs in nonuniform models, the school method is the most general
algorithm because for any log n ≤ k ≤ n it can be implemented in O(k)
space and O(n2/k) time.

However, the complexity of computing single output bits of integer multi-
plication is far from being as well understood as that of computing all output
bits. The main reason is probably, that for single output bit boolean func-
tions f : {0, 1}n → {0, 1} the known lower bound techniques are yet too weak
to obtain better than only slightly super-linear time-space products and even
such lower bounds are rare (see Ajtai, 1999, and Beame, Saks, Sun and Vee,
2003, for the best lower bounds). Nevertheless, good space lower bounds can
be shown in more restricted models.

Definition 1 A branching program for a function f : {0, 1}n → {0, 1}m is a
directed acyclic graph with one source and one sink and the following proper-
ties. The internal nodes are marked with the n input variables x1, . . . , xn and
have two outgoing edges, a 0-edge and a 1-edge. Some edges may additionally
be marked with a pair (yi, c) where yi, 1 ≤ i ≤ m, is an output variable and
c is either 0 or 1. Then any assignment (a1, . . . , an) defines a computation
path, which starts at the source and leaves any internal node marked with xi

via the ai-edge. Finally, each computation path for an input (a1, . . . , an) for
all 1 ≤ i ≤ m passes over exactly one edge marked with (yi, bi), bi ∈ {0, 1},
in such a way that f(x1, . . . , xn) = (b1, . . . , bm). A randomized branching
program may use additional randomized nodes with arbitrary outdegree at

2

which the outgoing edge a computation path uses is chosen randomly. In
this case, the computation of f may err with a certain probability.

The size of a branching program is the number of its nodes, its space is
the logarithm of its size, and its time or length is the length of the longest
computation path. The branching program size of f is the size of a branching
program computing f with minimal size. A branching program is called read-
k, if any source-to-sink path contains each variable at most k times.

If a branching program computes only one output bit (i.e. m = 1), then it
is more convenient to define it in such a way that it has two sinks instead of
marked output edges — a 0-sink and a 1-sink, corresponding to the two pos-
sible outputs. In the following discussion we restrict ourselves to branching
programs computing only one output bit.

Branching programs are such a general computation model that Turing
machines or register machines can be simulated by them with essentially the
same time and space resources. On the other hand, it is easy to see that
branching programs can be simulated by nonuniform Turing machines or
nonuniform register machines using asymptotically as much time and space
as the branching program (at least as long as the space is Ω(log n)).

While using counting arguments one can show that almost all boolean
function have an exponential branching program size, such lower bounds can-
not be proven for explicitly defined functions (i.e. functions in NP). Since 40
years (more precisely, since Nechiporuk, 1966) the best lower bounds for ex-
plicitly defined functions are of the order n2/ log2 n and all lower bounds close
to n2 have been proven with the same arguments, namely with Nechiporuk’s
technique.

However, restrictions on e.g. the number of queries of each variable have
led to good lower bound results. It should be pointed out that the read-
k restriction is syntactic in the sense that it applies to graph-theoretical
paths in a branching program and not only to computation paths. While
—as we have mentioned earlier— lower bounds for time-restricted branching
programs with one output bit are hard to prove (due to the fact that a
time restriction is semantical) and therefore rarely exist, good lower bound
techniques for read-k branching programs have been known for quite some
time (the first superpolynomial size lower bounds were proven by Borodin,
Razborov and Smolensky, 1993, and Okol’nishnikova, 1993, and an overview
of several other results can be found in the monograph of Wegener, 2000).
There are also good lower bound results for the computation of single output

3

bits of natural functions as e.g. integer multiplication.
Let MULn : {0, 1}n × {0, 1}n → {0, 1}2n be the function mapping two n-

bit integers to their 2n-bit product and let MULi,n : {0, 1}n×{0, 1}n → {0, 1}
be the boolean function which computes the i-th least significant bit of
the product of two n-bit integers, i.e. (xn−1 . . . x0, yn−1 . . . y0) 7→ zi, where
z2n−1 . . . z0 = MULn(xn−1 . . . x0, yn−1 . . . y0). It is well known that the “mid-
dle bit”, that is the function MULn−1,n, is the most difficult to compute.
More precisely, any branching program for MUL2n−1,2n can be converted into
a branching program for MULi,n, 0 ≤ i < 2n, by relabeling the nodes and by
replacing some inputs with the constant 0.

For read-once branching programs computing MULn−1,n, Ponzio (1995)
was the first to prove a superlogarithmic space lower bound of Ω(

√
n), and

later, even a linear lower bound was obtained by Bollig and Woelfel (2001).
Only recently Sauerhoff and Woelfel (2003) proved a space lower bound
of Ω

(
log
(
1/ε(n)

)
· k(n)−2 · 3−2k(n)

)
for randomized read-k(n) branching pro-

grams, where ε(n) is the maximal error probability. Thus, if we restrict our-
selves to (weakly) exponentially small error, then a log-space computation of
MULn−1,n requires k(n) = Ω(log n).

These results as well as our inability to design fast deterministic log-space
algorithms for computing single product bits indicate that MULn−1,n is a
“hard” function. Therefore, it is quite surprising that one can approximate it
even with read-once branching programs in log-space and with polynomially
small error, as shown by Sauerhoff and Woelfel (2003). (Approximating f
with error ε means computing a function f ′ which equals f on all but an
ε-fraction of the inputs.) In addition, it is easy to see that using arithmetics
modulo a randomly chosen prime, one can verify in logarithmic space and
with a small error probability whether the product of two integers equals
some given output (Ablayev and Karpinski, 2003). However, computing the
middle output bit of integer multiplication is harder than approximating it
and apparently also harder than verifying all output bits. Therefore, the
following upper bound which we prove in this paper is also rather surprising.

Theorem 1 For any constant c and for k(n) = O(log n) there is a random-
ized read-k(n) branching program for MULn−1,n of size nO(1) with a two-sided
error probability of at most n−c.

Hence, querying each input bit only logarithmically many times allows a
log-space computation of any product bit with a polynomially small error

4

probability. This is the first upper bound on the time-space product of
randomized computations of product bits which is better than Ω(n2) and it
shows that using randomization and a very moderate error probability, we
can at least reach the theoretical lower bound for deterministic read-O(log n)
branching programs.

We remark that due to the fact that the algorithm we present merely
uses arithmetics over O(log n)-bit registers, the same time and space bounds
hold e.g. for nonuniform word-RAMs with word size Θ(log n). With constant
word size, the time increases by an O(log n)-factor. Furthermore, the only
reason why the algorithm is nonuniform is that it requires to choose a prime
number randomly.

After proving the upper bound in the following section, we consider
the size of unrestricted branching programs and formulas for MULn−1,n. A
boolean formula is a circuit with fan-out 1. Here, we consider formulas over
the basis B2 of all binary operations (in short: B2-formulas). Note that
for formulas with restricted basis, e.g. {∧,∨,¬}, better results than those
presented below are known.

As we have mentioned before, today, the best lower bounds one can prove
for explicitly defined functions are of the order n2/ log2 n for the branch-
ing program size and of the order n2/ log n for the B2-formula size. All
lower bounds in this order of magnitude were proven with the method of
Nechiporuk (1966), and it is known that this method cannot yield better
lower bounds. Moreover, most lower bounds were proven for functions which
are nor really interesting for implementations or hardware realization. This
is obviously different for integer multiplication, and therefore the branching
program and formula size of MULn−1,n should be investigated.

Theorem 2

1. Any branching program for MULn−1,n has at least Ω
(
n3/2/ log n

)
nodes

and any B2-formula for MULn−1,n has size at least Ω(n3/2).

2. Using Nechiporuk’s technique, it is not possible to prove a better lower
bound than O

(
n5/3/ log n

)
and O

(
n5/3

)
for the branching program and

B2-formula size of MULn−1,n, respectively.

The second part of the theorem tells us that we should not attempt to prove
better lower bounds than O(n5/3) until we are aware of a new lower bound
technique.

5

In the following section, we first introduce some notation and then present
the randomized space-bounded algorithm for MULn−1,n and prove Theo-
rem 1. In Section 3 we count the number of subfunctions of MULn−1,n in
order to obtain Theorem 2.

2 A Randomized Algorithm for Space-

Bounded Computation of Product Bits

In order to compute the product of two n-bit integers, we will consider the
corresponding problem of adding n n-bit integers, as it is done in the school
method for multiplication. We use the operations mod and div, where mod
is the usual modulo operation and x div y := bx/yc is defined for rational
numbers x and y. Let x be a rational number represented by the finite bit
string xn . . . x0.x−1 . . . x−m, i.e. x =

∑n
i=−m xi · 2i. Then we say that xi is the

ith bit of x. In order to be able to address an integer y represented by the
bit string yj−i . . . y0 := xj . . . xi, j ≥ i, we use the following notion:

〈x〉ji = x div 2i mod 2j−i+1 (= x mod 2j+1 div 2i for j ≥ 0).

Note that for j ≥ 0 the operation x mod 2j+1 can be viewed as zeroing
out all bits in the binary representation of x which are farther left than
the jth bit. The division x div 2i is best imagined as a right shift of the
binary representation of x by i bit positions (note that in the case i ≤ 0,
the operation x div 2i is in fact a multiplication of x with the integer 2−i

and thus can be viewed as a left shift of the binary representation by |i| bit
positions). We abbreviate 〈x〉ii by 〈x〉i. Finally, we denote by Zr the set of
integers {0, . . . , r − 1}.

Assume that we want to compute k consecutive bits of the sum of m
integers w1, . . . , wm ∈ Z2n . Let for a ≥ 0, k ≥ 1

Sa,k(w1, . . . , wm) = 〈w1 + · · ·+ wm〉a+k−1
a

=
(
(w1 + · · ·+ wm) mod 2a+k

)
div 2a.

For x ∈ Z≥0 let H(x) = x div 2a be the “high part” of x, M(x) = 〈x〉a−1
a−` =

x mod 2a div 2a−` be the “middle part” and L(x) = 〈x〉a−`−1
0 = x mod 2a−`

be the “low part”. Then x = 2a ·H(x) + 2a−` ·M(x) + L(x). This notation
and the definition of Sa,k(w1, . . . , wm) are illustrated in Figure 1.

6

H(w1)

H(wm)

M(w1)

M(wm)

L(w1)

L(wm)

0a− `aa + k

∑
Sa,k(w1, . . . , wm)

Figure 1: Definition of Sa,k(w1, . . . , wm), H(wi), M(wi), and L(wi).

In the following we try to compute an approximation of the sum Sa,k.
Recall that an approximation of a function f is a function g such that for
a large fraction of the inputs the function values of f and g are equal. We
can get an approximation of Sa,k by summing only the high and middle
part of the integers and ignoring the low part. Thus, let H =

∑m
i=1 H(wi),

M =
∑m

i=1 M(wi) and L =
∑m

i=1 L(wi). Note that

Sa,k(w1, . . . , wm) =
〈
2aH + 2a−`M + L

〉a+k−1

a
.

(This value does not depend on `). In order to approximate Sa,k(w1, . . . , wm),
we may ignore L and compute

S∗∗
a,k,`(w1, . . . , wm) =

(
2` ·H + M

)
mod 2k+`

=

(
m∑

i=1

wi div 2a−l

)
mod 2k+`

and let the approximation be

S∗
a,k,`(w1, . . . , wm) = S∗∗

a,k,`(w1, . . . , wm) div 2`

=
(
2`H + M

)
mod 2`+k div 2` =

〈
2` ·H + M

〉`+k−1

`

=
〈 m∑

i=1

wi div 2a−`
〉`+k−1

`
.

These definitions are illustrated in Figure 2.
In order to simplify the notation, we abbreviate Sa,k(w1, . . . , wm) by Sa,k

and analogously use the abbreviations S∗
a,k,` and S∗∗

a,k,`, if it is clear from the

7

H(w1)

H(wm)

M(w1)

M(wm)

0

0

0a− `aa + k

∑
S∗

a,k,`(w1, . . . , wm)

︸ ︷︷ ︸
S∗∗

a,k,`(w1, . . . , wm)

Figure 2: Definition of S∗
a,k,`(w1, . . . , wm) and S∗∗

a,k,`(w1, . . . , wm).

context which integers we use for the sums. To compare Sa,k and S∗
a,k,` it

may also be useful to note that

S∗
a,k,`(w1, . . . , wm) =

〈
2a ·H + 2a−` ·M

〉a+k−1

a
.

2.1 The Approximation Lemma

The idea is that ignoring the low part of the sum, we can compute the
approximation S∗

a,k,` of Sa,k in small space if k + ` is small. On the other
hand, in most cases the carry induced by the low part should not influence the
more significant bits of the sum if ` is not too small. In the case of summing
up n numbers, the carry of the L-part, namely L div 2a−`, is bounded by n,
because L ≤ n·(2a−`−1). For ` > log n the carry of the L-part has only zeros
at the position of the H-part. Moreover, if M mod 2` is smaller than 2` − n,
the high bits of the sum (i.e. the bits in the position of H) are not influenced
by the carry of the L-part. Hence, omitting the L-part when computing the
sum does not change the result of the high bits in the sum. We remark that
this was already observed by Sauerhoff and Woelfel (2003).

For a good approximation it is enough to prove that for most inputs it
does not matter whether we omit the L-part in computing the sum. For a
good randomized computation this is not enough since the error probability
is 1 for certain inputs. We need a randomized advice to recognize wrong
results and to correct them. The following lemma tells us how we can detect
the situations in which the approximation is correct and will later help us to
obtain the true value even if the algorithm errs.

8

Lemma 1 Let m ≥ 2, ` ≥ dlog me+1, a, k ≥ 1, and z = S∗
a,k,`(w1, . . . , wm).

(a) Sa,k(w1, . . . , wm) ∈
{
z, (z + 1) mod 2k

}
and

(b) Sa,k(w1, . . . , wm) 6= z if and only if the following two inequalities are
both true:

(i) S∗∗
a,k,`(w1, . . . , wm) mod 2` > 2` −m

(ii) Sa−`,`(w1, . . . , wm) < m.

Before proving the lemma we give some intuition. The first statement is easy.
If the middle part is long enough such that the L-sum has only zeros in the
high part, then the L-sum can only lead to a carry of at most 1 in the high
part. The second statement is more subtle. The first inequality says that
the M -part of the approximation is in the critical region, i.e. it is large. The
second inequality tells us that the M -part of the true sum is small. Hence,
adding the carry of the L-part to the approximation turns the M -part from
large into small. This is only possible if some new carry to the high bits is
produced. For a formal proof of Lemma 1 the following obvious statement is
helpful.

Proposition 1 Let b, c ∈ Z≥0 and k ∈ Z>0. Then

(a) (b + c) div k ∈ {z, z + 1}, where z = b div k + c div k.

(b) The following three statements are equivalent:

1. (b + c) div k = b div k + c div k,

2. b mod k + c mod k < k,

3. (b + c) mod k ≥ b mod k.

Proof of Lemma 1: Recall the definitions of H, M and L from above.
First of all note that L is the sum of m (a− `)-bit integers and thus bounded
by m(2a−` − 1). Hence, L div 2a < m · 2−` and thus L div 2a = 0 by the
assumption on `. Let

r := 2aH + 2a−`M + L and z′ := 2aH + 2a−`M.

Using L div 2a = 0 and Proposition 1(a) we obtain

r div 2a ∈ {z′ div 2a, z′ div 2a + 1}.

9

Now part (a) follows because Sa,k = r div 2a mod 2k and

z′ div 2a mod 2k = (2`H + M) div 2` mod 2k = S∗
a,k,`.

For part (b) first note that r div 2a 6= z′ div 2a is equivalent to Sa,k 6= S∗
a,k,`

because z′ div 2a mod 2k 6= (z′ div 2a + 1) mod 2k. Furthermore, r mod 2a =
(2a−`M + L) mod 2a and z′ mod 2a = (2a−`M) mod 2a. We apply Proposi-
tion 1(b) for k := 2a, b := L, and c := z′. The statement Sa,k 6= S∗

a,k,`

is equivalent to r div 2a 6= z′ div 2a and, since L div 2a = 0 (see above), to
the negation of Statement 1. Hence, Sa,k 6= S∗

a,k,` is also equivalent to the
negation of Statement 2 as well as to the negation of Statement 3, namely to(

2a−`M
)

mod 2a + L mod 2a ≥ 2a and to (∗)(
2a−`M + L

)
mod 2a < L mod 2a. (∗∗)

Since L div 2a = 0, we have L mod 2a = L. Moreover, L is the sum of m
(a− `)-bit integers implying that L < m ·2a−` or L/2a−` < m. Dividing both
sides of inequality (∗) by 2a−`, we obtain

M mod 2` ≥ 2` − L/2a−` > 2` −m.

This shows that inequality (i) in part (b) of the lemma is fulfilled because
S∗∗

a,k,` ≡ M (mod 2`). Similarly, dividing both sides of inequality (∗∗) by 2a−`

yields
(2a−`M + L) mod 2a div 2a−` < L/2a−` < m.

By definition, the left part of this inequality equals Sa−`,`. Hence, inequality
(ii) is true.

Finally, assume that inequalities (i) and (ii) are both fulfilled. Then
M mod 2` > 2` −m and (2a−`M + L) mod 2a div 2a−` < m. Multiplying
with 2a−` this implies

(2a−`M) mod 2a > 2a −m · 2a−`

and
(2a−`M + L) mod 2a < m · 2a−`.

Due to the assumption ` ≥ dlog me + 1 we know that m · 2a−` ≤ 2a−1 ≤
2a −m · 2a−`. Hence, we conclude

(2a−`M) mod 2a > (2a−`M + L) mod 2a.

10

For k := 2a, b := 2a−`M and c := L this is the negation of Statement 3 of
Proposition 1(b). This is equivalent to the negation of Statement 2 of this
proposition which implies (∗).

As we have shown above, this inequality is equivalent to the inequality
Sa,k 6= S∗

a,k,`. Since z = S∗
a,k,`, we have shown that the inequalities (i) and

(ii) imply Sa,k 6= z. This completes the proof of part (b).

2.2 Computing and Testing the Approximation Value

Now knowing that the approximation S∗
a,k,` cannot differ much from the

true value Sa,k and that we have a method to check the correctness of the
approximation, we present a space-bounded read-once computation of S∗

a,k,`.
Since the space bound grows linearly in k and `, we also present a randomized
test whether S∗

a,k,` equals some given value. Here, the space bound grows
linearly with respect to ` and log n and depends on the error probability.

Lemma 2 Let x, y ∈ Z2n and z ∈ Z2k be given by their binary representa-
tions and let wi = x · 2i and yi = 〈y〉i for 0 ≤ i < n.

(a) For any c > 0 and ` ≥ dlog ne + 1 there is a nonuniform ran-
domized algorithm which queries each x-, y-, and z-bit at most 4
times, uses space max {4`, 3c(log n + log log n)} + O(1), accepts if
S∗

a,k,`(w0 · y0, . . . , wn−1 · yn−1) = z and otherwise rejects with a prob-
ability of at least 1−O(k log n/nc).

(b) There is a deterministic algorithm which queries each x- and y-
bit at most once and computes S∗

a,k,`(w0 · y0, . . . , wn−1 · yn−1) in space
2(k + `) +O(1).

The following statement is well known and has been widely used in ran-
domized algorithms such as pattern matching or fingerprinting.

Fact 1 Let Qt be the set of all odd primes smaller than t and let d ∈ Z−{0}.
Then the probability that d ≡ 0 (mod p) for a randomly chosen prime p ∈ Qt

is bounded by O
(
(log |d|) · (log t)/t

)
.

Proof: It is well known that there are Θ(i) primes in Qidlog ie and thus Qt

consists of Ω(t/ log t) different primes. Since |d| is a multiple of less than
log |d| different primes, the probability that one of them is in Qt is bounded
by O

(
(log |d| · (log t)/t

)
.

11

Proof of Lemma 2:

Proof of part (a): For fixed a, k, and `, and for some i ∈ {1, . . . , n} let

w′
i := w′

i(a, k, `) := 〈wi〉a+k−1
a−` = 〈x〉a+k−1−i

a−`−i

(recall that according to our definition the integer 〈x〉jt has for t < 0 the
binary representation xj . . . x00 . . . 0, where the number of 0s following x0 is
−t). The multiplication of x and y can be considered as the addition of num-
bers wi ·yi, where wi = 2i ·x and yi is the i-th bit of y. This is the basic idea of
the school method for multiplication. In this case S∗

a,k,`(w0y0, . . . , wn−1yn−1)
is the approximation of the substring of x · y at bit positions a, . . . , a+ k− 1.
This approximation is computed as the corresponding substring of the sum
of the middle and high part of the addends. By definition, w′

i · yi represents
the i-th addend. Defining S :=

∑n−1
i=0 w′

i · yi we obtain

S∗
a,k,`(w0y0, . . . , wn−1yn−1) =

(
n−1∑
i=0

〈wi〉a+k−1
a−` · yi

)
mod 2k+` div 2`

=

(
n−1∑
i=0

w′
iyi

)
mod 2k+` div 2` = 〈S〉k+`−1

` = S`,k(w
′
0y0, . . . , w

′
n−1yn−1).

In the following, we use the abbreviations S... for S...(w
′
0y0, . . . , w

′
n−1yn−1) and

S∗
... for S∗

...(w
′
0y0, . . . , w

′
n−1yn−1).

Let t > 2 be an integer to be determined later. Our randomized algorithm
executes the following four main steps:

1. Compute S∗
k+`,`,`.

2. Compute S mod 2`

3. Randomly choose a prime number p ∈ Qt. For

z∗ := S − 2k+` · S∗
k+`,`,` − (S mod 2`)

accept if (z∗ − 2` · z) mod p ∈
{
0, 2k+` mod p

}
and reject otherwise.

We first discuss the implementation details and resource bounds and later
prove the claimed bound on the error probability. Since our computation
model is nonuniform, we can assume that in Step 3 the algorithm randomly

12

samples a prime p ∈ Qt by simply choosing a random value µ ∈ {1, . . . , |Qt|}.
All computations involving p then are uniquely determined by µ.

In the first step S∗
k+`,`,` has to be computed. Its arguments are the (k+`)-

bit numbers w′
i ·yi. According to the definition of S∗

k+`,`,` the low part consists
of k bits which are ignored in the sum. The middle part consists of ` bits
which are considered in the addends but not in the result. The high part is
empty in the addends but is considered in the result. Its length is `. This
can be written as follows:

S∗
k+`,`,` =

(n−1∑
i=0

(w′
i · yi) div 2k

)
mod 22` div 2`.

Since the k least significant bits of the addends are ignored and the sum is
taken modulo 22`, we can eliminate the least k significant bits in w′

i and take
the result modulo 22`. Hence, let w∗

i := (w′
i div 2k) mod 22`. Then

w∗
i = 〈wi〉a+k+`−1

a+k−` = 〈x〉a+k+`−i−1
a+k−`−i

and

S∗
k+`,`,` =

(n−1∑
i=0

w∗
i · yi

)
mod 22` div 2`.

It is easy to see that knowing w∗
i it suffices to query one x-bit (namely the

bit 〈x〉a+k−`−i−1) in order to obtain w∗
i+1. Hence, S∗

k+`,`,` can be computed
by querying each x- and y-bit at most once and using two registers — one
storing the subtotals modulo 22` and the other the value w∗

i . Since w∗
i is a

2`-bit value, the total amount of space required for the first step is 4`+O(1).
In the second step S mod 2` can be computed by summing up the n `-

bit integers (w′
iyi) mod 2` in Z/2`

Z. Analogously to w∗
i in the first step,

w′
i+1 mod 2` can be computed from w′

i mod 2` by reading one x-bit. There-
fore, querying each x- and each y-bit once suffices in order to compute
S mod 2` if we use one `-bit register for storing the subtotals and one for
storing w′

i mod 2`. Hence, for the Steps 1 and 2 the time bounds total to
O(n) and the space bounds total to 4` +O(1).

Now we investigate the computation of the sum S modulo p in the third
step. The binary value of w′

i+1 is obtained from w′
i by first removing its most

significant bit (i.e. by subtracting 2k+`−1 · 〈w′
i〉k+`−1 = 2k+`−1 〈x〉a+k−i−1),

then shifting the result by one bit position to the left (i.e. multiplying it with

13

2), and finally adding the least significant bit of w′
i+1, which is 〈x〉a−`−i−1.

Hence,
w′

i+1 = 2 ∗ w′
i − 2k+`−1 〈x〉a+k−i−1 + 〈x〉a−`−i−1 .

Therefore, knowing w′
i mod p we can easily compute w′

i+1 mod p by simply
querying two x-bits and doing the above computation modulo p. Hence,
once the results of the Steps 1 and 2 are known, the algorithm can compute
z∗ mod p by querying each x-variable twice and each y-variable once. Besides
storing p, it suffices to store the subtotals and in the ith step the addend w′

i in
one dlog pe-bit register, each. Finally, (z∗ − 2` · z) mod p can be obtained by
querying each z-variable, using again one dlog pe-bit register for the subtotals.
Altogether, Step 3 of the algorithm is possible with 3n + k variable queries
and with 3 log p+O(1) space. Totaling over all four steps we obtain that each
variable needs to be queried at most 4 times and that max {4`, 3 log p}+O(1)
space suffices.

We shall now bound the error probability of the algorithm depending
on the choice of t (recall that the prime p is chosen from Qt). Since S is
the sum of n (k + `)-bit integers and thus bounded by 2log n+k+`, we have
S mod 2k+2` = S (recall that ` ≥ dlog ne+1). Therefore, Sk+`,` = S div 2k+`,
which implies

S − 2k+` · Sk+`,` − S mod 2` = S − 2k+` ·
(
S div 2k+`

)
− S mod 2`

= 2` · 〈S〉k+`−1
` = 2` · S`,k.

The second equality follows easily. We take S, subtract first the high part,
then the low part, and obtain the middle part. By plugging this into the
definition of z∗ and then applying Lemma 1(a) we obtain

z∗−2`·S`,k = S−2k+`·S∗
k+`,`,`−(S mod 2`)−2`·S`,k = 2k+`·

(
Sk+`,` − S∗

k+`,`,`

)
.

Lemma 1 implies that Sk+`,` equals S∗
k+`,`,` or (S∗

k+`,`,` + 1) mod 2`. Again
since ` ≥ dlog ne + 1 and S∗

k+`,`,` is the carry of the sum of n numbers,

(S∗
k+`,`,` + 1) mod 2` equals S∗

k+`,`,` + 1. Thus, Sk+`,` − S∗
k+`,`,` ∈ {0, 1} and

z∗ − 2` · S`,k ∈
{
0, 2k+`

}
. Hence, if S`,k = z then (z∗ − 2` · z) mod p ∈{

0, 2k+` mod p
}

and the algorithm accepts correctly.
Now assume that this is not the case, i.e. S`,k 6= z, and let d = z − S`,k.

Then d ∈
{
±1, . . . ,±(2k − 1)

}
and using (2.2) yields

r := z∗ − 2` · z = z∗ − 2` · S`,k − 2` · d ∈
{
−2` · d, 2`(2k − d)

}
.

14

The algorithm only falsely accepts if r ≡ 0 or (2k+` − r) ≡ 0 (mod p).
But since p 6= 2 and r is a multiple of 2`, this is equivalent to r′ ≡ 0
or (r′ − 2k) ≡ 0 (mod p), where r′ = r div 2`. According to Fact 1 the
probability that this is the case is bounded by O(k(log t)/t), because
|r′| < 2k+1 and |r′| 6∈

{
0, 2k

}
. Hence, for c > 1 and t = dnce we ob-

tain an error probability of O(k log n/nc). Using the fact that any prime
p ∈ Qt is bounded by O(t log t) the space of our algorithm is bounded by
max {3c(log n + log log n), 4`}+O(1).

Proof of part (b): The proof of this part is already implicitly contained
in the proof of part (a). Recall the computation of S∗

k+`,`,` in the first step
of the randomized algorithm. Exactly the same arguments show that we can
compute S∗

a,k,` by the summation of (k+`)-bit integers w′
0 ·y0, . . . , w

′
n−1 ·yn−1

modulo 2k+`, where w′
i+1 can be computed by querying only one x-bit if we

know w′
i. It suffices to query each x-variable and each y-variable once and

to store w′
i and the partial sums in two (k + `)-bit registers. Hence, the sum

can be computed in 2(k + `) +O(1) space.

2.3 The Algorithm

We now state an algorithm which computes 〈w1 + · · ·+ wm〉n−1 =
Sn−1,1(w1, . . . , wm) for m integers w1, . . . , wm ∈ Z2n . As subroutines we use
the algorithms for computing and testing S∗

a,k,` from the former section. The
time bounds of these subroutines are meaningful only if the addends wi are
the values x·2i ·〈y〉i from the school method for integer multiplication. Hence,
the following algorithm is only useful for multiplication and not for adding
multiple integers. However, its correctness can be proven for arbitrary sums.

15

Let ` = dlog me+1, a = bn/2c and k = n− a.

Algorithm for computing Sn−1,1(w1, . . . , wm):

1. If n ≤ 3`, then compute s =
∑m

i=1 wi and return 〈s〉n−1.

2. Otherwise, compute z∗ := S∗
n−1,1,`(w1, . . . , wm).

3. Test whether the equation S∗
a,k−1,`(w1, . . . , wm) = 2k−1 − 1 is true.

(a) If true, then compute recursively s′ = Sa,1(w1, . . . , wm) and re-
turn (z∗ + s′ + 1) mod 2.

(b) If false, then let w′
i = wi div 2a−` (for 1 ≤ i ≤ m) and compute

recursively Sk+`−1,1(w
′
1, . . . , w

′
m). Return the result.

Before formally proving the algorithm’s correctness, let us sketch the idea
behind it. Let s = w1 + · · ·+ wm and sN . . . s0 be the binary representation
of s. The algorithm first computes z∗ as an approximation for sn−1. Con-
sider the sum S = Sa,k−1(w1, . . . , wm), which has the binary representation
sn−2 . . . sa. Let s∗n−2 . . . s∗a be the binary representation of the approximation
S∗

a,k−1,`(w1, . . . , wm) of S. Note that this approximation is obtained by sum-
ming the integers w1, . . . , wm but ignoring the carry value C induced at the
bit position a− `. In Step 3 we test whether s∗n−2 = · · · = s∗a = 1.

Assume first that this is not the case, i.e. there is a bit s∗i = 0, a ≤ i ≤
n − 1. Then adding the carry value C may lead to a flip of this bit but it
can be seen that the more significant bits will remain unchanged. Hence,
the bits sn−2 . . . si+1 equal their approximation s∗n−2 . . . s∗i+1. With the same
argument it follows that if we sum w1, . . . , wm but ignore the carry C, the
resulting bit at position n− 1 is in fact sn−1. This is realized in Step 3(b) by
summing up the integers w′

1, . . . , w
′
m, where w′

i is the integer wi shifted by
a− ` bit positions to the right.

On the other hand, if s∗n−2 = · · · = s∗a = 1, then it turns out that
z∗s∗n−2 . . . s∗a is the binary representation of S∗

a,k,`, the approximation of Sa,k.
Now adding the carry value C to the sum used for determining the approx-
imation will either lead to a flip of all the bits z∗s∗n−2 . . . s∗a or none of these
bits flip. Hence, if sa = 1 = s∗a, then the carry value has no influence and
z∗ is already the true value sn−1. On the other hand, if sa = 0 6= s∗a, then
the true value sn−1 is the negation of z∗. Therefore, it suffices to compute sa

16

in order to be able to conclude on sn−1 by means of z∗. This is realized in
Step 3(a).

In order to give a formal proof of the correctness, we need the following
statement, which can be verified easily by plugging in the definitions of S∗

...

and S....

Proposition 2 Let w1, . . . , wm ∈ Z≥0. Then

S∗
a,b,c(w1, . . . , wm) = Sc,b(w1 div 2a−c, . . . , wm div 2a−c).

Proof of Correctness: If we omit in this proof the argument of S, S∗,
or S∗∗, then the argument equals (w1, . . . , wm). If n ≤ 3`, the correctness is
obvious by Step 1 of the algorithm. Hence, assume in the following n > 3`.

Assume first that the algorithm executes Step 3(b). We have to prove that
in this case Sk+`−1,1(w

′
1, . . . , w

′
m) = Sn−1,1. Using Proposition 2 and the fact

that n − k = a we know that Sk+`−1,1(w
′
1, . . . , w

′
m) = S∗

n−1,1,k+`−1. Assume
that Step 3(b) does not return the correct result, i.e. S∗

n−1,1,k+`−1 6= Sn−1,1.
Then by Lemma 1(b) we get

S∗∗
n−1,1,k+`−1 mod 2k+`−1 > 2k+`−1 −m

and thus (since ` = dlog me+ 1 > log m)

S∗∗
n−1,1,k+`−1 mod 2k+`−1 div 2` ≥

⌊
2k−1 −m/2`

⌋
≥ 2k−1 − 1.

We investigate the left hand side of this inequality. Since(
A mod 2n+`

)
mod 2k+`−1 = A mod 2k+`−1 for all integers A, we obtain

S∗∗
n−1,1,k+`−1 mod 2k+`−1 div 2`

=

(
m∑

i=1

wi div 2n−k−`

)
mod 2k+`−1 div 2` = S∗

a,k−1,`.

For the last equality we used that a = n − k. As derived above, this term
is at least 2k−1 − 1 and since S∗

a,k−1,` is a (k − 1)-bit integer we even have

equality, i.e. S∗
a,k−1,` = 2k−1−1. But if this is the case, then the test in Step 3

is positive which contradicts our assumption that Step 3(b) is executed.
Now assume that the algorithm executes Step 3(a) and thus S∗

a,k−1,` =

2k−1 − 1. Consider first the case that this approximation of Sa,k−1 is correct,

17

i.e. Sa,k−1 = 2k−1 − 1. Let R =
∑m

i=1 wi. Clearly, the binary representation

of Sa,k−1 = 〈R〉a+k−2
a = 〈R〉n−2

a consists only of ones. Hence, s′ = Sa,1 =
〈R〉a = 1. Since the algorithm returns (z∗ + s′ + 1) mod 2, it suffices to
show that Sn−1,1 = z∗. If this is not the case, i.e. S∗

n−1,1,` 6= Sn−1,1, then the
second inequality of Lemma 1(b) implies

m > Sn−1−`,` = 〈R〉n−2
n−1−` .

Since ` < n/2 (ensured by the first step of the algorithm), n − 1 − ` ≥ a.
Hence, the binary representation of 〈R〉n−2

n−1−` consists of ` ones and thus
Rn−2

n−1−` = 2` − 1. But then the above inequality simplifies to m > 2` − 1
which contradicts the choice of `.

The last case we have to consider is that the algorithm executes Step 3(a)
but Sa,k−1 6= S∗

a,k−1,` = 2k−1 − 1. Then Lemma 1(a) tells us that Sa,k−1 mod

2k−1 = 0 and now the binary representation of Sa,k−1 = 〈R〉a+k−2
a is a 0-

string. Using the same arguments as in the former case, this implies s′ = 0
and that it suffices to show Sn−1,1 6= z∗. Assume that this is not the case, i.e.
Sn−1,1 = z∗ = S∗

n−1,1,`. We already know that Sn−1−`,` = 〈R〉n−2
n−`−1 = 0 < m

(since a = n − k ≤ n − ` − 1). Hence, inequality (ii) of Lemma 1(b) is true
and thus inequality (i) cannot be fulfilled. This means that

S∗∗
n−1,1,` mod 2` ≤ 2` −m. (1)

Due to the assumption Sa,k−1 6= S∗
a,k−1,` = 2k−1 − 1 we have by Lemma 1 (b)

S∗∗
a,k−1,` mod 2` > 2` −m.

This way we obtain

S∗∗
a,k−1,` = S∗

a,k−1,` · 2` + S∗∗
a,k−1,` mod 2`

> (2k−1 − 1) · 2` + 2` −m = 2k+`−1 −m. (2)

Now let A =
∑m

i=1 〈wi〉n−1
n−`−1 and B =

∑m
i=1 〈wi〉n−`−2

n−k−`. Using the defini-
tion of S∗∗

n−1,1,` and inequality (1) yields

A mod 2` = S∗∗
n−1,1,` mod 2` ≤ 2` −m.

Note that B is the sum of m (k − 1)-bit numbers, and thus bounded above
by m · (2k−1 − 1). Therefore, we obtain(

A · 2k−1 + B
)

mod 2k+`−1

≤ (2` −m) · 2k−1 + m · (2k−1 − 1) = 2k+`−1 −m.

18

But this contradicts (2), because(
A · 2k−1 + B

)
mod 2k+`−1

=

(
m∑

i=1

wi div 2a−`

)
mod 2k+`−1 = S∗∗

a,k−1,`.

Now that we know that the algorithm is correct, we finally discuss its
resource requirements and show that it can in fact be implemented by read-
k(n) branching programs, k(n) = O(log n), as claimed in Theorem 1.

Let x, y ∈ Z2n and let wi = 2i · x · 〈y〉i, 1 ≤ i ≤ n, be the ith ad-
dend used in the school method for integer multiplication. It is obvious
that MULn−1,n(x, y) = Sn−1,1(w1, . . . , wn) =: Sn−1,1. If we use the algo-
rithm in order to compute Sn−1,1 then it recursively computes Sn′,1, where
n′ ≤ max {a, k + `− 1} ≤ n/2 + `. Hence, as long as n′ > 3`, the value n′′

used in the next recursion call is at most n′/2 + n′/3 = (5/6)n′. Therefore,
after O(log n) recursive calls we have n′ ≤ 3` and the algorithm terminates
after the execution of Step 1. (Note that for proving the correctness of the
algorithm we used that n > 2` in the Steps 2 and Steps 3. Therefore it is
essential that we can already stop the recursion once n is reduced to n′ ≤ 3`.)

The algorithm may only err in the test of Step 3. But by Lemma 2 we
may obtain an error probability of n−d for this step, where d is an arbitrarily
large constant (increasing the space requirements only by a constant factor).
Since Step 3 is executed at most O(log n) times, the overall error probability
can be bounded by n−c for any constant c.

In order to bound the space requirements, consider first the terminal case
(n′ ≤ 3`), in which the algorithm executes Step 1. Using Proposition 2 and
the fact that wi div 20 = wi we observe that 〈s〉n′−1 = Sn′−1,1(w1, . . . , wn) is
the same as S∗

n′−1,1,n′−1. By Lemma 2(b), this can be computed by querying
each input bit at most once and in space O(log n′) = O(`) = O(log n). If the
algorithm is not in the terminal case, then it is easy to see by Lemma 2(a)
that the algorithm can execute each single step (without the recursive calls)
in O(log n) space and with a constant number of queries of each variable.
Note also that the algorithm can be easily implemented in such a way that it
needs no recursive calls but instead loops until the terminal case is reached.
In order to achieve this, we keep track of the positions p1 and p2 such that
during an iteration the sum of the integers 〈wi〉p2

p1
, 1 ≤ i ≤ m, is relevant.

Furthermore, we have to store a bit b which tells us whether the result has
to be negated or not, if we reach the terminal case. The value of this bit

19

changes in the case that 3(a) is executed and z∗ mod 2 = 0. Since O(log n)
bits suffice for keeping track of p1, p2 ∈ {0, . . . , n− 1} and b ∈ {0, 1} and
all computations during one iteration can be done in O(log n) space, the
total space requirement is O(log n). Furthermore, the number of iterations
(recursive calls) is bounded by O(log n) and thus the algorithm queries each
variable O(log n) times, overall.

Now it is obvious that there is a branching program computing MULn−1,n

in O(log n) space such that on each computation path each variable appears
at most k(n) = O(log n) times. However, due to the syntactic restriction
of read-k(n) branching programs we have to ensure that there is no graph
theoretical path such that some variable appears on it more than k(n) times.
But any computation corresponding to an arbitrary graph theoretical path
of the branching program can be simulated by “faking” the input variables.
That is, if the algorithm queries a variable, an arbitrary value in {0, 1} is
returned instead of a value corresponding to some assignment. It is obvious
that if the algorithm queries each variable at most k(n) times even for all
faked inputs, then it corresponds to a read-k(n) branching program.

But if one looks at the subroutines as described in the proof of Lemma 2
and used to determine S∗

n−1,1,` (in Step 2) and to test S∗
a,k−1,` (in Step 3),

then it is easy to see that the order in which the variables are queried during
the execution of such a subroutine is even oblivious (i.e. it only depends on n,
a, k and ` but not on the outcome of the variable queries). The same is true
in the terminal case (Step 1). Hence, if we fake the input, we can influence
the results of the subroutine calls, and thus the decision of the algorithm
whether to execute Step 3(a) or 3(b), but in both cases the recursion is
continued properly. Hence, a branching program exists that satisfies the
syntactic read-k(n) property and the claimed space bounds. This completes
the proof of Theorem 1.

3 Formulas and General Branching Pro-

grams

We now present Nechiporuk’s technique for proving lower bounds for the
branching program and B2-formula size of boolean functions.

20

0 1
0 1 2 3 4 5 6 7 8 9 10 11

2 3 0 1 2 3 0 1 2 3 0 1 2 3
2 2 2 2 1 1 1 1 0 0 0 0

X
Y

12 151413

Figure 3: Indices of the X- and Y -sets for n = 16.

Theorem 3 (Method of Nechiporuk, 1966) Let the boolean function
f : {0, 1}n → {0, 1} essentially depend on the n variables in X =
{x1, . . . , xn}. Further, let V1, . . . , V` ⊆ X be disjoint sets of variables, and
let vi be the number of subfunctions of f on Vi. Then the number of nodes
of any branching program for f is bounded below by Ω

(∑`
i=1 log vi/ log log vi

)
and any B2-formula for f has size at least Ω

(∑`
i=1 log vi

)
.

In order to obtain a lower bound for the branching program size of
MULn−1,n, it suffices to find many disjoint sets Vi such that almost all sub-
functions of MULn−1,n on each set are different.

Let n = k2, X = {x0, . . . , xn−1} and Y = {y0, . . . , yn−1}. Further,
let Xi := {xi+kj | 0 ≤ j ≤ k − 1}. The sets Xi, 0 ≤ i ≤ k − 1, are
disjoint since Xi contains all xm such that m ≡ i (mod k). Let Yi :={
yn−k(i+1)−i+j

∣∣ 0 ≤ j ≤ k − 1
}
. These sets contain blocks of k variables and

there is a hole of one variable between Yi+1 and Yi. Since the indices of vari-
ables are not negative, we consider the disjoint sets Vi := Xi∪Yi, 0 ≤ i ≤ k−2.
These sets are illustrated in Figure 3.

Lemma 3 For n = k2 the function MULn−1,n has at least 2n−2k−i+1 = 2Ω(k2)

subfunctions on the variable set Vi, 0 ≤ i ≤ k − 2.

Plugging this lemma in Nechiporuk’s method, part (a) of Theorem 2 follows
easily: We can assume w.l.o.g. that n = k2. It is obvious that MULn−1,n

essentially depends on all x- and y-variables. We choose the sets Vi, 0 ≤
i ≤ k − 2, as in the proof of Lemma 3. One can easily verify that these
sets are in fact disjoint. Since MULn−1,n has 2Ω(k2) subfunctions on Vi and
since there are k−1 disjoint sets Vi, the branching program size of MULn−1,n

is Ω
(
k · k2/ log(k2)

)
= Ω

(
n3/2/ log n

)
and the B2-formula size is Ω(k3) =

Ω(n3/2). Hence, part (a) of Theorem 2 follows.
Before we prove Lemma 3, we state an obvious proposition.

21

Proposition 3 Let a, b ∈ Z, ` ≥ 0 and k ≥ 1. If 〈a〉` = 〈b〉` = 0, then

〈a + b〉`+k
`+1 =

(
〈a〉`+k

`+1 + 〈b〉`+k
`+1

)
mod 2k.

Proof of Lemma 3: Fix 0 ≤ i ≤ k − 2 arbitrarily. Throughout this proof
we assign all variables xj ∈ X − Xi the value 0. Clearly, the subfunction
MULn−1,n obtained by this assignment has at most as many subfunctions
on Vi as MULn−1,n. Let σ(i) = n − k(i + 1) − i be the smallest index of a
Yi-variable, i.e. Yi =

{
yσ(i), . . . , yσ(i)+k−1

}
. For technical reasons we also need

the negative value σ(k − 1), which does not correspond to a Y -set.
Consider now all assignments a to the y-variables not in Yi. Each

such assignment defines a unique integer b(a) in Z2n if we assume the
other y-variables to be 0 (although not all integers in Z2n are possible, of
course). If we assign all variables in Y − Yi the value 0 and choose an
assignment ŷ to the y-variables in Vi, we obtain another integer b(ŷ) ∈
Mi :=

{
r · 2σ(i)

∣∣ 0 ≤ r < 2k
}
. In fact, by choosing appropriate assign-

ments ŷ all the values in Mi are possible. The bit string obtained by the
assignment a together with the assignment ŷ corresponds to the integer
b(a, ŷ) = b(a)+b(ŷ) ∈ Z2n . Note also that for b(ŷ) = r ·2σ(i) and 0 ≤ j ≤ k−1

〈
b(a, ŷ)

〉σ(j)+k−1

σ(j)
=

〈
b(ŷ)

〉σ(i)+k−1

σ(i)
= r if j = i〈

b(a)
〉σ(j)+k−1

σ(j)
otherwise.

We consider now all assignments a to the y-variables not in Vi where
b(a) < 2n−i and 〈b(a)〉σ(j) = 0 for all 0 ≤ j ≤ k − 1, j 6= i. (Recall that
σ(j) is negative for j = k − 1 and thus 〈b(a)〉σ(j) is 0, anyway). Similarly,
we will consider only choices of ŷ where 〈b(ŷ)〉σ(i) = 0, thus restricting the

choice of b(ŷ) to the set of integers r · 2σ(i) where r ∈
{
0, 2, . . . , 2k − 2

}
is

even. This way we achieve that for all assignments a and all choices of ŷ we
have 〈b(a, ŷ)〉σ(j) = 0 for 0 ≤ j ≤ k − 1.

Consider two arbitrary such assignments a 6= a′. We prove that the
two subfunctions of MUL′

n−1,n obtained by the assignments a and a′ dif-

fer. Let t be an arbitrary value in {0, . . . , k − 2} such that 〈b(a)〉σ(t)+k−1
σ(t) 6=

〈b(a′)〉σ(t)+k−1
σ(t) . Such a t exists due to the assumption b(a), b(a′) < 2n−i. Since

〈b(a)〉σ(t) = 〈b(a′)〉σ(t) = 0, we even have

b :=
〈
b(a)

〉σ(t)+k−1

σ(t)+1
6=
〈
b(a′)

〉σ(t)+k−1

σ(t)+1
=: b′. (3)

22

Now we choose xkt+i = xki+i = 1 and let all other x-variables in Vi be 0
(recall that all x-variables not in Vi have been assigned the value 0, too). We
can still choose an arbitrary ŷ such that b(ŷ) ∈ Mi. For each choice of ŷ the
product of b(a, ŷ) and the integer represented by the x-assignment equals the
sum

S
(
a, ŷ

)
:=

n−1∑
j=0

xj · 2j · b(a, ŷ)

=
(
2kt+i + 2ki+i

)
· b(a, ŷ)

=
(
2kt+i + 2ki+i

)
· (b(a) + b(ŷ)).

Hence, in order to show that the subfunctions of MUL′
n−1,n obtained by the

assignments a and a′ differ, it suffices to prove that there is an even value
0 ≤ r < 2k such that for b(ŷ) = r · 2σ(i)〈

S
(
a, ŷ
)〉

n−1
6=
〈
S
(
a′, ŷ

)〉
n−1

.

Recall that for r being even we have 〈b(a, ŷ)〉σ(j) = 0 for all 0 ≤ j < k,

and thus
〈
2kj+ib(a, ŷ)

〉
n−k

= 〈b(a, ŷ)〉σ(j) = 0. Hence, using Proposition 3 we
obtain

〈S(a, ŷ)〉n−1
n−k+1

=
〈
2kt+ib(a, ŷ) + 2ki+ib(a, ŷ)

〉n−1

n−k+1

=
(〈

2kt+ib(a, ŷ)
〉n−1

n−k+1
+
〈
2ki+ib(a, ŷ)

〉n−1

n−k+1

)
mod 2k−1

=
(〈

b(a, ŷ)
〉σ(t)+k−1

σ(t)+1
+
〈
b(a, ŷ)

〉σ(i)+k−1

σ(i)+1

)
mod 2k−1

=
(〈

b(a)
〉σ(t)+k−1

σ(t)+1
+
〈
b(ŷ)

〉σ(i)+k−1

σ(i)+1

)
mod 2k−1

= (b + r/2) mod 2k−1.

Replacing a with a′ in the above computation yields analogously
〈S(a′, ŷ)〉n−1

n−k+1 = (b′ + r/2) mod 2k−1. Since according to (3) b 6= b′ and thus

b 6≡ b′ (mod 2k−1) , it is easy to choose an even value r ∈
{
0, . . . , 2k − 2

}
such that 〈S(a, ŷ)〉n−1

n−k+1 ≥ 2k−2 and 〈S(a′, ŷ)〉n−1
n−k+1 < 2k−2 or vice versa.

In any case, S(a, ŷ)n−1 6= S(a′, ŷ)n−1. Hence, the two subfunctions of MUL′

obtained by the assignments a and a′ are different.

23

It remains to count the number of valid assignments a to the y-variables
not in Yi. There are n − k variables in Y − Yi. Out of these, at most k − 1
variables, namely the variables yσ(j) with 0 ≤ j < k, j 6= i, have the fixed
assignment 0. Finally, we require that b(a) < 2n−i which is achieved by
assigning the i variables yn−i, . . . , yn−1 the constant 0. Hence, there remain
n− 2k − i + 1 free variables. This yields 2n−2k−i+1 possibilities to choose an
assignment a, each of which defines another subfunction of MUL on Vi.

Now we state an upper bound on the number of subfunctions of MULn−1,n

on any arbitrary set V of variables. Since Nechiporuk’s method requires many
such subfunctions, this demonstrates that one cannot prove lower bounds
arbitrary close to n2/ log2 n for the branching program size of MULn−1,n.

Lemma 4 Let X = {x0, . . . , xn−1}, Y = {y0, . . . , yn−1}, V ⊆ X ∪ Y and
k = |V |. The number of subfunctions of MULn−1,1 on V is bounded above by
2O(k3).

In order to prove this lemma, we need the notion of quadratic threshold
functions.

Definition 2 A boolean function f : {0, 1}n → {0, 1} is called quadratic
threshold function if there are a threshold T ∈ Z and weights wi,j ∈ Z, 1 ≤
i ≤ j ≤ n, such that f(x1, . . . , xn) = 1 if and only if

∑n
1≤i≤j≤n wi,j ·xi ·xj ≥ T .

The idea is that we can represent any subfunction of MULn−1,n by multiple
quadratic threshold functions. In fact, it turns out that each subfunction of
MULn−1,n on k variables is the parity of O(k) quadratic threshold functions.

The monograph of Hassoun (1995) contains the bound 2O(k3
) on the num-

ber of quadratic threshold functions on k variables. This is a very general
result, but for special situations its proof reveals better bounds. If d is the
degree of freedom, i.e., the number of weights (including the threshold value)
which are not fixed in advance, then the number of quadratic threshold func-
tions on k variables is bounded by O(2k(d−1)). We show Lemma 4 by showing
how each subfunction on MULn−1,n can be decomposed into the parity of k
quadratic threshold functions, each of them having a degree of freedom of at
most k.

Proof of Lemma 4: Let k = |V | and let Ix be the set of indices i ∈
{0, . . . , n− 1} for which V contains the variable xi. For y-variables we anal-
ogously define the set Iy. The product of two integers x, y ∈ Z2n given by

24

assignments to the variables in X ∪ Y is defined as

S(x, y) :=
∑

0≤i,j<n

xi · yj · 2i+j.

Hence, MULn−1,n(x, y) = 〈S(x, y)〉n−1.
Consider a fixed subfunction S ′ of S on V obtained by assigning arbitrary

bit values to all variables not in V . Then by factoring out first all xi ∈ X∩V
and then all yj ∈ Y ∩ V we obtain nonnegative integer weights w, wi, i ∈ Ix,
and w′

j, j ∈ Iy, such that

S ′(x|V , y|V) = w +
∑
i∈Ix

wi · xi +
∑
j∈Iy

w′
j · yj +

∑
(i,j)∈Ix×Iy

2i+j · xi · yj.

Note that the weights do only depend on the assignments to the variables
not in V . Since we are only interested in the value S ′(x|V , y|V) mod 2n, we
replace all weights w, wi and w′

j by their mod2n-values and consider the
sum

S∗(x|V , y|V) := w mod 2n +
∑
i∈Ix

(wi mod 2n) · xi +
∑
j∈Iy

(w′
j mod 2n) · yj+∑

(i,j)∈Ix×Iy
i+j<n

2i+j · xi · yj.

Since Ix and Iy contain together k variables there are for any 0 ≤ ` < n
at most bk/2c pairs (i, j) ∈ Ix × Iy with i + j = `. Hence, all powers
2i+j with (i, j) ∈ Ix × Iy and i + j < n sum up to a value of at most
(2n−1 + · · · + 20) · k/2 = (2n − 1) · k/2. In addition, all weights w mod 2n,
wi mod 2n and w′

j mod 2n are bounded by 2n − 1. Therefore, we obtain

S∗(x|V , y|V) ≤ (2n − 1) · (k/2 + 1 + |Ix|+ |Iy|) < (3k + 2) · 2n−1.

Note that S∗(x|V , y|V) div 2n−1 is even if and only if an even number of
values T ∈ {1, . . . , 3k + 1} satisfies T ≤ S∗(x|V , y|V) div 2n−1 or equiva-
lently T · 2n−1 ≤ S∗(x|V , y|V). We let fT (x|V , y|V) for 1 ≤ T ≤ 3k + 1 be
the quadratic threshold function with a function value of 1 if and only if
S∗(x|V , y|V) ≥ 2n−1 · T . Then by the discussion above

MULn−1,n(x, y) = 〈S(x, y)〉n−1 = S∗(x|V , y|V) div 2n−1 mod 2

= f1(x|V , y|V)⊕ f2(x|V , y|V)⊕ · · · ⊕ f3k+1(x|V , y|V).

25

(Here ⊕ denotes parity.) Each of these functions fT , 1 ≤ T ≤ 3k + 1, is
a quadratic threshold function on k variables and with only k degrees of
freedom. As already mentioned, the number of such threshold functions is
bounded by 2O(k2). Since —as we have shown— for each assignment to the
variables not in V we obtain a subfunction of MULn−1,n which is uniquely
defined by 3k + 1 quadratic threshold functions, the number of subfunctions

of MULn−1,n is bounded above by
(
2O(k2)

)3k+1
= 2O(k3).

We can now show how the last lemma yields part (b) of Theorem 2.
Let V1, . . . , V` ⊆ X ∪ Y be the disjoint sets yielding the largest value of
Nechiporuk’s bound for the branching program size of MULn−1,n. Further,
let ki = |Vi| and vi be the number of subfunctions of MULn−1,n on Vi. Clearly,
there are only 22n−ki possibilities to choose an assignment to the variables
not in Vi. Hence, vi = 2O(n). On the other hand, according to Lemma 4
vi = 2O(ki

3). Therefore, the lower bound obtained by Nechiporuk’s method is
O(B), where B =

∑`
i=1 min

{
n/ log n, ki

3/ log ki

}
. Since

∑`
i=1 ki ≤ 2n and

the function f(z) = z3/ log z is convex, B is maximal if each ki, 1 ≤ i ≤ `,
equals the largest integer K satisfying K3/ log K ≤ n/ log n and if ` = 2n/K.
Hence, we can bound B by assuming ki = Θ(n1/3) for all 1 ≤ i ≤ ` and
` = O(n2/3). This yields B = O(n5/3/ log n).

Exactly the same arguments (but without the logarithmic terms in the
denominators of the above computations) show that a lower bound of c ·n5/3

for the B2-formula size cannot be proven for all constants c with Nechiporuk’s
technique. This completes the proof of Theorem 2.

The gap between the upper and the lower bound on the best Nechiporuk
bound for the middle bit of multiplication leads to the obvious question about
the true value of the best Nechiporuk bound. We believe that our choice of
Xi and Yi for the lower bound is quite good. On the other hand, in the proof
of the upper bound the quadratic threshold functions fT cannot be chosen
independently. We are not able to use this fact for an improved result but
we would not be very surprised about an improved upper bound.

Conclusion

Although we learn in primary school how to multiply, the complexity of in-
teger multiplication is a fascinating problem with many aspects. We have
deepened the knowledge on the set of subfunctions of the middle bit of multi-

26

plication in order to obtain the best known lower bound on the size of general
branching programs and B2-formulas for this function. The bound is an ap-
plication of Nechiporuk’s method and it is still an open question whether we
have applied this method in the best possible way. At least we were able to
show non-trivial limits of this method.

Our main result is an improved randomized branching program realiz-
ing the middle bit of multiplication with an error probability which can be
bounded for any given polynomial p by 1/p(n). The time-space product is
only O(n log2 n), in particular the time bound is O(n log n) and the space
bound O(log n). The branching program is even syntactically read-O(log n).

References

F. Ablayev and M. Karpinski (2003). A lower bound for integer multiplication
on randomized ordered read-once branching programs. Information and
Computation, volume 186, pp. 78–89.

M. Ajtai (1999). A non-linear time lower bound for boolean branching pro-
grams. In Proceedings of the 40th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 60–70.

P. Beame, M. Saks, X. Sun and E. Vee (2003). Time-space tradeoff lower
bounds for randomized computation of decision problems. Journal of the
ACM, volume 50, pp. 154–195.

B. Bollig and I. Wegener (1996). Read-once projections and formal circuit
verification with binary decision diagrams. In Proceedings of the 13th An-
nual Symposium on Theoretical Aspects of Computer Science (STACS),
volume 1046 of Lecture Notes in Computer Science, pp. 491–502.

B. Bollig and P. Woelfel (2001). A read-once branching program lower bound
of Ω(2n/4) for integer multiplication using universal hashing. In Proceedings
of the 33rd Annual ACM Symposium on Theory of Computing (STOC),
pp. 419–424.

A. Borodin, A. Razborov and R. Smolensky (1993). On lower bounds for
read-k-times branching programs. Computational Complexity, volume 3,
pp. 1–18.

27

M. Dietzfelbinger (1996). Universal hashing and k-wise independent random
variables via integer arithmetic without primes. In Proceedings of the 13th
Annual Symposium on Theoretical Aspects of Computer Science (STACS),
volume 1046 of Lecture Notes in Computer Science, pp. 569–580.

M. H. Hassoun (1995). Fundamentals of Artificial Neural Networks. MIT
Press, first edition.

Y. Mansour, N. Nisan and P. Tiwari (1993). The computational complexity
of universal hashing. Theoretical Computer Science, volume 107, pp. 121–
133.

E. I. Nechiporuk (1966). A Boolean function. Soviet Mathematics Doklady,
volume 7, pp. 999–1000.

E. A. Okol’nishnikova (1993). On lower bounds for branching programs.
Siberian Advances in Mathematics, volume 3, pp. 152–166.

S. Ponzio (1995). A lower bound for integer multiplication with read-once
branching programs. In Proceedings of the 27th Annual ACM Symposium
on Theory of Computing (STOC), pp. 130–139.

M. Sauerhoff and P. Woelfel (2003). Time-space tradeoff lower bounds for
integer multiplication and graphs of arithmetic functions. In Proceedings
of the 35th Annual ACM Symposium on Theory of Computing (STOC),
pp. 186–195.

I. Wegener (2000). Branching Programs and Binary Decision Diagrams -
Theory and Applications. SIAM.

28

