
Symbolic Topological Sorting with OBDDs

Philipp Woelfel

University Dortmund

FB Informatik 2

D-44221 Dortmund

Germany.

E-mail: philipp.woelfel@cs.uni-dortmund.de

Abstract

We present a symbolic OBDD algorithm for topological sorting which requires

O(log2 |V |) OBDD operations. Then we analyze its true runtime for the directed

grid graph and show an upper bound of O(log4 |V | · log log |V |). This is the first

true runtime analysis of a symbolic OBDD algorithm for a fundamental graph

problem, and it demonstrates that one can hope that the algorithm behaves well

for sufficiently structured inputs.

1 Introduction

Algorithms on graphs is one of the best studied areas in computer science. Usually, a

graph G = (V,E) is given by an adjacency list or by an adjacency matrix. Such an

explicit representation of a graph requires space Θ(|V |+ |E|) or Θ(|V |2), and for many

graph problems efficient algorithms are known. However, there are several application

areas where typical problem instances have such a large size that a linear or even

polynomial runtime is not feasible, or where even the explicit representation of the

problem instance itself may not fit into memory anymore. Examples where this is the

case occur if large graphs like the Internet graph or the street network of a major city

are interlinked with other components such as e.g. traffic amount and time slots.

1

Areas where researchers have been dealing with the problem of large input instances in

the last decade are e. g. symbolic model checking or circuit verification. For example,

a typical state-transition graph arising in the process of verification and synthesis of

sequential circuits may consist of 1027 vertices and 1036 edges. In order to deal with

such large graphs, symbolic (or implicit) graph algorithms have been devised, where

the vertex and edge sets representing the involved graphs are stored symbolically, i.e.,

in terms of their characteristic functions. A very popular data structure for represent-

ing these characteristic functions are the so-called Ordered Binary Decision Diagrams

(OBDDs), which we define in the next section. Symbolic algorithms using OBDDs

have been successfully applied in the areas of model checking, circuit verification, finite

state machine verification, integer linear programming, and logic minimization (see e.g.

[3, 4, 5, 11, 6]).

Most of these applications can be viewed as particular cases of graph problems. This

raises the question whether it is possible to devise symbolic graph algorithms with a

good behavior for fundamental graph theoretical problems. One approach in this di-

rection was undertaken by Hachtel and Somenzi [9] who introduced a symbolic OBDD

algorithm for the maximum flow problem in 0-1 networks. The promising experimental

studies demonstrated that the algorithm is able to handle graphs with over 1036 edges

and that it is competitive with traditional algorithms on dense random graphs. The

paper lacks however, a theoretical analysis of its performance with respect to runtime.

Recently, Sawitzki [13] has analyzed the number of OBDD operations (i.e., the number

of required synthesis operations of characteristic functions) required by the flow algo-

rithm of Hachtel and Somenzi and has proposed an improved algorithm. But there is

only a weak relation between the number of OBDD operations and the true runtime of

a symbolic OBDD algorithm. The time required for one synthesis step is mainly influ-

enced by the sizes of the involved OBDDs which may range from linear to exponential

(in the number of variables of the represented characteristic functions).

However, true runtime analyses of OBDD algorithms are very rare (there are some

examples, though, as e.g. in [7]) and in fact, we are not aware of any true runtime

analysis of a symbolic OBDD algorithm for a general, fundamental graph problem.

A reason for this may be that in most cases a worst-case or average-case analysis

2

cannot yield results with a better expressiveness than the analysis of the number of

required OBDD operations, because one has to expect that the representation of most

of the characteristic functions obtained during the computation has asymptotically the

maximum possible size, which is at least the size of an explicit representation. Another

reason why the worst-case analysis of fundamental graph algorithms is hopeless in most

cases is that even such a simple decision problem as a reachability test is PSPACE

complete if the input graph is represented by OBDDs [8].

But the attractivity of implicit algorithms stems from the prospect that they may have

superior performance for well structured problem instances as they arise in typical situ-

ations. For example, the street network of an American city like Manhattan resembles

more a grid graph than a random graph. Hence, research should focus on developing

implicit OBDD algorithms for fundamental graph problems and on analyzing their true

runtimes for inputs chosen from certain typical graph classes.

The results and techniques presented here aim to be a first step into this direction.

First, we present a new OBDD algorithm for topological sorting which requires only

O(log2 |V |) OBDD operations on OBDDs for functions with at most 4dlog |V |e vari-

ables. Then we analyze its true runtime for the directed grid graph and show an upper

bound of O(log4 |V |·log log |V |). This demonstrates that one can in fact hope that such

a fundamental graph algorithm behaves well for sufficiently structured inputs. For the

analysis, we generalize the notion of threshold functions to multivariate threshold func-

tions. We investigate the OBDD size of multivariate threshold (and modulo) functions

and obtain strong results about the effect of OBDD operations such as quantification

on such functions. We expect the framework developed here to be strong enough to

allow true runtime analyses of other algorithms, where the input is a grid or a grid-

like network. In fact, Sawitzki [14] refined our framework in order to analyze his 0-1

network flow algorithm for the grid network.

Clearly, our analysis is a “good-case” analysis which is only valid for one particular

input instance, and we are not yet able to make a theoretically profound statement

about the performance of the algorithm for other problem instances. But our analysis

shows that even for such a well-structured input graph as the directed grid a quite

detailed knowledge on the behavior of OBDDs for certain function types is required

3

in order to obtain an expressive upper bound on the true runtime. We hope that the

techniques presented here are a good starting point for developing a framework which

allows to design and analyze general fundamental graph algorithms for larger classes

of input instances.

2 OBDDs and Implicit Graph Representation

In the following, let Bn denote the class of boolean functions {0, 1}n → {0, 1}. Let

f ∈ Bn be a function defined by the variables x1, . . . , xn. The subfunction of f ,

where k variables xi1 , . . . , xik are fixed to k constants c1, . . . , ck ∈ {0, 1} is denoted by

f|xi1=c1,...,xik=ck . Ordered Binary Decision Diagrams have been introduced by Bryant

in 1986 [2] as a representation type for boolean functions.

Definition 1 Let Xn = {x1, . . . , xn} be a set of boolean variables.

1. A variable ordering π on Xn is a permutation of the indices {1, . . . , n}, leading

to the ordered list xπ(1), . . . , xπ(n) of the variables.

2. A π-OBDD on Xn for a variable ordering π is a directed acyclic graph with one

root, two sinks labeled with 0 and 1, resp., and the following properties: Each

inner node is labeled by a variable from Xn and has two outgoing edges, one of

them labeled by 0, the other by 1. If an edge leads from a node labeled by xi to

a node labeled by xj, then xπ−1(i) < xπ−1(j). This means that any directed path

passes the nodes in an order respecting the variable ordering π.

3. A π-OBDD is said to represent a boolean function f ∈ Bn, if for any a =

(a1, . . . , an) ∈ {0, 1}n, the path starting at the root and leading from any xi-node

over the edge labeled by the value of ai, ends at a sink with label f(a).

4. The size of a π-OBDD G is the number of its nodes and is denoted by |G|. The

π-OBDD size of a boolean function f (short: π-OBDD(f)) is the size of the

minimum π-OBDD computing f .

The restriction of the variable ordering implies that each variable may appear on each

source-to-sink path at most once. Note that in some papers the term Binary Decision

4

Diagram (or BDD) is used interchangeably for OBDD, while in others the term BDD

denotes a decision diagram without the restrictions imposed by the variable ordering.

It is important to note that the π-OBDD of minimal size for a given function f and a

fixed variable ordering π is unique up to isomorphism. A π-OBDD is called reduced,

if it is the minimal π-OBDD. It is well-known that the maximum size of any reduced

π-OBDD for a function in n variables is bounded by O(2n/n) (see [1] for the upper

bound with the best constants known).

In order to be a representation type for boolean functions which is suitable for graph

algorithms, it is necessary that several operations can be performed efficiently. In

the following, we summarize the operations on OBDDs to which we will refer in this

text. For a more detailed discussion on OBDDs and their operations we refer to the

monograph [15].

Let f and g be functions in Bn and let Gf and Gg be π-OBDDs representing f and g,

respectively, for an arbitrary variable ordering π.

• Evaluation: Given x ∈ {0, 1}n compute f(x). This can trivially be done in time

O(n).

• Minimization: Compute the reduced π-OBDD for f . This is possible in time

O(|Gf |).

• Binary synthesis: Given a boolean operation ⊗ ∈ B2 compute a reduced

π-OBDD Gh representing the function h = f ⊗ g. This can be done in time

O(|G∗h| log |G∗h|), where G∗h is the graph which consists of all nodes in the product

graph of Gf and Gg reachable from the root. The size of Gh is at most O(|G∗h|) =

O(|Gf | · |Gg|).

• Replacement by constants: Given a sequence of variables xi1 , . . . , xik ∈ Xn

and a sequence of constants c1, . . . , ck, compute a reduced π-OBDD Gh for the

subfunction h := f|xi1=c1,...,xik=ck ∈ Bn−k. This is possible in time O(|Gf |) and

the reduced π-OBDD Gh is of smaller size than Gf .

• Quantification: Given a variable xi ∈ Xn and a quantifier Q ∈ {∃,∀}, compute

a reduced π-OBDD for the function h ∈ Bn−1 with h := (Qxi)f , where (∃xi)f :=

5

f|xi=0∨f|xi=1 and (∀xi)f := f|xi=0∧f|xi=1. The time for computing this π-OBDD

is determined by the time for determining the π-OBDDs for f|xi=0 and fxi=1 and

the time required for the binary synthesis of the two. Hence, it is bounded by

O
(
|Gf |2 log |Gf |

)
.

• SAT enumeration: Enumerate all inputs x ∈ f−1(1). Using simple DFS tech-

niques, this can be done in optimal time O(|Gf |+ n
∣∣f−1(1)

∣∣).

We can use OBDDs for an implicit graph representation by letting them represent the

characteristic functions of the vertex and edge sets. For practical reasons, though, we

assume throughout this text that the vertex set is V = {0, 1}n for some n ∈ �
, so

that a representation of V is not needed. It is easy to accommodate the algorithm for

other vertex sets. We delay the discussion of this matter until we have described the

algorithm. Note also that in contrast to the standard notation, we denote with n not

the number of vertices but the number of bits required for the description of a vertex.

For an arbitrary relation R over {0, 1}n, we say that a π-OBDD GR represents R, if

the boolean function represented by G is the characteristic function χR of R, that is

x R y if and only if χR(x, y) = 1. This way, the edge relation E ⊆ V × V of a directed

graph can be represented by the π-OBDD for its characteristic function. For the ease

of notation we write E(x, y) instead of χE(x, y).

If we want to encode integers, we use the standard binary notation. Let valn : {0, 1}n →
�

be the mapping

xn−1 . . . x0 7→ 2n−1xn−1 + · · · + 20x0.

For the ease of notation, we write |x| instead of valn(x) if the length of the string x is

clear from the context.

3 The Topological Sorting Algorithm

Let G = (V,E), V = {0, 1}n, be a directed acyclic graph represented by a π-OBDD

as described in the former section. The edge relation E defines in a natural way a

partial order on V , where v precedes w if and only if there exists a path from v to w.

6

We use the symbol for the corresponding relation, i.e., v w if v precedes w. In

the following we describe a symbolic OBDD-algorithm which topologically sorts the

vertices according to the relation .

It is necessary, though, to discuss the possible outputs of such an algorithm. In the

explicit case a topological sorting algorithm would enumerate all vertices in such a

way that if u is enumerated before v, then v 6 u. In the implicit case, we hope for

runtimes in the order of o(|V |) in which the enumeration of all vertices is not possible.

Hence, a goal might be to obtain a complete order ≺ which inherits the properties of

 (i.e., u ≺ v implies v 6 u). Unless is a complete order, ≺ is not uniquely defined

by , and thus we assume that an arbitrary complete order l on the vertex set V is

given (this may be fixed in advance for the algorithm or may be given as an additional

parameter), which determines the order of the elements which are incomparable with

respect to (i.e., those with u 6 v and v 6 u).

An alternative is to compute an OBDD which allows to enumerate the elements in

their topological order by simple SAT enumeration operations. For any two ver-

tices u, v we denote by ∆(u, v) the length of the longest path leading from u to

v. (The length of a path is the number of its edges.) If no such path exists, then

∆(u, v) := −∞. Note that ∆(v, v) = 0, since the graph is acyclic. Furthermore, let

∆(v) := max {∆(u, v) | u ∈ V }. We call ∆(v) the length of the longest path to the ver-

tex v. Let now DIST ∈ B2n, be defined to be 1 for an input (d, v) ∈ {0, 1}n×{0, 1}n, if

and only if ∆(v) = |d|. Clearly, |du| < |dv| implies v 6 u, where du, dv are the unique

values with DIST(du, u) = 1 and DIST(dv, v) = 1. Hence, if we have a π-OBDD GDIST

for the function DIST, we can use it to enumerate the vertices in an order respecting

 by computing the π-OBDDs for DIST|d=a for |a| = 0, 1, . . . and enumerating their

satisfying inputs using the SAT enumeration procedure. We will see below how the

OBDD GDIST can in addition be used to obtain a complete order respecting .

In order to compute the function DIST, we use a method which is similar to that of

computing the transitive closure by matrix squaring. For i ∈ {1, . . . , n} and u, v ∈ V
let Ti(u, v) be the boolean function with function value 1 if and only if there exists a

path from u to v which has length exactly 2i. We can compute OBDDs for all Ti as

7

follows.

T0(u, v) = E(u, v). (S1)

Ti+1(u, v) = ∃w : Ti(u,w) ∧ Ti(w, v). (S2)

We now define the function DISTj ∈ B2n−j for 0 ≤ j ≤ n. It takes as input an (n− j)-
bit value d∗ = dn−1 . . . dj and a vertex v (for j = n, d∗ is the empty string ε). The

function value DISTj(d
∗, v) is defined as

DISTj(d
∗, v) = 1 ⇔ 2j |d∗| ≤ ∆(v) < 2j(|d∗|+ 1). (∗)

I.e., DISTj(d
∗, v) is true if the bits dn−1 . . . dj are exactly the n − j most significant

bits of the integer ∆(v). Clearly, DIST = DIST0. As we show below, the functions

DISTj can be computed by

DISTn(v) := 1 (S3)

and for j = n− 1, . . . , 0

DISTj(dn−1 . . . dj , v) = DISTj+1(dn−1 . . . dj+1, v) ∧
(
dj ⇔ ∃u

(
Tj(u, v) ∧ DISTj+1(dn−1 . . . dj+1, u)

))
. (S4)

Before we prove the correctness of step (S4), we demonstrate the computation of the

functions Ti and DISTj by an example.

Example 1 Consider the graph G = (V,E) with V = {a, b, c, d, e, f, g, h} shown as

the first graph in Figure 3. The relations T1 and T2 obtained by the step (S2) of

the algorithm are represented by the edges shown in the second and third graph,

respectively. It can be seen that in the graph (V, Ti+1) there is an edge from u to v

if and only if there is a path of length 2 from u to v in the graph (V, Ti). Hence, the

relation T2 connects those vertex pairs which have in G a path of length 4 between

them.

In the first graph in Figure 3, the three bits beneath each vertex v of G denote the

unique value d = d2d1d0 such that DIST(d, v) = 1. For example, the longest path to g

leads from a over the vertices b and f to g. This path has length 3 and hence ∆(g) = 3

8

cb d

gf he

a

cb d

gf he

a

cb d

gf he

a

T1:

T0:

T2:

(= E)

000000 001 100 101

000 010 011 000

Figure 1: Example for the relations T0 = E, T1, T2 and DIST

and DIST(011, g) = 1. We demonstrate the computation of the functions DISTi in the

steps (S3) and (S4). The function DIST3 is initialized in step (S3) such that it is true

for all vertices. For j = 2, (S4) now simplifies to

DIST2(d3, v) = ∃uTj(u, v).

Hence, DIST2 is true for exactly those pairs (1, v) for which there is in the graph

G(V, T2) an edge pointing to v, and for the pairs (0, v) where v has no edge pointing to it.

I.e. DIST2 is true for the inputs in {(0, a), (0, b), (1, c), (1, d), (0, e), (0, f), (0, g), (0, h)}.
In order to demonstrate the computation of DIST1 we consider the vertex g. It is

DIST2(0, b) = DIST2(0, g) = 1, hence the third bit (the most significant one) of ∆(b) is

the same as that of ∆(g). Since (b, g) ∈ T1, it is ∆(g) ≥ ∆(b)+2 and thus the second bit

of ∆(g) is set. Consequently, step (S4) of the algorithm yields DIST1(01, g) = 1. For

another example consider the vertex d. It is DIST2(1, d) = 1, hence the most significant

bit of ∆(d) is set (which means that the length of the longest path to d is at least 4).

The other vertices for which this is the case are a, c and e. But none of these vertices

has an outgoing edge pointing to d in the graph (V, T1) and thus ∆(d) < ∆(v) + 2 for

all v ∈ {a, c, e}. Hence, the second bit of ∆(d) is not set and consequently step (S4)

yields DIST2(10, d) = 1.

9

In order to see that the steps (S3) and (S4) of the algorithm are correct, we have to

verify (∗).

Claim 1 The algorithm described by (S3) and (S4) computes DISTj correctly.

Proof: The proof is by induction on j. For j = n the claim is obvious because in this

case d∗ is the empty string ε and |ε| = 0. Let now j < n and d∗ = dn−1 . . . dj+1. We

consider two cases.

Case 1: ∆(v) < 2j+1|d∗| or ∆(v) ≥ 2j+1(|d∗|+ 1).

Due to the induction hypothesis, DISTj+1(d∗, v) = 0, and according to (S4)

DISTj(d
∗dj , v) = 0. But on the other hand we always have

2j+1|d∗| ≤ 2j |d∗dj | ≤ 2j+1(|d∗|+ 1/2),

which together with the case assumption implies either

∆(v) < 2j+1|d∗| ≤ 2j |d∗dj |

or

∆(v) ≥ 2j+1
(
|d∗|+ 1

)
= 2j+1

(
|d∗|+ 1/2

)
+ 2j ≥ 2j

(
|d∗dj|+ 1

)
.

Hence, invariant (∗) is fulfilled.

Case 2: 2j+1|d∗| ≤ ∆(v) < 2j+1(|d∗|+ 1).

Due to the induction hypothesis, the first term of (S4), namely

DISTj+1(dn−1 . . . dj+1, v), equals 1. We have to show that dj = 1 is equivalent

to

∃u
(
Tj(u, v) ∧ DISTj+1(dn−1 . . . dj+1, u)

)
. (1)

First of all, dj = 1 is equivalent to ∆(v) ≥ 2j+1|d∗|+ 2j. Hence, it suffices to show that

(1) is equivalent to ∆(v) ≥ 2j+1|d∗|+ 2j .

According to the definition of Tj and the induction hypothesis, (1) implies that there

exists a path of length 2j from a vertex u to v and 2j+1|d∗| ≤ ∆(u) < 2j+1(|d∗| + 1).

If this is the case, then

∆(v) ≥ ∆(u) + 2j ≥ 2j+1|d∗|+ 2j .

10

Now assume that (1) is not satisfied and consider the longest path p leading to v.

If ∆(v) < 2j , then trivially ∆(v) < 2j+1|d∗| + 2j and we are done. Hence assume

∆(v) ≥ 2j . Then there exists a vertex u on p such that a longest path from u to v is

entirely on p and has length exactly 2j . Now we know that

∆(v) = ∆(u) + 2j . (2)

Furthermore, Tj(u, v) = 1 and thus DISTj+1(d∗, u) = 0 due to the assumption that (1)

is not satisfied. Then according to the induction hypothesis, either ∆(u) < 2j+1|d∗| or

∆(u) ≥ 2j+1(|d∗|+ 1). But the latter is clearly not possible, because by (2) it would

imply ∆(v) ≥ 2j+1(|d∗|+ 1) + 2j in contrary to the case assumption. Therefore, again

by (2) we can conclude ∆(v) < 2j+1|d∗|+ 2j .

Once we have computed the function DIST, we can use it together with an arbitrary

given complete order l to compute a complete order ≺ by letting

u ≺ v ⇔ ∃du, dv :

DIST(du, u) ∧ DIST(dv, v) ∧
(
|du| < |dv| ∨ (|du| = |dv| ∧ ul v)

)
. (S5)

By definition, for each vertex v it is DIST(dv, v) = 1 if and only if |dv | = ∆(v). Hence,

by (S5) we obtain u ≺ v if and only if ∆(u) < ∆(v) or if ∆(u) = ∆(v) and u l v.

Therefore, all pairs of vertices u, v ∈ V are comparable by ≺ (i.e., u ≺ v or v ≺ u).

Furthermore, due to the input graph being acyclic and due to the transitivity of l, it

can be easily checked that ≺ is transitive, too. Finally, if u v, then a path in G leads

from u to v. Hence, ∆(u) < ∆(v) (due to G being acyclic) and therefore u ≺ v. Note

also that ≺ inherits the antisymmetry of . All in all, ≺ defines a complete order on

V respecting .

The following theorem follows easily from the description above and from simply count-

ing the number of OBDD operations.

Theorem 1 Let V = {0, 1}n and G = (V,E) be an acyclic directed graph represented

by OBDDs. Applying the OBDD operations as described in (S1)–(S5) yields an OBDD

for a relation ≺ which defines a complete order on V such that v ≺ w for all v, w ∈ V
with (v, w) ∈ E. The number of OBDD operations required is O(log2 |V |), where each

OBDD represents a function on at most 4n variables.

11

Note that we are not restricted to vertex sets V whose cardinality is a power of two.

Assume that the input for our algorithm is the characteristic function for a vertex set

V ⊆ {0, . . . , 2n − 1} and an edge relation E ⊆ {0, . . . , 2n − 1} × {0, . . . , 2n − 1}. If

we are not sure that the edge relation is consistent with V (with consistent we mean

E ⊆ V × V), then we can simply use two OBDD synthesis operations to obtain a

consistent edge relation E ′:

E′(u, v) = E(u, v) ∧ V (u) ∧ V (v).

We then apply the topological sorting algorithm on the edge relation E ′. While the

complete order≺ returned by the algorithm is defined on {0, 1}n×{0, 1}n, its restriction

to V × V is obviously a correct complete order.

Since any (not necessarily reduced) OBDD in n variables has O(2n) nodes, the theorem

shows that the true worst-case runtime of our algorithm is O(|V |4 log2 |V |). Clearly,

this is much worse than the O(|V | + |E|) upper bound obtained by a well-known

explicit algorithm. On the other hand, if all OBDDs obtained during the execution of

the algorithm have a subexponential size, its runtime is sublinear with respect to the

number of vertices. In the following sections we show that it is justifiable to hope that

this is the case for very structured input graphs.

4 Runtime Analysis for the Grid Graph

We analyze the behavior of the topological sorting algorithm for a grid graph with

directed edges. We consider a 2n × 2n-grid, where all edges are directed from left

to right and from bottom to up. The directed grid graph consists of the vertex set

V = {0, 1}n × {0, 1}n and edge set E, where
(
(x, y), (x′, y′)

)
∈ E if and only if either

|x| = |x′| and |y′| − |y| = 1 or |y| = |y′| and |x′| − |x| = 1.

Note that there are some parameters we have not fixed in the description of the al-

gorithm and which will most likely affect its performance. First of all, we have not

specified the variable ordering (including the ordering of the auxiliary variables) used

for the OBDDs. This is a critical point because the π-OBDD size of a function is very

sensitive to the variable ordering π. In the analysis to follow, we assume an interleaved

12

variable ordering, that is a variable ordering where e.g. for a function depending on

two vertices u, v, the variable vi precedes the corresponding variable ui. Note that

in practice, heuristics such as sifting algorithms [12] are used to optimize the variable

orderings during the execution of an algorithm, and it can be expected that a good

variable ordering is found this way. Secondly, we have to fix the order in which vari-

ables are quantified during the algorithm. Here we use the fact that all quantifications

are over complete n-bit integers. For the analysis to follow we use the convention that

if a quantification is to be computed over an n-bit integer x = xn−1 . . . x0, then the

order of quantification is from the least significant bit to the most significant bit, i.e.

we quantify using Qxf = Qxn−1Qxn−1 . . . Qx0f , where Q ∈ {∀,∃}.

The idea for proving that the topological sorting algorithm is very efficient for the

grid graph is that all functions represented by OBDDs after each step of the algorithm

belong to a class of functions which have a small OBDD representation. The functions

we consider are compositions of certain threshold and modulo functions, which we

define and investigate in the next sections.

4.1 Multivariate Threshold Functions and Modulo Functions

In the following, we denote by Xk,n the set of variables xij with 1 ≤ i ≤ k and 0 ≤ j < n.

By xi we denote the vector of n variables (xin−1, . . . , x
i
0).

13

Definition 2

1. A boolean function f ∈ Bkn defined on the variable set Xk,n is called k-variate

threshold function, if there exist a threshold T ∈ � and weights w1, . . . , wk ∈ �

such that

f(x1, . . . , xk) = 1 ⇔
k∑

i=1

wi ·
∣∣xi
∣∣ ≥ T.

The maximum absolute weight of f is defined as w(f) := max
{
|w1|, . . . , |wk|

}
.

The set of k-variate threshold functions with maximum absolute weight w defined

on the set of variables Xk,n is denoted by � w
k,n

2. A boolean function g ∈ Bkn defined on the variable set Xk,n is called k-variate

modulo M function, if there exists a constant C ∈ � and w1, . . . , wk ∈ � such

that

g(x1, . . . , xk) = 1 ⇔
k∑

i=1

wi ·
∣∣xi
∣∣ ≡ C (mod M).

The set of k-variate modulo M functions defined on the set of variables Xk,n is

denoted by � M
k,n.

Remark 1 Since all weights as well as the threshold describing f are integers, the

term
∑k

i=1 wi ·
∣∣xi
∣∣ < T is equivalent to

∑k
i=1(−wi) ·

∣∣xi
∣∣ ≥ −T + 1. Hence, if f is in

� w
k,n, then so is f .

Definition 3 Let f ∈ Bn and C be a class of functions defined on the variable set Xn.

We say that f can be decomposed into m functions in C, if there exist a formula F

on m variables and f1, . . . , fm ∈ C such that f = F (f1, . . . , fm). The set of functions

decomposable into m functions in C is denoted by D[C,m].

The main idea in our proof is based on two observations. Firstly, any function de-

composable into a constant number of threshold and modulo functions has a small

OBDD size. Secondly, all intermediate OBDDs obtained during the execution of the

topological sorting algorithm on the directed grid graph represent functions which are

decomposable into threshold and modulo functions.

Assume that we have a threshold function f ∈ Bkn defined on the variable set Xk,n

given by an OBDD Gf . Quantifying over one complete integer, e.g. computing the

14

function (Qxi)f for some quantifier Q ∈ {∀,∃}, requires n OBDD quantification op-

erations. Since each quantification operation may yield a quadratic blow-up of the

input OBDD, during n quantification steps there may appear OBDDs with exponen-

tial size. In this case, the true runtime would be exponential in n. The main trick is to

prove that all intermediate functions obtained during the computation of (Qx1)f are

decomposable into threshold and modulo functions, too. Note though, that the order

in which the variables are quantified is important.

Let in the following lcm denote the least common multiple.

Lemma 1 Let f ∈ D
[

� w
k,n,m

]
, and Q ∈ {∃,∀} and q ∈ {1, . . . , k}. Then (Qxq)f ∈

D
[

� 2w·w∗
k−1,n ∪ � w∗

k−1,n,m
′
]
, where w∗ ≤ lcm{1, 2, . . . , w} and m′ = O(2mw∗m2).

We prove the lemma at the end of this section. The special case w = 1 and m = O(1)

is most important for the analysis of the grid graph.

Definition 4 For any k ∈ �
we denote by Dk the set of function sequences (fn)n∈ �

such that ∃m ∈ � ∀n ∈ �
: fn ∈ D

[
� 1
k,n, m

]
.

If we start with (fn)n∈ � ∈ Dk (i.e., fn is decomposable into a constant number of

threshold functions with maximum absolute weight 1), then according to Lemma 1

(Qxi)fn is decomposable into a constant number of threshold functions with maximum

absolute weight 2 and modulo functions in � 1
k−1,n. Since the functions in � 1

k−1,n

are in fact constant functions (and thus are even threshold functions), we obtain the

following corollary.

Corollary 1 Let k ∈ �
and let (fn)n∈ � ∈ Dk be a sequence of functions. For any

Q ∈ {∃,∀} and i ∈ {1, . . . , k} it is (Qxi)fn ∈ D
[

� 2
k−1,n,m

]
, where m = O(1).

In order to prove Lemma 1, we need the following proposition.

15

Proposition 1 Let Si : {0, 1}kn → �
for i = 1, 2 be defined on the variable set Xk,n

by

Si(x
1, . . . , xk) =

k∑

j=1

wi,j
∣∣xj
∣∣+ Ti,

where wi,j and Ti are integers. Let M ∈ �
and fM ∈ Bkn defined by

fM (x1, . . . , xk) = 1 ⇔

∃` ∈ {0, . . . , 2n − 1} : S1(x1, . . . , xk) ≤ ` ·M ≤ S2(x1, . . . , xk).

Then fM ∈ D
[

� w
k,n ∪ � M

k,n, 2M + 4
]
, where w = 2 ·max {wi,j}.

Proof: Abusing notation, we write Si instead of Si(x
1, . . . , xk) and fM instead of

fM (x1, . . . , xk). If S1 < 0, then fM = 1 if and only if S2 ≥ 0, and if S2 > M(2n − 1),

then fM = 1 if and only if S1 ≤ M(2n − 1). To see this, choose ` = 0 in the case

S1 < 0 ≤ S2 and ` = 2n − 1 in the case S1 ≤M(2n − 1) < S2.

Assume now S1 ≥ 0 and S2 ≤ M(2n − 1). There exists ` ∈ {0, . . . , 2n − 1} with

S1 ≤ ` ·M ≤ S2 if and only if S2 − S1 ≥ S2 mod M . Hence, under the assumption

S1 ≥ 0 and S2 ≤M(2n − 1)

fM (x1, . . . , xk) = 1 ⇔ S2 − S1 ≥ (S2 mod M)

⇔ ∃0 ≤ i < M : (S2 mod M = i ∧ S2 − S1 ≥ i)

⇔
M−1∨

i=0

(S2 mod M = i ∧ S2 − S1 ≥ i)

Altogether, we obtain

fM ≡ (S1 < 0 ∧ S2 ≥ 0) ∨ (S1 ≤M(2n − 1) ∧ S2 > M(2n − 1)) ∨

(S1 ≥ 0 ∧ S2 ≤M(2n − 1)) ∧
(
M−1∨

i=0

(S2 mod M = i ∧ S2 − S1 ≥ i)
)

Now it is obvious that fM can be decomposed into M modulo functions and M + 4

threshold functions (note that we do not need to count the functions S1 ≥ 0 and

S2 ≤M(2n − 1) since these are the negations of S1 < 0 and S2 > M(2n − 1).) Clearly,

the modulo functions S2 mod M = i are in � M
k,n. Since the maximum absolute weight

of the threshold functions S2 − S1 ≥ i is bounded by w = 2 ·max {wi,j}, all threshold

functions are in � w
k,n. Hence, fM ∈ D[� w

k,n ∪ � M
k,m, 2M + 4].

16

Proof of Lemma 1: We consider only the case Q = ∃; the case Q = ∀ then follows

right away from the De Morgan rules.

Let w.l.o.g. q = 1. Assume that f can be decomposed into m functions f1, . . . , fm,

i.e., there is a formula F such that f = F (f1, . . . , fm). Let fi, 1 ≤ i ≤ m be a

function with weights wi,1, . . . , wi,k ≤ w and threshold Ti, hence fi decides whether
∑k

j=1wi,j
∣∣xi
∣∣ ≥ Ti. Let further

w∗ = lcm{wi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ k} ≤ lcm{1, . . . , w},

and for 1 ≤ i ≤ m let zi = 1 if wi,1 = 0 and zi = |w∗/wi,1|, otherwise. Note that

zi ∈
� ∪{0}. Then fi is equivalent to the function which decides whether

∑k
j=1 zi·wi,j ≥

ziTi. Hence, fi is a threshold function with a maximum absolute weight of at most

w ·zi ≤ w ·w∗, and the weight of x1 is equal to zi ·wi,1 ∈ {−w∗, 0, w∗}. This means that

f can be decomposed into threshold functions f1, . . . , fm with a maximum absolute

weight of at most w ·w∗ and where the weights of x1 are in {−w∗, 0, w∗}. Turning the

formula F into its DNF, we can write

f =
2m∨

i=1

(`i∧

j=1

gi,j

)
,

where `i ≤ m and gi,j is one of the functions f1, . . . , fm or their negations. According

to Remark 1 and the discussion above gi,j ∈ � w·w∗
k,n for all i, j, and the weight of x1

appearing in gi,j is in {−w∗, 0, w∗}.

Assume that gi,j(x
1, . . . , xk) equals the term

∑k
t=1 w

t
i,j

∣∣xt
∣∣ ≥ Ti,j . Then let

Si,j(x
2, . . . , xk) = Ti,j −

∑k
t=2 w

t
i,j

∣∣xt
∣∣. Abusing notation for the sake of readability,

we write in the following gi,j for gi,j(x
1, . . . , xk) and Si,j for Si,j(x

2, . . . , xk). Obvi-

ously, gi,j equals 1 if and only if w1
i,j ·

∣∣x1
∣∣ ≥ Si,j. Since w1

i,j ∈ {−w∗, 0, w∗}, we

have

gi,j = 1 ⇔

0 ≥ Si,j if w1
i,j = 0

w∗
∣∣x1
∣∣ ≥ Si,j if w1

i,j = w∗

w∗
∣∣x1
∣∣ ≤ −Si,j if w1

i,j = −w∗.

(3)

Let now for 1 ≤ i ≤ 2m

Ci := Ci(x
2, . . . , xk) := (∃x1)

`i∧

j=1

gi,j .

17

Then the function (∃x1)f is the disjunction of all Ci, 1 ≤ i ≤ m. Further, let S0
i =

{
Si,j

∣∣w1
i,j = 0

}
, S+

i =
{
Si,j

∣∣w1
i,j = w∗

}
, and S−i =

{
−Si,j

∣∣w1
i,j = −w∗

}
. According

to (3),

Ci = (∃x1)
((∧

S∈S+
i

w∗
∣∣x1
∣∣ ≥ S

)
∧
(∧

S∈S−i

w∗
∣∣x1
∣∣ ≤ S

)
∧
(∧

S∈S0
i

−S ≥ 0
))

= (∃x1)
(

max
{
S ∈ S+

i

}
≤ w∗

∣∣x1
∣∣ ≤ min

{
S ∈ S−i

}
∧
(∧

S∈S0
i

−S ≥ 0
))

=
(∧

S∈S+
i

S′∈S−
i

∃` ∈ {0, . . . , 2n − 1} : S ≤ `w∗ ≤ S′
)
∧

(∧

S∈S0
i

−S ≥ 0
)
.

The last part of this formula (∧S∈S0
i,j
− S ≥ 0) is the conjunction of functions in

� w·w∗
k−1,n. Furthermore, according to Proposition 1, the first part of this formula is the

conjunction of functions in D
[

� 2w·w∗
k−1,n ∪ � w∗

k−1,n, 2w∗ + 4
]
.

To summarize, Ci can be written as the conjunction of O(m2) functions in

D
[

� 2w·w∗
k−1,n ∪ � w∗

k−1,n, 2w∗ + 4
]
. Since (∃x1f) is the disjunction of all Ci, 1 ≤ i ≤ 2m, it

can be decomposed into at most O(w∗2mm2) functions in � 2w·w∗
k−1,n ∪ � w∗

k−1,n.

4.2 The OBDD Representation of Threshold and Modulo Functions

We now show that functions which are decomposable into threshold functions and

modulo functions have small reduced OBDDs, if the variable ordering is chosen ap-

propriately. Let πk,n be the variable ordering which orders the variables in Xk,n as

follows:

x1
0, x

2
0, . . . , x

k
0 , x

1
1, . . . , x

k
1 , . . . , x

k
n−1.

I.e., a πk,n-OBDD tests all bits of the input integers in an interleaved order with

increasing significance of the bits.

An OBDD is called complete, if all variables appear on each source-to-sink path. It

is well known that the reduced π-OBDD of some boolean function f has at most as

many nodes on each level as any OBDD, and thus also as any complete OBDD. (By

level we mean a maximal set of nodes labeled by the same variable).

18

Lemma 2

(a) For any function f ∈ � w
k,n there exists a complete πk,n-OBDD which has at most

4kw + 5 nodes on each level, and thus the πk,n-OBDD size of f is bounded by

O(k2nw).

(b) For any function g ∈ � M
k,n and any variable ordering π there exists a complete

π-OBDD which has at most M nodes on each level, and thus the π-OBDD size

of g is bounded by O(knM).

The result for threshold functions is a simple generalization of [10, Proposition 4].

Similar results about Modulo Functions appear in literature in several variants.

Proof of Lemma 2: Part (a): Let f ∈ � w
k,n with weights w1, . . . , wk and threshold

T . We describe an algorithm which tests whether S ≥ 0, where

S := S(x1, . . . , xk) := −T +
k∑

i=0

wi
∣∣xi
∣∣.

The algorithm reads the variables in the order defined by πk,n. After each variable

test, one out of 4kw+ 5 possible “states” is stored (in addition to the label of the most

recently read variable), and the next state is determined by the outcome of the next

variable test and the former state. It is obvious how our algorithm can be transformed

into a complete πk,n-OBDD where each node on a level corresponds to exactly one of

the possible states.

Assume that S0, . . . , Sn is a representation of S similar to the two’s complement. More

precisely, let Si ∈ {0, 1} for 0 ≤ i ≤ n − 1, and Sn ∈ � such that S =
∑n

i=0 Si · 2i.
Obviously, the sign of Sn equals the sign of S. Our algorithm computes the sign of Sn

by the school method of addition as follows. Let T0, . . . , Tn be the unique integers with

Ti ∈ {0, 1} for 0 ≤ i ≤ n− 1 and Tn ∈ � , such that −T =
∑n

i=0 Ti · 2i. In the ith step

of the school method the value Si−1 as well as the carry value ci is computed. Thus,

c−1 = 0 and for 0 ≤ i ≤ n− 1

Si =
(
ci−1 + Ti +

k∑

j=1

wj · xji
)

mod 2, and

ci =
⌊(
ci−1 + Ti +

k∑

j=1

wj · xji
)
/2
⌋

19

Finally, Sn = cn. It is easy to see that S =
∑n

i=0 Si · 2i as required. Note that it is not

necessary for the algorithm to compute Si for i ≤ n− 1 in order to determine Sn = cn.

We describe an algorithm consisting of n steps and computing ci−1 in the ith step,

1 ≤ i ≤ n, and the sign of cn in the nth step. The state the algorithm stores in each

step is an integer Q ∈ � . Before the ith step, Q = ci−1, and thus Q is initialized to 0

when the algorithm starts. During the ith step, the variables x0
i−1, . . . , x

k
i−1 are tested

and Q is updated after each variable test in the obvious way such that after all these

variable tests Q = ci−1 +
∑k

j=1wjx
j
i−1. Once this value is computed, ci = b(Ti +Q)/2c

is already uniquely determined by Q because Ti is fixed in advance.

Note that in the last step it is not necessary to compute cn, but instead the sum

cn−1 +
∑k

j=1wjx
j
n−1 already uniquely determines the sign of cn. Hence, the maximum

absolute value Q takes during the algorithm is bounded by

max
0≤i≤n

{
|ci−1|+

k∑

j=1

|wj|xji−1

}
≤ max

0≤i≤n
{|ci−1|+ kw}.

Since c−1 = 0 and for 1 ≤ i ≤ n− 1

|ci| ≤ |ci−1 + Ti + kw|/2 ≤ |ci−1 + kw + 1|/2,

a simple induction shows that |ci| ≤ kw+1 for all 0 ≤ i ≤ n−1. Hence, |Q| is bounded

by 2(kw+1) during all steps of the algorithm. This shows that the sign of cn (and thus

the sign of S) can be computed this way by an algorithm storing after each variable

test one out of 4kw + 5 states.

Part (b): Let g(x1, . . . , xk) defined to be 1 if and only if
∑k

i=1wi
∣∣xi
∣∣ ≡ C (mod M).

Similar as in the proof of part (a) it suffices to describe an algorithm storing one out

of M states after each variable test. This is straightforward – the variable ordering

even does not matter. The algorithm stores a state Q ∈ {0, . . . ,M − 1}, which is in

the beginning initialized to 0. Upon reading an arbitrary variable xji , the value of Q

is replaced by (Q + wj · |xji |) mod M . When the last variable is read, the result of

g(x1, . . . , xk) is uniquely defined by the state Q. Since only M possible states have to

be stored, the claimed size for the corresponding OBDD follows.

By the size of a formula we denote the number of its leaves (which is one more than

the number of its gates if all gates have fan-in 2).

20

Lemma 3 Let f1, . . . , fm ∈ � w
k,n ∪ � M

k,n be given by reduced πk,n-OBDDs for fi,

1 ≤ i ≤ m. Further, let f = F (f1, . . . , fm) for a formula F of size s and let

L = L(k,m,M) = max {4kw + 5,M}. The minimal πk,n-OBDD for f has at most

Lskn nodes and can be computed in time and space O
(
(kns)2Ls log(knL)

)
.

The lemma follows from the bounds on the OBDD size of threshold and modulo func-

tions given in Lemma 2 and the following lemma which is known by folklore.

Lemma 4 Let f1, f2 ∈ Bn and let ⊗ be a boolean operation. If there exist complete

π-OBDDs for f1 and f2 which have on level i (1 ≤ i ≤ n) at most s1,i and s2,i nodes,

respectively, then there exists a complete π-OBDD for f1 ⊗ f2 which has on level i at

most s1,i · s2,i nodes.

Proof of Lemma 3: We assume w.l.o.g. that each gate of the formula F has fan-in 2.

(Note that the OBDD for the negation fi of one of the input functions can be obtained

by simply exchanging the OBDD’s 1-sink with its 0-sink.) We first show by induction

on s that there exists a complete πk,n-OBDD for f which has at most Ls nodes on each

of its kn levels.

For s = 1, the formula F has no gates, i.e., f ∈ � w
k,n ∪ � M

k,n is already given as the

input OBDD. In this case, the claimed size bound follows directly from Lemma 2.

Let now s > 1, i.e., F has at least one gate. Let fa and fb be the two functions

represented at the inputs of the output gate of F . Then F = fa ⊗ fb for some binary

operation ⊗ ∈ B2, and fa = Fa(f1, . . . , fm) and fb = Fb(f1, . . . , fm) for two formulas

Fa and Fb of sizes sa and sb with s = sa + sb. By induction hypothesis, the minimal

πk,n-OBDDs Ga and Gb for fa and fb have on each level at most Lsa and Lsb nodes,

respectively. Hence, |Ga| ≤ Lsakn and |Gb| ≤ Lsbkn. According to Lemma 4, there

exists a complete OBDD for f = fa ⊗ fb having at most Lsa · Lsb = Ls nodes on each

level.

We now show the claimed time bound. Consider an arbitrary ⊗-gate (⊗ ∈ B2) and

let its inputs be sub-formulas for the functions fa and fb represented by the OBDDs

Ga and Gb. Assume that the sub-formulas for fa and fb have a size of sa and sb,

respectively. Then sa + sb ≤ s and by what we have proven above |Ga| ≤ knLsa

21

and |Gb| ≤ knLsb . Hence, the time required for the binary synthesis of Ga and Gb is

bounded by

O
(
|Ga| · |Gb| log (|Ga| · |Gb|)

)
= O

(
(kn)2Lsa+sb · log

(
(kn)2Lsa+sb

))

= O
(
(kn)2Lss log(knL)

)

Since the OBDD for the complete formula can be computed with at most s such

synthesis operations, the claimed time bound follows

We have shown so far, that if a function is given by the πk,n-OBDDs of threshold

and modulo functions into which it can be decomposed, then its πk,n-OBDD can be

computed efficiently. Now we show for functions being decomposable into threshold

functions (and no modulo functions), that the quantification over one of its variable

blocks xi0, . . . , x
i
n−1, 1 ≤ i ≤ k, can be done efficiently.

Theorem 2 Let (fn)n∈ � such that there exist w,m ∈ �
with fn ∈ D[� w

k,n, m] for all

n ∈ �
, and let Q ∈ {∃,∀}. If fn is given as a πk,n-OBDD, then for any 1 ≤ ` ≤ k a

minimal πk,n-OBDD for (Qx`)fn can be computed in time kO(1)n3 log n.

Proof: Fix w,m ∈ �
such that fn ∈ D[� w

k,n, m] for all n ∈ �
and write f instead

of fn. W.l.o.g. we assume ` = 1 and for the sake of readability we write x instead

of x1. We only prove the theorem for the case Q = ∀; the proof for Q = ∃ works

analogously. We can write (∀x)f as (∀xn−1∀xn−2 . . . ∀x0)f(x2, . . . , xk). If we apply

the OBDD quantification operations to the bits x0, . . . , xn−1 in this order, then after

the ith quantification (0 ≤ i ≤ n) the resulting OBDD Gi represents the function

gi = (∀xi−1 . . . ∀x0)f in Bkn−i. Since each of the n quantification operations can be

done in time O(|Gi|2 log |Gi|), the total time required is bounded by
∑n−1

i=0 |Gi|2 log |Gi|.
Hence, it suffices to show that Gi has a size of at most O(nkO(1)) for all 0 ≤ i ≤ n− 1.

Note that gi does not depend on the variables x0, . . . , xi−1. In the following we

introduce n dummy variables z0, . . . , zn−1 and show that gi can be written as
(
(∀z0, . . . , zn−1)g∗i

)
|x0=0,...,xi−1=0

, where g∗i is a function in D
[

� w
k+1,n,m+ 1

]
. Hence,

gi is obtained from the function (∀z0, . . . , zn−1)g∗i by restricting some variables to con-

stants. By Lemma 1, this function is decomposable into a constant number of threshold

22

and modulo functions, and therefore its OBDD size is bounded sufficiently. Note that

the variables z0, . . . , zn−1 are merely artifical helper variables, and that none of the

functions we “really” deal with (i.e., which are represented by OBDDs) depend on

these variables.

Let f = F (f1, . . . , fm) for a formula F and f1, . . . , fm ∈ � w
k,n. Since m = O(1), we may

assume w.l.o.g. that the size s of F is a constant, too. We introduce n new variables,

which we denote by z0, . . . , zn−1. Then we replace the variables xj with the variables

zj for 0 ≤ j ≤ i− 1. This way we obtain

gi = (∀xi−1 . . . x0)f(xn−1 . . . xixi−1 . . . x0, x
2, . . . , xk)

= (∀zi−1 . . . z0)f(xn−1 . . . xizi−1 . . . z0, x
2, . . . , xk)

= (∀zn−1 . . . z0)
(
(zn−1, . . . , zi) 6= (0, . . . , 0) ∨ f(xn−1 . . . xizi−1 . . . z0, x

2, . . . , xk)
)

= (∀zn−1 . . . z0)
(
|z| ≥ 2i ∨ f(xn−1 . . . xizi−1 . . . z0, x

2, . . . , xk)
)

(4)

Now consider an arbitrary threshold function fj, 1 ≤ j ≤ m, i.e.,

fj(x, x
2, . . . , xk) = 1 ⇔ w1|x|+ w2

∣∣x2
∣∣+ · · · + wk

∣∣∣xk
∣∣∣ ≥ T

Let f∗j ∈ B(k+1)n with

f∗j (z, x, x2, . . . , xk) = 1 ⇔ w1|z|+ w1

∣∣x1
∣∣+w2

∣∣x2
∣∣+ · · ·+ wk

∣∣∣xk
∣∣∣ ≥ T

and f∗ = F (f∗1 , . . . , f
∗
m). Obviously, f ∗ ∈ D[� w

k+1,n, m]. If |z| < 2i, then

|xn−1 . . . xizi−1 . . . z0| is the same as |xn−1 . . . xi0 . . . 0|+|z|. Hence, it is easy to conclude

from (4) that

gi = (∀zn−1 . . . z0)
(
|z| ≥ 2i ∨ f∗(z, xn . . . xi0 . . . 0, x

2, . . . , xk)
)

= (∀zn−1 . . . z0)
(
|z| ≥ 2i ∨ f∗|xi−1=···=x0=0(z, x, x2, . . . , xk)

)
.

Now let

g∗i (x
1, . . . , xk) = |z| ≥ 2i ∨ f∗(z, x1, x2, . . . , xk).

Then g∗i ∈ D
[

� w
k+1,n,m+ 1

]
and gi =

(
(∀z)g∗i

)
|x0=0,...,xi−1=0

.

Since g∗i ∈ D
[

� w
k+1,n,m+ 1

]
and k, w, and m are constants, we can conclude from

Lemma 1 that (∀z)g∗i ∈ D
[

� w′
k,n ∪ � M

k,n,m
′
]

for some constants w′, M , and m′. Thus,

23

by Lemma 3 the πk,n-OBDD size of (∀z)g∗i is bounded by O(nkO(1)). But as we have

shown above, the πk,n-OBDD for gi can be obtained from the πk,n-OBDD for (∀z)g∗i
by simply replacing some variables with the constant 0. Hence, the resulting minimal

πk,n-OBDD for gi can only be smaller than that for (∀z)g∗i and thus its size is also

bounded by O(nkO(1)).

Remark 2 It is obvious that all the upper bounds in Lemma 3 and Theorem 2 proven

for functions decomposable into threshold- and modulo functions hold equivalently for

their subfunctions f|α1...αi, where α1 . . . αi is a restriction to arbitrary variables except

those being quantified in case of Theorem 2.

Remark 3 Let f ∈ Bn be the function xn−1 . . . x0 7→ xi for some 0 ≤ i ≤ n− 1. Then

f is obtained from the function g ∈ D
[

� 1
1,n, 2

]
, where g(x) = 1⇔ |x| = 2i, by replacing

all variables except xi with 0.

4.3 Runtime Analysis of the Topological Sorting Algorithm for the

Grid Graph

In order to show that the topological sorting algorithm runs efficiently on a grid graph,

we prove that all functions obtained during the execution of the algorithm can be

decomposed into a constant number of threshold and modulo functions, where possibly

some variables are fixed by constants.

Since we need only very special cases of the results proven in the former section, we

summarize the results for these cases in the following corollary.

Corollary 2 Fix a constant k ∈ �
and let i, j ∈ {1, . . . , k} and Q,Q′ ∈ {∃,∀}. Fur-

ther, let (gn)n∈ � ∈ Dk and fn = gn|α, where α is an assignment of constants to

arbitrary variables except to those in {xi0, . . . , xin−1}. If gn is either given by a reduced

πk,n-OBDD or by the reduced πk,n-OBDDs for the threshold functions into which it is

decomposable, then the reduced πk,n-OBDDs for (Qxi)gn, (Qxi)fn, and (QxiQ′xj)gn

can be computed in time O(n3 log n).

Proof: If gn is given by a constant number of reduced πk,n-OBDDs for the threshold

functions into which it is decomposable, then according to Lemma 3 the πk,n-OBDD

24

for gn can even be computed in time O(n2 log n). For the claimed time to compute the

πk,n-OBDD of (Qxi)gn apply Theorem 2, for (Qxi)fn refer in addition to Remark 2.

For (QxiQ′xj)gn we note that according to Corollary 1 (Q′xj)gn ∈ D
[

� 2
k−1,n,m

]
,

where m = O(1). Hence, Theorem 2 can be applied twice.

Recall that the algorithm consists of the following steps.

1. Computing Ti, 0 ≤ i ≤ n:

T0(u, v) = E(u, v). (S1)

Ti+1(u, v) = ∃w : Ti(u,w) ∧ Ti(w, v). (S2)

2. Computing DISTj, 0 ≤ j ≤ n:

DISTn(v) := 1 (S3)

and for j = n− 1, . . . , 0

DISTj(dn−1 . . . dj, v) = DISTj+1(dn−1 . . . dj+1, v) ∧
(
dj ⇔ ∃u

(
Tj(u, v) ∧ DISTj+1(dn−1 . . . dj+1, u)

))
. (S4)

3. Computing the complete order ≺:

u ≺ v ⇔ ∃du, dv :

DIST(du, u) ∧ DIST(dv, v) ∧
(
|du| < |dv| ∨ (|du| = |dv| ∧ ul v)

)
. (S5)

Whenever we talk in the following about an OBDD for some function sequence in Dk,

we assume that the variable ordering is πk,n. We have to specify the complete order l

for the operations in (S5). A very natural order is the lexicographical order

(x1, y1)l (x2, y2) ⇔ |x1| < |x2| ∨
(
|x1| = |x2| ∧ |y1| ≤ |y2|

)
.

We start with the analysis of the edge relation E. By the definition of the grid graph,
(
(x1, y1), (x2, y2)

)
∈ E if and only if

(
|x2| − |x1| = 0 ∧ |y2| − |y1| = 1

)
∨
(
|y2| − |y1| = 0 ∧ |x2| − |x1| = 1

)
.

25

Clearly, this function is in D4.

Now we look at the functions Ti obtained by (S1) and (S2). Recall that Ti(u, v) is

defined to be 1 if and only if there exists a path from u to v which has length exactly

2i. Note also that in the directed grid graph all paths from vertex u to vertex v have

the same length. Hence, for the directed grid graph Ti
(
(x1, y1), (x2, y2)

)
= 1 if and

only if

|y2| ≥ |y1| ∧ |x2| ≥ |x1| ∧ |x2| − |x1|+ |y2| − |y1| = 2i.

Clearly, this function is in D4 and thus according to Corollary 2, Ti+1 can be computed

from Ti in time O(n3 log n). (Note also that the quantification over one vertex in the

grid graph is a quantification over two integers.) Hence, computing T1, . . . , Tn requires

time O(n4 log n) in total.

Next, we analyze the construction of the OBDDs for the functions DISTj in (S3) and

(S4). Recall that for any vertex v and any d∗ = dn−1 . . . dj , the function DISTj(d
∗, v) is

true if and only if d∗ describes the n−j most significant bits of the bitwise representation

of ∆(v). Let fj ∈ B3n, 0 ≤ j ≤ n, be defined by

fj(d, x, y) = 1 ⇔ |d| ≤ |x|+ |y| < |d|+ 2j .

Hence, fj is the conjunction of two functions in � 1
3,n. Furthermore, it is easy to see

that

DISTj

(
dn−1 . . . dj , (x, y)

)
= f|dj−1=···=d0=0(d, x, y).

Therefore, DISTj is obtained from a function in D3 by replacing some variables with

the constant 0. Note also that DIST = DIST0 is in fact in D3. Moreover, due to

the analysis of Tj above, it becomes obvious that Tj(u, v) ∧ DISTj+1(dn−1 . . . dj+1, u)

is a function in D5, where some variables are replaced with the constant 0. Hence,

according to Corollary 2, the OBDD for

gj := ∃u : Tj(u, v) ∧DISTj+1(dn−1 . . . dj+1, u)

can be computed in time O(n3 log n). The function gj is obtained from a function

in D
[

� 8
3,n ∪ � 2

3,n, O(1)
]

by replacing some variables with the constant 0 (apply first

Corollary 1 and then Lemma 1). Now it is easy to see that the final two synthesis

26

operations of (S4) required in order to compute DISTj run in time O(n2 log n) (apply

Lemma 3 and Remarks 2 and 3.) Hence, the total time for computing DISTj from

DISTj−1 is O(n3 log n) and DISTn−1, . . . ,DIST0 = DIST can be computed in total

time O(n4 log n).

Finally, we have to investigate the computation of the complete order ≺ using the

operations in (S5). Recall that DIST ∈ D3 Hence, if one takes the definition of l into

account, the complete term in (S5) before the first quantification describes a function

h in D4. According to Corollary 2 the function h′ = (∃dv∃du)h can be computed in

time and space O(n3 log n).

Summing up the time bounds for all OBDD operations, we have obtained the following

result.

Theorem 3 The OBDD algorithm for topological sorting takes time O(n4 log n) on the

directed 2n × 2n grid graph for an appropriate variable ordering πk,n and the complete

order l as defined above.

5 Conclusion

The analysis of the symbolic topological sorting algorithm has turned out to be quite

involved even for such a simple input instance as the directed grid graph. Nevertheless,

the results about the threshold and modulo functions are very general, and we hope that

they might as well be applicable to the analysis of other symbolic OBDD algorithms.

It would be nice to extend the techniques in such a way that not only single input

instances but small graph classes can be handled. An interesting example would be

grids where some arbitrary or randomly chosen edges have been removed.

Acknowledgments

The author thanks Daniel Sawitzki and Ingo Wegener for helpful comments and dis-

cussions.

27

References

[1] Y. Breitbart, H. B. Hunt III, and D. J. Rosenkrantz. On the size of binary decision

diagrams representing boolean functions. Theoretical Computer Science, 145:45–

69, 1995.

[2] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, C-35:677–691, 1986.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic

model checking: 1020 states and beyond. Information and Computation, 98:142–

170, 1992.

[4] H. Cho, G. Hachtel, S.-W. Jeong, B. Plessier, E. Schwarz, and F. Somenzi. ATPG

aspects of FSM verification. In Proceedings of the IEEE/ACM International Con-

ference on Computer Aided Design (ICCAD), pp. 134–137. 1990.

[5] H. Cho, S.-W. Jeong, F. Somenzi, and C. Pixley. Synchronizing sequences and

symbolic traversal techniques in test generation. Journal of Electronic Testing:

Theory and Applications, 4:19–31, 1993.

[6] O. Coudert. Doing two-level logic minimization 100 times faster. In Proceedings

of the 6th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 112–121.

1995.

[7] R. Drechsler. Pseudo-kronecker expressions for symmetric functions. IEEE Trans-

actions on Computers, 48:987–990, 1999.

[8] J. Feigenbaum, S. Kannan, M. Y. Vardi, and M. Viswanathan. Complexity of

problems on graphs represented as OBDDs. In Proceedings of the 15th Annual

Symposium on Theoretical Aspects of Computer Science (STACS), pp. 216–226.

1998.

[9] G. D. Hachtel and F. Somenzi. A symbolic algorithm for maximum flow in 0-1

networks. Formal Methods in System Design, 10:207–219, 1997.

[10] S. Jukna. The graph of integer multiplication is hard for read-k-times networks.

Technical Report 95–10, Universität Trier, 1995.

28

[11] Y. T. Lai, S. B. K. Vrudhula, and M. Pedram. EVBDD-based algorithms for linear

integer programming, spectral transformation and function decomposition. IEEE

Transactions on Computer Aided Design, 13:959–975, 1994.

[12] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In

Proceedings of the IEEE/ACM International Conference on Computer Aided De-

sign (ICCAD), pp. 42–47. 1993.

[13] D. Sawitzki. Implizite Algorithmen für Graphprobleme. Diploma thesis,

Univ. Dortmund, 2002.

[14] D. Sawitzki. Implicit flow maximization by iterative squaring. In 30th Conference

on Current Trends in Theory and Practice of Informatics, volume 2932 of Lecture

Notes in Computer Science, pp. 301–313. 2004.

[15] I. Wegener. Branching Programs and Binary Decision Diagrams - Theory and

Applications. SIAM, 2000.

29

