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Abstract. We present a new lower bound technique for a restricted branching pro-
gram model, namely for nondeterministic graph-driven read-once branching programs
(g.d.-BP1s). The technique is derived by drawing a connection between ω-nondeterministic
g.d.-BP1s and ω-nondeterministic communication complexity (for the nondeterministic ac-
ceptance modes ω ∈ {∨,∧,⊕}). We apply the technique in order to prove an exponential
lower bound for integer multiplication for ω-nondeterministic well-structured g.d.-BP1s.
(For ω = ⊕ an exponential lower bound was already obtained in [5] by using a different
technique.) Further, we use the lower bound technique to prove for an explicitly defined
function which can be represented by polynomial size ω-nondeterministic BP1s that it
has exponential complexity in the ω-nondeterministic well-structured g.d.-BP1 model for
ω ∈ {∨,⊕}. This answers an open question from Brosenne, Homeister, and Waack [7],
whether the nondeterministic BP1 model is in fact more powerful than the well-structured
graph-driven variant.

1 Introduction and Results

Branching programs (BPs) or equivalently Binary Decision Diagrams (BDDs) be-
long to the most important nonuniform models of computation. (For a history of
results on branching programs see e.g. the monograph of Wegener [22].)

Definition 1.1. A branching program on the variable set Xn = {x1, . . . , xn} is
a directed acyclic graph with one source and two sinks. The internal nodes are
marked with variables in Xn and the sinks are labeled with the boolean constants 0
and 1. Further, each internal node has two outgoing edges, marked with 0 and 1,
respectively.

Let Bn denote the set of boolean functions fn : {0, 1}n → {0, 1}. A branching
program on Xn represents at each node v a function fv ∈ Bn in the following way. If
v is a c-sink, c ∈ {0, 1}, then fv = c and if v is an internal node with 0-successor
v0 and 1-successor v1, then fv = xifv0

∨ xifv1
. The function represented by the

branching program itself is the function represented at the source. The size of a
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branching program G is the number of its nodes, denoted by |G|, and the branching
program complexity of a boolean function f is the size of the smallest branching
program representing f .

Nondeterminism is one of the most powerful concepts in complexity theory. In
analogy to the definition of Turing machines, different modes of acceptance have
been studied for branching programs. The following definition is due to Meinel
[18].

Definition 1.2. Let Ω be a set of binary operations. An Ω-nondeterministic
branching program is a branching program of which some internal nodes are labeled
with an operation ω ∈ Ω instead of a variable. Such nodes are called nondetermin-
istic nodes, and the function represented at the nondeterministic node v, labeled
with ω and with 0-successor v0 and 1-successor v1, is fv = fv0

ω fv1
. As in the

deterministic case, a nondeterministic branching program represents the function
which is represented at the source. The size of an Ω-nondeterministic branching
program is the number of its deterministic nodes.

For the ease of notation, we write ω instead of {ω} if the considered set Ω of
binary operations is a singleton. In this paper, we investigate the most common
acceptance modes OR, AND, and PARITY, denoted by ∨, ∧, and ⊕, respectively
(although our lower bound technique is not limited to these acceptance modes).
For certain acceptance modes ω, an alternative way to determine the function
value of a function represented by an ω-nondeterministic branching program is
to count the number of computation paths of an input a which lead to the 1-
sink. (A source-to-sink path is a computation path of the input a = (a1 . . . an)
if it leaves any deterministic node labeled by xi over the edge labeled by ai and
any nondeterministic node over an arbitrary edge.) E.g. a ⊕-nondeterministic BP
accepts an input a if and only if an odd number of computation paths of a lead to
the 1-sink.

Deterministic and nondeterministic BPs can be simulated by the corresponding
Turing machines, and the BP complexity of a boolean function is a measure for the
space complexity of the corresponding model of sequential computation. Therefore,
one is interested in large lower bounds for BPs. Until today, no superpolynomial
lower bounds for general BPs representing an explicitly defined function are known.
Therefore, various types of restricted BPs have been investigated, and one is in-
terested in refining the proof techniques in order to obtain lower bounds for less
restricted BPs. (For the latest breakthrough see e.g. [1], [2], and [3].) There are
several reasonable possibilities to restrict BPs, among them restrictions concerning
the multiplicity of variable tests or the order in which variables may be tested.

Definition 1.3. (i) A (nondeterministic) read-once branching program (short:
BP1) is a (nondeterministic) branching program where each variable appears
on each computation path at most once.
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(ii) A (nondeterministic) branching program is called s-oblivious, for a sequence of
variables s = (s1, . . . , sl), si ∈ Xn, if the set of decision nodes can be partitioned
into disjoint sets Vi, 1 ≤ i ≤ l, such that all nodes from Vi are labeled with si

and the edges which leave Vi-nodes reach a sink or a Vj-node where j > i.

Besides the theoretical viewpoint people have used BPs in applications. Obliv-
ious BP1s, introduced by Bryant [8] under the term OBDDs, have found a large
variety of applications, e.g. in circuit verification. Obliviousness, though, is a very
strong restriction. Gergov and Meinel [13] and Sieling and Wegener [20] have inde-
pendently generalized the concept of obliviousness in the deterministic read-once
case in order to show how to use BP1s for verification.

Definition 1.4. A graph order is a branching program with a single sink, where
on each path from the source to the sink all variables appear exactly once. A (non-
deterministic) graph-driven BP1 (short: g.d.-BP1) is a (nondeterministic) BP1 G
for which there exists a graph order G0 with the following property: If for an input
a, a variable xi appears on the computation path of a in G before the variable xj,
then xi also appears on the unique computation path of a in G0 before xj.

A (nondeterministic) g.d.-BP1 G with graph order G0 is called well-structured,
if there exists a mapping α from the node set of G to the node set of G0 such that
for every node v in G the node α(v) is labeled with the same variable as v, and such
that if a computation path of an input a passes through v, then the computation
path of a in G0 passes through α(v).

In graph-driven BP1s according to a fixed graph order, for each input the
variables are tested in the same order, whereas (different from OBDDs) for different
inputs different orders may be used. For nondeterministic BP1s graph orders do not
exist in general. If we generalize OBDDs to nondeterministic OBDDs we gain the
possibility of nondeterministic guesses, but the variable order remains the same on
all computation paths. For read-once branching programs the situation is different.
It is possible to guess nondeterministically and moreover, for each input arbitrary
orders of the variables are allowed.

Sieling and Wegener [20] have observed that there is a time-space trade-off
between graph-driven and well-structured graph-driven BP1s in the deterministic
case. The stronger structural property of the latter model leads to the design of
simpler and faster algorithms but the storage space of these algorithms is larger
than the storage space of the algorithms for graph-driven BP1s. The difference
between the two models is the following one. For graph-driven BP1s G according
to a graph order G0 it is possible that a node v with label xi is reached on the
computation paths for two inputs a and b in G whereas the nodes with label xi

on the computation paths for the inputs a and b in G0 are different. This is not
allowed in the well-structured case. Since we are interested in lower bounds, we
may assume that each graph order does not contain identical subgraphs. Then
well-structured graph-driven BP1s according to a fixed graph order G0 can be
obtained in the following way. We start by a complete decision tree which is ordered
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according to G0, afterwards we merge all identical subgraphs. Finally, all nodes
which have the same 0-and 1-successor are deleted. Any OBDD is well-structured
since there exists exactly one xi-node in any variable order for each variable xi. In
[4] it has been shown that even restricted nondeterministic well-structured graph-
driven BP1s, called nondeterministic tree-driven BP1s, are a proper generalization
of nondeterministic OBDDs.

The concept of graph-driven branching programs has turned out to be also
useful in other settings, see e.g. [16] and [21]. Gergov and Meinel [12] were the
first ones who suggested parity graph-driven BP1s as a data structure for boolean
functions. Another reason for investigating parity graph-driven BP1s is that until
now exponential lower bounds on the size of parity read-once branching programs
for explicitly defined boolean functions are unknown. One step towards the proof
of such bounds might be to investigate BP models “inbetween” deterministic and
parity BP1s. Nondeterministic and parity graph-driven BP1s have been investi-
gated more intensely in [4], [7], and [5].

Since for nondeterministic BP1s graph order do not exist in general, it is an
intriguing question, whether nondeterministic (well-structured) g.d.-BP1s are in
fact significantly more restricted than general nondeterministic BP1s. One of the
main contributions of this paper is that we answer this question for the well-
structured case in an affirmative way for the most important nondeterministic
acceptance modes. This is done by presenting a function called n/2-MRCn, which
can be represented in polynomial size by ω-nondeterministic BP1s but has expo-
nential complexity in the ω-nondeterministic well-structured g.d.-BP1 model (for
ω ∈ {∨,⊕}). Note that an analogous separation result for ω = ∧ follows right
away from deMorgan’s rules for the complement of n/2-MRCn.

In order to prove the separation result, we derive a new lower bound tech-
nique. Until now, there was only one general lower bound technique known for
nondeterministic well-structured g.d.-BP1s, which in addition worked only for the
parity-acceptance mode [7]. We follow a more general approach by drawing con-
nections to communication complexity. Hence, our lower bound technique can be
applied to all acceptance modes, where corresponding lower bounds for communi-
cation complexity can be proven.

As another application of our lower bound technique, we prove an exponential
lower bound for integer multiplication. Lower bounds for integer multiplication
are motivated by the general interest in the complexity of important arithmetic
functions and the insight into the structure of such functions which is often gained
by lower bound proofs. Furthermore, since exponential lower bounds are often
proven for functions which are “designed” in such a way that they fit to a given
lower bound technique, the lower bound proofs for important functions can lead
to refinements of the proof techniques.

Definition 1.5. The boolean function MULi,n ∈ B2n maps two n-bit integers x =
xn−1 . . . x0 and y = yn−1 . . . y0 to the ith bit of their product, i.e., MULi,n(x, y) = zi,
where x · y = z2n−1 . . . z0.
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Since the middle bit (the bit zn−1) of integer multiplication is the hardest bit
to compute, one is interested mainly in the complexity of MULn := MULn−1,n.
Bryant [9] has proven an exponential lower bound of 2n/8 for the function MULn

in the OBDD model, and Gergov has presented an exponential lower bound for
nondeterministic linear-length oblivious branching programs [11]. Later Ponzio has
shown that the complexity of this function is 2Ω(

√
n) for BP1s [19], and Bollig [4]

has proven an exponential lower bound for nondeterministic tree-driven BP1s (i.e.
g.d.-BP1s where the graph order is a tree of polynomial size).

Recently, progress in the analysis of MULn has been achieved by a new approach
using universal hashing. Woelfel [23] has improved Bryant’s lower bound to Ω

(

2n/2
)

and Bollig and Woelfel [6] have presented a lower bound of Ω
(

2n/4
)

for BP1s.

Finally, Bollig, Waack, and Woelfel [5] have proven a lower bound of 2(n−46)/12/n
for ⊕-nondeterministic well-structured g.d.-BP1s. Their proof, though, is limited
to this type of acceptance mode.

One step towards proving exponential lower bounds for MULn for unrestricted
nondeterministic BP1s might be to investigate BP models “inbetween” determin-
istic and nondeterministic BP1s. This was also the motivation behind a result in
[24] where an exponential lower bound has been proven for nondeterministic BP1s
which have only a restricted number of nondeterministic nodes at the top of the
BP1.

The lower bound for integer multiplication presented here is 2n/12−4 ·n−1/3 and
is valid for all ω-nondeterministic well-structured g.d.-BP1s where ω ∈ {∨,∧,⊕}.
Comparing with the algebraic approach of [5], one advantage is that using methods
from communication complexity, all important types of nondeterminism can be
handled simultaneously.

2 A Lower Bound Technique for Nondeterministic

Graph-Driven BP1s

Methods from communication complexity have been used to prove lower bounds
in several branching program models, e.g. for OBDDs. (See e.g. [14, 17] for the
theory of communication complexity.) Consider a boolean function f ∈ Bn which
is defined on the variables in Xn = {x1, . . . , xn}, and let Π = (XA,XB) be a
partition of Xn. Assume that Alice has access only to the input variables in XA

and Bob has access only to the input variables in XB. In a one-way communication
protocol, upon a given input x, Alice is allowed to send a single message (depending
on the input variables in XA) to Bob who must then be able to compute the answer
f(x). In an ω-nondeterministic communication protocol, ω ∈ {∨,∧,⊕}, Alice is
allowed to “guess” a message. The function value is one if the number of guesses
upon which Bob accepts the input matches the corresponding acceptance mode
ω (e.g. is at least one in the case of ω = ∨ or odd in case of ω = ⊕). The
ω-nondeterministic one-way communication complexity of the function f is the
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number of bits of communication which need to be transmitted by such a protocol
that computes f . It is denoted by NDA→B

ω (f, Π).
In order to state the lower bound technique for nondeterministic g.d.-BP1s,

we have to introduce some further notation, first. A filter of a set X is a closed
upward subset of 2X (i.e. if S ∈ F , then all supersets of S are in F). Let F be a
filter of Xn = {x1, . . . , xn}. A subset B ⊆ Xn is said to be in the boundary of F if
B 6∈ F but B ∪ {xi} ∈ F for some xi ∈ Xn.

Let f be a function in Bn defined on the variables in Xn and F be a filter of
Xn. For a subset Z ⊆ Xn, we denote by A(Z) the set of all possible assignments
to the variables in Z. Let Π = (XA,XB) be a partition of Xn. If XB is in the
boundary of F , then Π is called F-partition of Xn. Finally, a function f ′ ∈ Bn is
called (ε, Π)-close to f , if there exists a set R ⊆ A(XA) with |R| ≥ ε · 2|XA|, such
that f and f ′ coincide on all inputs in R ×A(XB).

Theorem 2.1. Let F be a filter of Xn, f ∈ Bn, 0 < ε ≤ 1, and ` ∈
�

. If for
every F-partition Π of Xn and for every function f ′ which is (ε, Π)-close to f it is
NDA→B

ω (f ′, Π) > `, then any ω-nondeterministic graph-driven BP1 representing
f either has a size of at least 2` + 1 or its graph order has a size of more than 1/ε
(for ω ∈ {∨,∧,⊕}).

Proof. Let G be an ω-nondeterministic g.d.-BP1 representing f and assume that
|G| ≤ 2` and that the graph order G0 of G has a size of at most 1/ε. It suffices to
show that there exist an F -partition Π and a function f ′ which is (ε, Π)-close to
f such that NDA→B

ω (f ′, Π) ≤ `.
Let v+ for each node v of G0 be the set of variables which are assigned to a

node reachable from v (including the variable which is assigned to v). The filter F
defines a cut, called frontier, through the edges of the graph order in the following
way. An edge e = (v, w) is in the frontier and thus called frontier-edge if the set
v+ ∈ F but w+ 6∈ F . We know that s+ = Xn for the source s, t = ∅ for the
sink t and finally - since G0 is a complete BP1 - w+ = v+ \ {xi} for each edge
(v, w) where v is marked with a variable xi. Hence, each source-to-sink path passes
through exactly one frontier-edge, and if (v, w) is a frontier-edge then w+ is in the
boundary of F .

Using simple graph-theoretical arguments it is easy to see that G0 contains at
most |G0| frontier-edges. Hence, by the pigeonhole principle there exists a frontier-
edge e = (v, w) such that the computation paths of at least 2n/|G0| inputs pass
through e. Let XB = w+, XA = Xn \ w+ and Π = (XA,XB). Clearly, each input
reaching e is uniquely determined by its assignment to the variables in XA, and
therefore there exists a set R ⊆ A(XA) with |R| ≥ 2|XA|/|G0| such that all inputs
in R × A(XB) reach the edge e. Furthermore, since w+ is in the boundary of F ,
Π is an F -partition of Xn.

Consider now the following ω-nondeterministic one-way communication proto-
col with respect to Π. For the input x = (xA, xB) ∈ A(XA) × A(XB), Alice tests
whether xA ∈ R. If xA 6∈ R, we do not care about the result of the computation;
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thus Alice may send an arbitrary `-bit string to Bob. If on the other hand xA ∈ R,
then the input x reaches the edge e in G0 after testing exactly the variables in XA.
This means that in G on all computation paths of x the XA-variable tests appear
before the XB-variable tests, and the nodes which are reached on these computa-
tion paths after all XA-variable tests have been performed are uniquely defined by
xA. Hence, Alice may guess nondeterministically a path which corresponds to the
values of the XA-variables, and determine the unique node u on this path where
the first variable in XB is being tested. She finally sends an `-bit string describing
the node to Bob (recall that G consists of at most 2` nodes). Then Bob knows the
node u and can compute (nondeterministically) f(x) = fu(xB).

Obviously, by the above described protocol, Alice and Bob compute nondeter-
ministically the function value f(x) if (xA, xB) ∈ R×A(XB). Since Alice sends at
most ` bits to Bob, there exists a function f ′ which coincides with f on all inputs
in R×A(XB) such that NDA→B

ω (f ′, Π) ≤ `. Finally, f ′ is (ε, Π)-close to f because
by construction |R| ≥ 2|XA|/|G0| ≥ ε 2|XA|. ut

The above technique does not yield lower bounds for nondeterministic g.d.-BP1s
directly, because the size of the graph order of such a branching program is not
part of the nondeterministic g.d.-BP1 size. Until now it is unknown whether there
exists a class of functions fn which has polynomial complexity in the nondeter-
ministic g.d.-BP1 model whereas the size of every graph order of a polynomial size
nondeterministic g.d.-BP1 for fn is exponential. The situation is different in the
well-structured case as Bollig, Waack, and Woelfel [5] have shown by the following
proposition.

Proposition 2.2 ([5]). For any nondeterministic well-structured graph driven
BP1 G on n variables, there exists a graph order G0 such that G is G0-driven
and |G0| ≤ 2n|G|.

Corollary 2.3. Let f ∈ Bn be a function satisfying the conditions of Theorem 2.1
for some filter F of Xn and the parameters ε and `. Then any ω-nondeterministic
well-structured graph driven BP1 for f has a size of more than min

{

2`, (ε · 2n)−1
}

.

3 An Exponential Lower Bound for Integer Multiplication

As a first application of the lower bound technique, we prove a lower bound for
integer multiplication. We consider here the boolean function MUL∗

n ∈ B2n−2; this
is the subfunction of MULn, which takes as inputs only odd integers (i.e. the least
significant bits of the two n-bit factors are fixed to 1). Obviously, a lower bound
on the (nondeterministic) communication complexity of MUL∗

n implies the same
lower bound for MULn.

The following lemma describes the connection between integer multiplication
and nondeterministic communication complexity, which we need to apply Corol-
lary 2.3. It is well known that a large nondeterministic communication complexity
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can be shown by proving that the communication matrix according to a given par-
tition Π contains a large triangular submatrix (this follows e.g. from the methods
in [10]). Note that we use the term submatrix here in the common combinatorial
sense, which means that each submatrix is obtained from a matrix M by selecting
an arbitrary set of rows and columns of M and ordering them arbitrarily.

Lemma 3.1. Let A, B ⊆ � 2n and Y ⊆ � ∗
2n := {1, 3, . . . , 2n − 1} and assume

that |B| = 2β and |Y | = 2µ. Consider the |A| × |B × Y |-matrix M , where each
row is identified with an integer a ∈ A and each column is identified with a
pair (b, y) ∈ B × Y , and the entry of the matrix in row a and column (b, y)
equals MUL∗

n(a + b, y). Then M contains a triangular s × s-submatrix where
s = min

{

|A|/2 − 1, 2(3µ+β−3n−10)/4 − 1
}

.

In order to prove Lemma 3.1, we need to recall some properties about integer mul-
tiplication which have been derived by Bollig and Woelfel [6] and Bollig, Woelfel,
and Waack [5] using universal hashing. Let � ∗

2n be the set of odd n-bit integers.

Lemma 3.2 ([5, 6]). Let X ⊆ � 2n and Y ⊆ � ∗
2n . If |X| · |Y | ≥ 2n+2r+1, r ≥ 0,

then there exists an element y ∈ Y such that

∀q ∈ {0, . . . , 2r − 1} ∃x ∈ X : q · 2n−r ≤ (xy) mod 2n < (q + 1) · 2n−r.

Lemma 3.3 ([5]). Let Y ⊆ � ∗
2n , 1 ≤ r ≤ n − 1, and (zi, z

′
i) ∈ � 2n × � 2n , where

zi 6= z′i for 1 ≤ i ≤ t. Then there exists a subset Y ′ ⊆ Y , |Y ′| ≥ |Y | − t · 2n−r+1,
such that for all pairs (zi, z

′
i), 1 ≤ i ≤ t,

∀y ∈ Y ′ : 2 · 2n−r ≤
(

(zi − z′i)y
)

mod 2n ≤ 2n − 2 · 2n−r.

Proof (of Lemma 3.1). We show below that there exist an element y ∈ Y , a subset
{a1, . . . , as+1} ⊆ A, and a subset {b1, . . . , bs} ⊆ B such that for all 1 ≤ j ≤ s + 1
and 1 ≤ i ≤ s

MUL∗
n(aj + bi, y) =

{

0 if i ≥ j

1 if i < j.
(1)

This means that the s× s-submatrix of M consisting of the rows a2, . . . , as+1 and
of the columns (b1, y), . . . , (bs, y) is triangular.

Let r = (µ+β−n)/2−1. If |A| ≤ 2(3µ+β−3n−6)/4, then we let A′ = A. Otherwise,
we let A′ be an arbitrary subset of A containing exactly 2(3µ+β−3n−6)/4 elements.

Consider now the t = |A′|(|A′| − 1) pairs (zi, z
′
i), 1 ≤ i ≤ t, with zi, z

′
i ∈

A′ and zi 6= z′i. Applying Lemma 3.3, we obtain a subset Y ′ ⊆ Y , |Y ′| ≥
|Y | − |A′|2 · 2n−r+1, such that for all different a, a′ ∈ A′ it holds

∀y ∈ Y ′ : 2 · 2n−r ≤
(

(a − a′)y
)

mod 2n ≤ 2n − 2 · 2n−r. (2)

Then

|B| · |Y ′| ≥ |B| · |Y | − |B| · |A′|
2
· 2n−r+1 ≥ 2β+µ − 2β+(3µ+β−3n−6)/2+n−r+1

= 2β+µ − 2β+µ+(µ+β−n)/2−1−r−1 = 2β+µ − 2β+µ−1 = 2β+µ−1

= 2n+2r+1.
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Therefore, we may apply Lemma 3.2 (with X = B) in order to see that there exists
an element y ∈ Y ′ such that

∀q ∈ {0, . . . , 2r − 1} ∃b ∈ B : q · 2n−r ≤ (by) mod 2n < (q + 1) · 2n−r. (3)

We let this element y ∈ Y ′ be fixed from now on. Further, let

A′
< =

{

a ∈ A′ ∣

∣ (ay) mod 2n < 2n−1
}

and
A′

≥ =
{

a ∈ A
∣

∣ (ay) mod 2n ≥ 2n−1
}

.

We choose A∗ to be the set which has at least as many elements as the other one.
Hence,

|A∗| ≥ |A′|/2 ≥ min
{

|A|, 2(3µ+β−3n−6)/4
}

/2 = s + 1.

We consider only the case where A∗ equals |A′
<|; the other case is symmetric and

can be proven analogously. We label the elements in A∗ by a1, . . . , as+1 in such a
way that

0 ≤ (a1y) mod 2n ≤ . . . ≤ (as+1y) mod 2n < 2n−1. (4)

Then we obtain by (2) that

∀1 ≤ i ≤ s : (aiy) mod 2n + 2 · 2n−r ≤ (ai+1y) mod 2n. (5)

For 1 ≤ i ≤ s we let now

qi :=

⌊

2n−1 − (aiy) mod 2n

2n−r

⌋

− 1 (6)

and choose bi ∈ B such that

qi · 2
n−r ≤ (biy) mod 2n < (qi + 1) · 2n−r. (7)

(Such a bi exists because of (3)). Hence, we get for 1 ≤ j ≤ i

(ajy) mod 2n + (biy) mod 2n
(4),(7)
< (aiy) mod 2n + (qi + 1) · 2n−r

(6)

≤ 2n−1. (8)

Thus,
(

(aj + bi)y
)

mod 2n < 2n−1, which implies MUL∗
n(aj + bi, y) = 0. This al-

ready proves the claim (1) for the case i ≥ j.
We consider now the case i < j. First of all, we have

(ai+1y) mod 2n + (biy) mod 2n
(5),(7)

≥ (aiy) mod 2n + 2 · 2n−r + qi · 2
n−r

(6)

≥

(aiy) mod 2n + 2 · 2n−r + 2n−1 − (aiy) mod 2n − 2 · 2n−r = 2n−1. (9)
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Hence, by (4) we also obtain (ajy) mod 2n + (biy) mod 2n ≥ 2n−1. Thus,

2n−1 ≤ (ajy) mod 2n + (biy) mod 2n

= (ajy) mod 2n − (aiy) mod 2n + (aiy) mod 2n + (biy) mod 2n

(4),(8)
< 2n−1 + 2n−1 = 2n.

These inequalities tell us that
(

(aj + bi)y
)

mod 2n ≥ 2n−1. Hence, MUL∗
n(aj + bi) = 1.

Altogether, we have shown (1). ut

In order to derive a lower bound for integer multiplication by the use of Theo-
rem 2.1, we need to define an appropriate filter of the input variables. We use the
filters Fk(Z) which are defined on an m-element variable set Z for 1 ≤ k < m as
Fk(Z) = {M ⊆ Z | |M | ≥ m − k + 1}. This definition ensures that (ZA, ZB) is an
Fk-partition if and only if |ZA| = k.

In the following let Xn−1 = {x1, . . . , xn−1} and Yn−1 = {y1, . . . , yn−1} be the
input variables for the odd x- and the y-integers, which are multiplied by MUL∗

n.

Lemma 3.4. Let k = dn/3 + 2/3 log(n − 1) − 9/2e and ε = 2n/4−k−5/2. Further,
let XA,XB ⊆ Xn−1 and YA,YB ⊆ Yn−1. If Π = (XA ∪ YA,XB ∪ YB) is an
Fk(Xn−1 ∪ Yn−1)-partition of Xn−1 ∪ Yn−1 and f ′ is (ε, Π)-close to MUL∗

n, then
NDA→B

ω (f ′, Π) ≥ n/12 − log(n − 1)/3 − 3 for any ω ∈ {∨,∧,⊕}.

Proof. Let f ′ be (ε, Π)-close to MUL∗
n. By definition of Fk we know that |XA ∪ YA| =

k. Hence, there exists a subset R ⊆ A(XA ∪ YA) such that |R| ≥ ε 2k and
f ′(z) = MUL∗

n(z) for all z ∈ R × A(XB ∪ YB). We may assume w.l.o.g. that
|XA| ≥ |YA|, and get the following inequalities

|XA| + |YA| = k, |XB| + |YB| = 2n − 2 − k, (10)

|XA| ≥ k/2, |XB| ≤ n − 1 − k/2.

Now consider all pairs (xA, yA) ∈ R, where xA ∈ A(XA) and yA ∈ A(YA). Let
for each yA ∈ A(YA) the set R(yA) := R ∩ {(xA, yA) | xA ∈ A(XA)}. Clearly,
R =

⋃

yA∈A(YA) R(yA). Hence, by the pigeonhole principle, there exists a partial
assignment yA for which

|R(yA)| ≥
|R|

|A(YA)|
≥

ε 2k

2|YA|

(10)

≥
ε 2k

2k/2
= ε 2k/2. (11)

From now on, we let the element yA ∈ A(YA) satisfying inequality (11) be fixed.
The goal of the rest of this proof is to show that an ω-nondeterministic one-way

communication protocol, where Alice gets an input from R(yA) and Bob gets an
input from A(XB ∪ YB), requires the communication of a large number of bits.
Following standard lower bound techniques of nondeterministic communication
complexity, this can be done for ω ∈ {∨,∧,⊕} by showing that the communication
matrix has a large triangular submatrix. More precisely, if the communication
matrix has a triangular (s × s)-submatrix, then NDA→B

ω (f ′, Π) ≥ log s.

10



For the inputs in R(yA)×A(XB ∪ YB), the communication matrix is a matrix
where each row is identified with an element in R(yA) and each column is identified
with an element in A(XB ∪ YB). The entry of the matrix in a row identified with
(xA, yA) and a column identified with (xB, yB) is the function value f ′(xAxByAyB)
(by xAxByAyB we mean the complete input which is consistent with the partial
inputs xA, xB, yA, and yB).

Let now |xA| be the n-bit integer obtained from the partial assignment xA by
setting all bits which are not fixed by xA to 0. Analogously define |xB|, |yA|,
and |yB|. Then we have f ′(xAxByAyB) = MUL∗

n(|xA| + |xB|, |yA| + |yB|) (re-
call that f ′ coincides with MUL∗

n on the inputs R(yA) × A(XB ∪ YB)). Hence,
if we let A = {|xA| | (xA, yA) ∈ R(yA)}, B = {|xB| | xB ∈ A(xB)}, and Y =
{|yA| + |yB| | yB ∈ A(YB)}, then the communication matrix as described above
corresponds to a communication matrix M , where each row is identified with an
integer a ∈ A, each column is identified with a pair (b, y) ∈ B × Y and where the
entry in row a and column (b, y) is the function value MUL∗

n(a + b, y).
Using inequality (11), we have

|A| = |R(yA)| ≥ ε · 2k/2,

and using the inequalities (10), we get for |B| = 2β and |Y | = 2µ

β + µ = |XB ∪ YB| = 2n − 2 − k and β = |XB| ≤ n − 1 − k/2.

Therefore, β + 3µ is minimal if β = µ = n− 1− k/2. Thus, β + 3µ ≥ 4n − 4 − 2k.
Using these parameters in Lemma 3.1 together with the precondition ε = 2n/4−k−5/2

and k = dn/3 + (2/3) log(n − 1) − 9/2e yields that M has a triangular (s × s)-
submatrix where

s = min
{

ε2k/2−1 − 1, 2n/4−k/2−14/4 − 1
}

= 2n/4−k/2−7/2 − 1

≥ 2n/4−(n/3+(2/3) log(n−1)−7/2)/2−7/2 − 1 = 2n/12−log(n−1)/3−7/4 − 1.

By the discussion above, we can finally conclude that

NDA→B
ω (f ′, Π) ≥ log s ≥ n/12 − log(n − 1)/3 − 3.

ut

A simple calculation using the parameters from the lemma above shows that
(

ε · 4(n − 1)
)−1

≥ 2n/12−log(n−1)/3−4. Using Corollary 2.3, this yields the following
exponential lower bound for well-structured g.d.-BP1s representing MULn.

Corollary 3.5. Let ω ∈ {∨,∧,⊕}. The size of any ω-nondeterministic well-
structured graph-driven BP1 for MULn is larger than 2n/12−4 · (n − 1)−1/3.
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4 Separating Nondeterministic Well-Structured
Graph-Driven BP1s from Nondeterministic BP1s

Here we answer an open question from Brosenne, Homeister, and Waack [7],
whether the class of all boolean functions representable in polynomial size by
ω-nondeterministic well-structured graph-driven BP1s is a proper subclass of all
boolean functions representable in polynomial size by ω-nondeterministic BP1s, in
an affirmative way.

The function n/2-MRCn is defined on an n × n boolean matrix X on the
variables Xn×n = {x1,1, . . . , xn,n}. Its function value is 1 if and only if the following
two conditions are fulfilled (for the sake of readability we assume that n is an even
number.)

1. The number of ones in the matrix is at least n2/4+n and at most (3/4)n2 −n.
2. The matrix either contains exactly n/2 monochromatic rows and each non-

monochromatic row contains exactly n/2 ones, or it contains exactly n/2
monochromatic columns and each non-monochromatic column contains ex-
actly n/2 ones.

Note that because of condition 1, there cannot be n/2 monochromatic rows and
n/2 monochromatic columns for a satisfying input. Furthermore, if condition 2 is
satisfied, then condition 1 is fulfilled if and only if at least one of the monochromatic
rows (columns) satisfying condition 2 consists only of ones, and at least one of the
monochromatic rows (columns) consists only of zeros.

The branching program model for which we show the upper bound is even more
restricted than the general ω-nondeterministic BP1 model.

Definition 4.1. An (ω, k)-PBDD G consists of k OBDDs G1, . . . , Gk whose
variable orders may be different. If f1, . . . , fk are the functions represented by
G1, . . . , Gk, then G represents the function f1 ω f2 ω · · · ω fk. The size of G is
|G| = |G1| + · · · + |Gk|.

Note that we can regard an (ω, k)-PBDD as an ω-nondeterministic BP1 which
has k−1 nondeterministic nodes at the top, which generate k paths leading to the
disjoint OBDDs G1, . . . , Gk. Motivated by applications, the model of (∨, k)-PBDDs
has been introduced in [15].

Theorem 4.2. For ω ∈ {∨,⊕}, the function n/2-MRCn can be represented by
(ω, 2)-PBDDs with size O(n4), but its complexity is Ω(2n/4/n) for ω-nondetermi-
nistic well-structured graph-driven BP1s.

Proof. A rowwise (columnwise) variable order is an order, where all variables of one
row (column) are tested one after another. We show how to construct two OBDDs
G1, G2 such that G1 and G2 accept exactly the satisfying inputs containing n/2
monochromatic rows and n/2 monochromatic columns, respectively. Clearly, the
set {G1, G2} then is a (∨, 2)-PBDD for n/2-MRCn and - because any satisfying
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input contains either only n/2 monochromatic rows or only n/2 monochromatic
columns, but not both - also a valid (⊕, 2)-PBDD for n/2-MRCn.

The OBDD G1 checks whether there exist n/2 monochromatic rows, where at
least one row consists only of ones and at least one row consists only of zeros.
In addition, it tests whether each non-monochromatic row contains exactly n/2
ones. If this is not the case, then it reaches the 0-sink. All variables are tested in
a rowwise variable order. During the tests of the variables xi,1, . . . , xi,n the OBDD
stores the information of the number of already tested monochromatic rows, the
information whether at least one of them is 1-monochromatic and at least one of
them is 0-monochromatic, and the number of already tested ones in the ith row.
Hence, it suffices to distinguish at most 4n2 situations, and G1 contains O(n4)
nodes. The OBDD G2 checks the same as G1, but for the columns. This can be
done in an analogous way but using a columnwise variable order. Altogether the
(2, ω)-PBDD size of n/2-MRCn is bounded above by O(n4) for ω ∈ {∨,⊕}.

Now we prove the lower bound. Again we apply the technique from Corol-
lary 2.3. In order to do so, we have to define an appropriate filter FM of the
variable set Xn×n. A set T ⊆ Xn×n is in the filter FM, if T contains all variables
from n/2 + 1 arbitrary rows and n/2 + 1 arbitrary columns. If Π = (XA,XB) is
an FM-partition, then by definition XB 6∈ FM and there exists a variable xi,j such
that XB ∪ {xi,j} ∈ FM. Hence, XA contains variables from exactly n/2 different
rows and from at most n/2 different columns or vice versa.

The lower bound of Theorem 4.2 follows right away from the following lemma
and Corollary 2.3 by choosing ε = 1/

(

n · 2n/4
)

.

Lemma 4.3. Let 0 < ε ≤ 1 and Π be an arbitrary FM-partition of Xn×n. Then
for every function f ′ which is (ε, Π)-close to n/2-MRCn, it is NDA→B

ω (f ′, Π) ≥
n/2 + log ε.

Proof. Let Π = (XA,XB) be an FM-partition and f ′ be (ε, Π)-close to n/2-MRCn.
We may assume w.l.o.g. that XA contains variables from exactly the rows 1, . . . , n/2,
whereas there are at most n/2 columns from which variables are contained in
XA. Since f ′ is (ε, Π)-close to n/2-MRCn, there exists a subset R ⊆ A(XA),
|R| ≥ ε · 2|XA|, such that f ′ coincides with n/2-MRCn on all inputs in R×A(XB).
For 1 ≤ i ≤ n/2 let ki be the number of variables in row i which are contained in
XA. We consider the mapping

µ : A(XA) → {0, . . . , k1} × · · · ×
{

0, . . . , kn/2

}

,

which maps a partial assignment α to the tuple µ(α) = (z1, . . . , zn/2), where zi is
the number of bits in row i being fixed to 1 by α.

Let µ(R) = {µ(α) | α ∈ R}. Below, we show the following two inequalities
from which the lemma follows right away.

(I1) NDA→B
ω (f ′, Π) ≥ log |µ(R)|.

(I2) |µ(R)| ≥ ε · 2n/2.
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Proof of (I1): We show that the communication matrix contains a diagonal s× s-
submatrix, where s = |µ(R)|. For an arbitrary partial assignment α ∈ R let µ(α) =
(

µ1(α), . . . , µn/2(α)
)

. We fix for each such α a corresponding partial assignment
β ∈ A(XB) as follows. In row i, 1 ≤ i ≤ n/2, β sets exactly n/2 − µi(α) variables
to 1 and the other variables to zero. (Recall that XA contains variables from at
most n/2 columns, and hence at least n/2 variables from each row are in XB.)
All the variables in the rows n/2 + 1, . . . , n − 1 are fixed to 0 and the variables in
row n are all set to 1. Then (αβ) contains exactly n/2 rows with exactly n/2 ones
each (the rows 1, . . . , n/2), and it contains n/2−1 0-monochromatic rows and one
1-monochromatic row. Hence, n/2-MRCn(αβ) = 1.

We consider now s arbitrary partial assignments α1, . . . , αs ∈ R such that
µ(αi) 6= µ(αj) for i 6= j. Let β1, . . . , βs be the corresponding partial assignments
in A(XB). (It is obvious that also βi 6= βj for i 6= j.) Clearly, the s × s-matrix
which has in row i and column j the entry n/2-MRCn(αiβj) is a submatrix of
the communication matrix of n/2-MRCn. Hence, for the claim (I1), it suffices to
show that this matrix is a diagonal matrix. For the diagonal elements, we have
already proven above that n/2-MRCn(αiβi) = 1. Consider now an element in row
i and column j, i 6= j. Since αi 6= αj, there exists an index 1 ≤ t ≤ n/2 for
which µt(αi) 6= µt(αj). Hence, by construction the matrix X defined by the input
αjβi contains in row t not exactly n/2 ones. But the construction also ensures
that none of the rows n/2 + 1, . . . , n of X contains exactly n/2 ones, thus there
exist less than n/2 rows with exactly n/2 ones. Finally, the property that row n is
1-monochromatic and the row n − 1 is 0-monochromatic ensures that there exists
no monochromatic column. Altogether, this yields that n/2-MRCn(αiβj) = 0.

Proof of (I2): Recall that XA contains ki variables in row i of the matrix X
(1 ≤ i ≤ n/2). Hence, there are exactly 2ki possible settings of those variables in
row i and among these, there are

(

ki

zi

)

settings for which row i contains exactly zi

ones. Hence, for every tuple z = (z1, . . . , zn/2) ∈ {0, . . . , k1} × · · · × {0, . . . , kn/2}
we obtain that

|µ−1(z)|

|A(XA)|
=

(

k1

z1

)

· · ·
(

kn/2

zn/2

)

2k1 · · · 2kn/2

≤
2k1−1 · · ·2kn/2−1

2k1 · · ·2kn/2

= 2−n/2. (12)

Since R is the union of all µ−1(z) for z ∈ µ(R), there exists by the pigeon-
hole principle an element z ∈ µ(R) for which |µ−1(z)| ≥ |R|/|µ(R)|. Using the
precondition that |R| ≥ ε · 2|XA| together with inequality (12) yields

|µ(R)| ≥
|R|

|µ−1(z)|
≥

ε · 2|XA|

2−n/2 · |A(XA)|
= ε · 2n/2.

This finally proves (I2). ut

Acknowledgment

We would like to thank Martin Sauerhoff and Ingo Wegener for fruitful discussions
about the subject of this paper and helpful comments.

14



References

1. M. Ajtai. A non-linear time lower bound for boolean branching programs. In Proc. of 40th FOCS,
pp. 60–70. 1999.

2. P. Beame, M. Saks, X. Sun, and E. Vee. Super-linear time-space tradeoff lower bounds for randomized
computation. In Proc. of 41st FOCS, pp. 169–179. 2000.

3. P. Beame and E. Vee. Time-space tradeoffs, multiparty communication complexity, and nearest
neighbor problems. In Proc. of 34th ACM STOC, pp. 688–697. 2002.

4. B. Bollig. Restricted nondeterministic read-once branching programs and an exponential lower
bound for integer multiplication. RAIRO, 35:149–162, 2001.

5. B. Bollig, S. Waack, and P. Woelfel. Parity graph-driven read-once branching programs and an
exponential lower bound for integer multiplication. In Proc. of 2nd TCS, pp. 83–94. 2002.

6. B. Bollig and P. Woelfel. A read-once branching program lower bound of Ω(2n/4) for integer
multiplication using universal hashing. In Proc. of 33rd ACM STOC, pp. 419–424. 2001.

7. H. Brosenne, M. Homeister, and S. Waack. Graph-driven free parity BDDs: Algorithms and lower
bounds. In Proc. of 26th MFCS, pp. 212–223. 2001.

8. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans. on Comp.,
C-35:677–691, 1986.

9. R. E. Bryant. On the complexity of VLSI implementations and graph representations of boolean
functions with applications to integer multiplication. IEEE Trans. on Comp., 40:205–213, 1991.

10. C. Damm, M. Krause, C. Meinel, and S. Waack. Separating counting communication complexity
classes. In Proc. of 9th STACS, pp. 281–292. 1992.

11. J. Gergov. Time-space tradeoffs for integer multiplication on various types of input oblivious se-
quential machines. Information Processing Letters, 51:265–269, 1994.

12. J. Gergov and C. Meinel. Frontiers of feasible and probabilistic feasible boolean manipulation with
branching programs. In Proc. of 11th STACS, pp. 576 –585. 1993.

13. J. Gergov and C. Meinel. Efficient analysis and manipulation of OBDDs can be extended to FBDDs.
IEEE Trans. on Comp., 43:1197–1209, 1994.
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