CPSC 449:
Notes on hand evaluating Haskell programs
(for discussion in labs!)

Robin Cockett

September 13, 2022

1 Hand evaluation

Why hand evaluate a Haskell program when you have a machine which can do it for you? Well
the purpose is that you should understand what happens when you run a program and this is really
useful when you expect one behaviour and get another behaviour. Knowing how to hand trace a
program allows you to understand what has led to that unexpected behaviour. Haskell, of course,
is quite exceptional as it has a very predictable behaviour which is supported by its mathematical
underpinnings. Nonetheless, there are some important aspects of its “lazy evaluation” which one
can see from hand evaluations and may already be not quite what you may have expect.

Of course, you will not be able to hand evaluate a large Haskell program! However, if it
is written in a modular fashion you should be able to hand simulate (if only in your mind) key
routines where one assumes that the calls to other components return the correct answer. Thus, for
debugging, hand evaluation is a very basic and important tool onto which one can fall back.

2 Fibonacci fun

Let us consider as a starting example the Fibonacci function written in its most basic form

fib:: Integer -> Integer

fib 0 = 0
fib 1 =1
fib n = (fib (n-1)) + (fib (n-2))

Suppose I want to calculate £ib 3. Here is a hand evaluation:

|fib 37
|[fib 3 =: fib O

..match fails
|fib 3 =: fib 1

..match fails

|[fib 3 =: fib n

...match [n := 3]
| =(fib (n-1)) + (fib (n-2)) [n:=3] % substituted RHS
| =(fib (3-1)) + (fib (3-2)) = (fib 2) + (fib 1)
| |fib 2? % evaluate 1lst arg
| |fib 2 =: fib O
..match fails
| |fib 2 =: fib 1
..match fails
| |fib 2 =: fib n
..match [n:=2]
fib (n-1)) + (fib (n-2)) [n:=2] % substituted RHS

I

| | =(fib (2-1)) + (fib (2-2))
| | =(fib 1) + (fib 0)
|
I

| fib 17
|[fib 1 =: fib O
..match fails
| | |fib 1 =: fib 1
..match []
| | | 1 % call substituted RHS (return)
| |1+ (fib 0)
| | |fib 07
| | |fib 0 =: fib O
..match []
| |0 % call substituted RHS (return)
|14+0 = 1

|fib 1? % evaluate second argument
|

| |1 % return

| 1+17

| 2

|
|
|1 + fib 1
|
|

Notice even though this is a relatively small calculation I have skipped over some steps (the ellipsis)
because there is, even for this program, quite a lot happening! Let us discuss what happens:

We start by asking what £ib 3 evaluates to. To determine this one must work through the
phrases or patterns of the fibonacci function trying to match each in turn to the input. Is the value
at which one is evaluating 0? Is it 1? Both these matching attempts fail and one drops through to
the third case. Here fib 3 is matched to the pattern fib n (we write this fib 3 =: fib
n): the match succeeds producing the substitution n := 3 of the pattern: the righthand side of the
third phrase is then called with the substitution n := 3.

This leaves the evaluation of (fib 2) + (fib 1). Notice that I have “eagerly” evaluated
the arithmetic expressions to keep things simple - in fact even these expressions may be evaluated
“lazily”. The next aim is then to evaluate the left argument of the addition: so we need to evaluate
fib 2. To evaluate this one needs to go through the phrases of the function trying, in turn, to

match each phrase of the function. Does 0 match 27 As this is false so one proceeds to the next
pattern and 1 fails to match 2. So one tries to match the last pattern which succeeds and produces
the substitution n:= 2. One then recursively calls the substituted righthand side as (fib 1) +
(fib 0). One first evaluates the lefthand argument of this addition (this time the second pattern
succeeds and returns 1) then the right hand argument (which returns 0) these are summed and
passed up.

One might ask whether this hand evaluation is exactly what Haskell does ... and the answer is
not quite. This is intended as a “conceptual” view of evaluation: Haskell “compiles” this concep-
tual view to make it much more efficient. Despite this the hand evaluations reflect quite well what
actually happens hence its value.

The order in which the evaluation proceeds is important and determines the behaviour. Patterns
which are basic values (such as integers) are resolved by equality tests. Other patterns are resolved
by matching (hence the name “pattern matching”): we will discuss this more below. Let us first
consider consider the (improved) Fibonacci program which checks that the input is a positive
number. This program uses guards: this is another powerful syntactic feature of Haskell and it is
useful to understand how they are evaluated.

fib:: Integer —-> Integer

fib n
| n < 0 = error "Positive numbers only please ..."
| n == 0 =0
| n==1 =1
| otherwise = (fib (n-1)) + (fib (n-2))

Hereis atrace of fib 3:

|fib 3
|fib 3 =: fib n
..match [n:= 3]
| n < 0 [n:=3] =3 <0
...false
| n ==0 [n:=3] = 3==0
...false
| n == [n:=3] = 3 ==
...false
| otherwise
...true
| = fib(n-1) + fib(n-2) [n:=3] = fib 2 + fib 1 % call rhs
| |fib 2 =: fib n %evaluate 1lst argument

..match [n:= 2]
| | n <O [n:= 3-1] = 2 < 0

...false

| | n == [n:= 2] = 2 == 0
...false

| | n==1 [n: = 2] =2 == 1

..false

| | otherwise
...true
| | fib(n-1) + fib(n-2) [n:=2] = fib 1 + fib 0? %
| | |fib 1 =: fib n % evaluate 1lst argument
...match [n:= 1]
| | | 1 < 0 ...false
| | | 1 == 0 ...false
| | | 1 == 1 ...true
| | | 1 % evaluate RHS of guard
| | 1 + f£fib 0
| | |[fib 0 % evaluate 2nd argument
| | | 0 < 0? ...false
| | | 0 == 0?2 ...true
| | | 0 % evaluate RHS of guard
| |1 + 07
| |1
|1 + fib 1
| | fib 1
| | 1 < 07 .false
| | 1 == 0 .false
| | 1 == 1 .true
| |1 % evaluate RHS of guard
|1 + 17

| 2

So, of course, this is very similar to the previous evaluation. However, notice how the guards
are evaluated: each guard is evaluated sequentially until a guard which evaluates to true is found.
The first true guard then has its body evaluated. The last guard, the otherwise is always true

and so is the default action when all the other guards are false.

Note in this hand evaluation I have assumed that arithmetic expressions get evaluated imme-
diately (strict evaluation) in order to simplify the evaluation. This is not actually what happens as
even these expression are not evaluated until they are needed. Thus, their evaluation is initiated

when the guards have to be evaluated.

We know this is a very inefficient way of evaluating the Fibonacci function. To see how bad

this is we can count the recursive calls we have to £ib:

call rhs

calls[fib](n) = calls[fib](n — 1) + calls[fib](n —2) +1 whenn > 2

calls[fib](0) = 1

and calls[fib](1) =1

By rewriting the code to terminate at fib(1) and fib(2):

fib 1 =1
fib 2 =1
fib n = (£fib

(n-1)) + (fib (n-2))

and calls[fib](2) = 2

we can observe that the number of calls to fib is determined by:
calls[fib](n) = calls[fib](n — 1) + calls[fib](n —2) + 1 whenn > 2
calls[fib](1) =1 and calls[fib](2) =1

where we now insist the input has n > 0. We claim that the number of calls to fib by fib n is:
calls[fib](n) = 2 - (fib(n)) — 1

We can prove this by induction:

Base: calls[fib](1) =2 -fib(1) —1=2—1=1and calls[fib](2) =2 -fib(2) —1=2—-1=1.

Inductive step:

calls[fib](n + 2) = calls[fib](n + 1) 4 calls[fib](n) + 1
—2-fib(n+1) — 1+ 2-fib(n) — 1 + 1
=2 (fib(n + 1) +fib(n)) — 1
=2-(fib(n+2) -1

However, one can show fib(n) > G™/+/5 — 1, where G is the “golden ratio”, G = (1++/5)/2 (see
notes on structural induction), this shows that the complexity of fib is exponential .
A much more efficient form of the Fibonacci function, which runs in linear time, is:

fib:: Integer -> Integer

fib n
| n < 0 = error "Fibonacci only takes positive integers"
| otherwise = pfib n (0,1)

where

pfib 0 (n,m) = n
pfib r (n,m) pfib (r-1) (fibstep (n,m))

fibstep (n,m) = (m,n+m)

Notice how fibstep uses the type of pairs: it has type (Integer, Integer) — (Integer, Integer).
Let us trace this program for fib 3:

| fib 37

| 3 < 0 ...false

| otherwise ...true

| =pfib 3 (0,1)? call

| lpfib 3 (0,1) =: pfib 0 (n,m)
..match fails (0 :=\= 3)

| lpfib 3 (0,1) =: pfib r (n,m)

..match [r:=3,n:=0,m:=1]
| | | (pfib (r-1) (fibstep (n,m)) [r:=3,n:=0,m:=1]7? %call pfib

5

| | |=pfib (3-1) (fibstep (0,1))

| | | pfib 2 (fibstep (0,1)) =: pfib 0 (n,m)
..match fails 0=/=2

| | | pfib 2 (fibstep (0,1))=:pfib r (n,m)

| | | | fibstep (0,1)7? %evaluate fibstep

| | | | (m,n+m) [n:=0,m:=1] = (1,0+1) = (1,1)

| | | | (1,1) return fibstep (0,1)

| | lpfib 2 (1,1) =: ©pfib r (n,m)

..match [r:=2,n:=1,m:=1]
| | | =pfib (r-1) (fibstep (n,m)) [r:
| | | =pfib (2-1) (fibstep (1,1))

2,n:=1,m:=1] ? % call pfib

| | | | pfib 1 (fibstep (1,1)) =: pfib 0 (n,m)
...fmatch fails 0:=/= 1
| | | | pfib 1 (fibstep (1,1)) =: pfib r (n,m)
| | | | | fibstep (1,1)=: fiibstep (n,m) %evaluate 2nd arg
..match [n:=1,m:= 1]°7?
| | | | | (m,n+m) [n:=1,m:=1] = (1,1+1) =(1,2)
| | | | | (1,2) % return fibstep (1,1)
| | | lpfib 1 (1,2) =: pfib r (n,m)
..match [r:=1,n:=1,m:=2]
| | | | =(pfib (r-1) (fibstep (n,m))) [r:=1,n:=1,m:=2]"7
| | | | =pfib (1-1) (fibstep (1,2))
| | | | lpfib 0 (fibstep (1,2)) =: pfib 0 (n,m)
| | | | | |fibstep (1,2) =: fibstep (n,m) match [n:=1,m:=2]7
| | | | | | (m,n+m) [n:=1,m:=2] = (2,14+2) = (2,3)
1 1 I | 1(2,3) % return fibstep (1,2)
| | | | lpfib 0 (2,3) =: pfib 0 (n,m)
...fmatch [n:=2,n:=3]
| n [n:=2,n:=3] = 2

| |
| | |2 % return (pfib 0 (2,3))
| |2 % return (pfib 1 (1,2))
| 2 % return (pfib 2 (1,1))
|2 % return (pfib 3 (01))
2 % return (fib 3)

From calculating a small Fibonacci number such as fib 3 one cannot really tell by comparing
the traces that this is more efficient. However by looking at calls to pfib, it is immediately obvious
that for fib n there are n + 1 calls to pfib and, assuming constant time addition, each such call takes
constant time. Thus, the complexity of this algorithm is linear.

Don’t believe me? Try a comparison: run the two program on biggish numbers!

This is a sharp reminder that a “high level language”, such as Haskell, does not allow one to
escape the responsibility of writing good code and using efficient algorithms! What languages such
as Haskell do allow is to capture algorithms very clearly and concisely. This, in turn, can allow
one to understand the key aspects of algorithms better and helps to ensures they are implemented
correctly. This clarity does come at cost: Haskell programs generally require more memory and

6

are not as efficient as their counterparts in an optimized imperative language (such as C). However,
the difference is (roughly) a constant factor, thus considering that modern computers do not lack
for memory or raw processing power this aspect is becoming increasingly less significant. The
production of reasonably efficient programs which are correct while minimizing development costs
remains, by way of contrast, a significant issue ... and is exactly the strength of high level languages
such as Haskell.

3 Matching

In the evaluation of a Haskell program there are a number of steps which require matching. Match-
ing is an algorithm which takes in two terms (ordered trees). One of these is the pattern (or a tem-
plate) and can have variables at the leaves all of which must be distinct. The other is sometimes
called the subject term: the purpose is to determine whether the subject term matches the pattern
term. Explicitly the matching algorithm determines whether there is a substitution of the variables
of the pattern term which will make the two terms equal. For example in

fib 42 =: fib n

fib 42 isthe subject term and fib n is the pattern term (which has the variable n). The match-
ing algorithm in this case succeeds and produces the substitution [n:=42]. Matching can, of
course fail. For example the matching algorithm for fib 42 =: fib O fails: here the pattern
term has no variable so the subject term must equal the pattern if the matching is to succeed.

The matching algorithm is quite simple and can be described recursively by:

(A) If the pattern is a variable return the substitution of that variable by the subject: ¢ =: = =
p y d
[z :=t].

(B) If the pattern starts with a term constructor (a function symbol) with a number of arguments
the subject term must start in exactly the same way otherwise matching fails. The arguments
are then recursively matched and the union of the substitutions generated for each argument
returned. Thus F'(p1, ..., pn) == F(t1,....,tn) = U,—y i ==t

Here are some examples:

(1) Consider first F'(t1,t2) =: F'(x,z). This is an illegal matching problem as the pattern, f(z, z)
has a repeated variable (namely x).

(2) Consider F(t1,t2) =: F(z,y): this matching succeeds and returns the substitution [z :=
t17 Yy = tQ}
(3) Consider F'(x,z) =: F(G(u,v),y): in this case we get the two matching subproblems, one

for each argument, x =: G(u,v) and z := y: the first of which fails as the variable = cannot
be obtained by substituting the variables of G (u, v).

(4) Consider F(G(tq,t2),t3) =: F(x,y): this match succeeds and returns the substitution [z :=
G(t,t2), y; = ts].

(5) Consider F/(G(t1,t2),t3) =: F(G(u,v),y): this match also succeeds and returns the substitu-
tion [U =11,v:= tg,y; = tg]

4 Evaluation order and Scott’s bottom

Scott’s bottom!, often denoted L, is a special “element” of each type which never terminates. It is,
thus, an “undefined” or “divergent” element. Any program which causes bottom to be evaluated
will also not terminate. This means that one can test whether a program “touches” (or tries to
evaluate) an argument using this function! This is rather useful in understanding how Haskell
evaluates programs.

Here is the program for “bottom”:

bottom::a
bottom = bottom

To see how we can use this to understand the behaviour of programs consider various defini-
tions of “and”:

data Bool = True | False
deriving (Eqg, Show)

—— The prelude’s "and"

(&&) :: Bool —-> Bool -> Bool
(&&) True b = Db
(&&) _ = False

—— Three different versions of "and":

myand2:: Bool -> Bool —-> Bool
myand2 True True = True
myand?2 _ _ = False
myand2:: Bool -> Bool -> Bool
myand2 True True = True
myand?2 True False = False
myand2 False True False
myand?2 False False = False

myand3:: Bool -> Bool —-> Bool
myand3 _ False = False
myand3 False _ = False
myand3 True True = True

Now try running:

False && bottom

'Tt is named after the great computer scientist, philosopher, and mathematician Dana Scott.

Here is the hand evaluation:

| False && bottom

| False && bottom =: True && n

..match fails True =/=: False
| _ && _ =: False && bottom

..match succeeds [] % no substitutions
|False % evaluate RHS

Notice that the second argument is never evaluated. The matching process is sequential: first
it tries to match the operation (&&) then the first arguments, then the second arguments etc. In
this case it ties match on && and then tries True=:False this fails and the match against the
first pattern phrase of the function fails. Next, after matching against &&, comes the matching of
False against an “anonymous” variable: this always succeeds. Matching against an anonymous
variable, or indeed any variable, as the pattern always succeeds, forces no further evaluation, and it
generates no substitutions. Next is the matching of bot t om against an “anonymous variable”: this
also succeeds and generates no substitutions. So one can evaluate the RHS of the second pattern
phrase: which is False. The point is that at no stage is it necessary to evaluate bot t om.

Consider now two different ways of calculating the conjunction of a list of Booleans. The first
used a simple recursion

and:: [Bool] —-> Bool
and [] = True
and (b:bs) = b && (and bs)

Let us hand evaluate and [True,False, True, True]:

|and [True,False, True, True] =: and []
..match fails
|and [True,False,True,True] =: and (b:bs)
..match [b:=True,bs:=[False, True, True]
| =True & (and [False,True, Truel])
| | True & (and [False,True,True])=:True & b
..match... [b:= and [False, True, True]]
| | b[[b:= and [False, True, True]]
| | =and [False,True, True]
| | | and [False,True,True] =: and []
...match fails
| | |and [False,True, True] =: and (b:bs)
..match [b:=False,bs:=[True, True]]

| | | =False & (and [True,True])

| | | |False & (and [True,True])=:True & Db
...match fails

| | | |False & (and [True,True])=:_%&

9

Notice how the function never looks at the end of the list. Thus, and [True,False,bottom]
also evaluates to False as the evaluation never touches the bot t om function: I encourage you to
check that this is the case by actually running the function in Haskell ...

Here is an alternative more sophisticated way of defining and using a fold:

foldr £ g [] =g
foldr £ g (a:as) = f a (fold £ g as)

and = foldr (&&) True

Note that I have used the “section” (& &) which allows the non-infix form of & & which is a function
(&&) :: Bool->Bool->Bool of the required type for this fold.
Let us hand evaluate and [True,False, True, True] defined this way:

|and [True,False, True, True]

|=foldr (&&) True [True,False,True, True]

| | foldr (&&) True [True,False,True,Truel=:foldr £ g []
..match fails

| | foldr (&&) True [True,False,True,True] =: foldr f g (a:as)
...match [f:=(&&),g:=True,a:=True,as:=[False,True, True]]
| | =f a (foldr £ g as)[f:=(&&),g:=True,a:=True,as:=[False,True, True]]

| | =(&&) True (foldr (&&) True [False,True,True]) % RHS substituted
| | | (&&) True (foldr (&&) True [False,True,True]) =: (&&) True b
..match [b:=fold (&&) True [False,True, True]
| | | b[b:=foldr (&&) True [False,True, True]
| | | foldr (&&) True [False,True,True] =: foldr £ g []
...match fails
| | | foldr (&&) True [False,True, True]

foldr £ g (a:as)

..match [f:=(&),g:=True,a:=False,as:=[True, True]
| | | =(&&) False (foldr (&&) True [True,Truel)
| | | | False && (foldr (&&) True [True,True])=:True && b
..match fails
| | | | False && (foldr (&&) True [True,Truel)=:_ && _
..match T[]
| I |False
| | |False
| |False
|False

10

Notice again that the end of the list, after the first False is encountered, never gets evalu-
ated. Evaluation of the matching, which is sequential, only causes the evaluation of the second
argument when the first argument of (&&) is True. If, however, we were to replace (&&)
with myand?2, above, then both arguments would have to be evaluated in order to resolve the
patterns. This will produce a subtle change in the behaviour of the code would imply that and
[True,False, bottom] would no longer terminate.

It is important to realize that pattern matching forces evaluation of arguments just sufficiently
to determine whether the pattern matches. It does this sequentially from left to right across the
pattern so that once a failure of a match is detected the later arguments never get evaluated — even
if they have non-variable patterns which must be matched.

Notice also that if we had chosen to evaluate the arguments of a function before the evaluating
the function itself — this is called the “by value” evaluation strategy and is, in fact, the evaluation
strategy of choice in most programming languages — the behaviour will change. Thus, in False
&& (fold (&&) True [True,True]) if we had evaluated the arguments of (&&) before
evaluating the (&&), this would have cause fold (&&) True [True, True] tobe evaluated
and we no longer would have had such an efficient program.

The evaluation strategy of Haskell is called “lazy evaluation”. This means it only evaluates
arguments of functions when they are needed and from left to right — this is called an “outermost
leftmost” evaluation or a “by need” evaluation strategy — and, in addition, it “shares” evaluations
of subexpressions. Lazy evaluation is a (provably) efficient evaluation strategy.

5 Hand evaluating anonymous functions

Often Haskell programs use “anonymous functions” or A-abstractions. An example is given by the
definition of ord_list as:

ord_inlist:: Ord a => a —-> [a] —> Bool
ord_inlist x = foldr (\a b -> a==x || (x>=a && b)) False
The A-abstractionis (\a b -> a==x || (x>=a && b)). Itis called an anonymous func-

tion because we could equivalent define ord_1ist by replacing the anonymous function by a
helper function:

ord_inlist:: Ord a => a -> [a] —> Bool
ord_inlist x = foldr helper False
where
helper a b = a==x || (x>=a && b))

Clearly, using an anonymous function — or A-abstractions — can result in more succinct code ...

A-abstractions are are evaluated by substitution: (\@ — t) s = t[x := s|. There are some subtle
issues when one is doing a substitution into a term which has bound variables (here z, in (\z — t),
is a bound variable in t) as one must avoid “variable capture”. Variable capture occurs when the
term is to be substituted in a position in which one of its free variables is also the name of a bound
variable. As the name of the bound variables can be changed the solution is to rename the bound
variable away from free variables.

11

Consider the example of evaluating ord_inlist. When one is searching for an element in
an ordered list one can conclude the element is not present when the next element being examined
is strictly larger than the element being sought. The definition of ord_inlist, as above, using a

A-abstraction is as follows:

ord_inlist::
ord _inlist x =

where (as in the Prelude) we

(11
(|]]) False b =D
1) _ _ = True

(&&)
(&&) True b = Db
(&&) _ _ = False

Ord a => a —>
foldr

—> Bool
[

[a]
(\a b -> a==

shall assume:

) :: Bool->Bool->Bool

Bool->Bool—->Bool

(x>=a && b))

False

We wish to show from a hand evaluation that the code has the correct behaviour of not examining
parts of the list where the value exceeds the sought element.

ord_inlist 2 [1,4,8,11,22] := ord_inlist x [1,4,8,11,22]
match [x:=2]
= foldr (\a b—>a==x|| (x>=a && b)) False [1,4,8,11,22] [x:=2]
= foldr (\a b—>a==2|| (2>=a && b)) False [1,4,8,11,22]
= foldr £ b [] .fails
= foldr £ b (x:xs)
match [f:= (\a b->a==2]|]| (2>=a && b))
,b:=False,x:=1,xs:=[4,8,11,22]]
f x (foldr £ b xs) [f:= (\a b—>a==2|] (2>=a&&b))
,b:=False,x:=1,xs:=[4,8,11,22]]
(\a b —> a==2 || (2>=a && b)) 1
(foldr (\a b—>a==2|| (2>=a&&b)) False [4,8,11,22])
—— substitute anonymous function
1==2]] (2>=1&&foldr (\a b—->a==2]| (2>=a&&b)) False [4,8,11,221))

=: (||) False Db

| 1== forces evaluation
| False
match [b:=2>=1&&foldr (\a b-—>a==2]| (2>=a&&b))False [4,8,11,22]1)]
= bl[b:=2>=1&&foldr (\a b—->a==2]]| (2>=a&é&b)) False [4,8,11,22])]
= 2>=1&¢&foldr (\a b—>a==2]| (2>=a&&b)) False [4,8,11,22])

=: (&&) True Db
| 2>=1 forces evaluation
| True
match [b:= foldr (\a b-—>a==2]| (2>=a&&b)) False [4,8,11,227)]

12

= b [b:=foldr (\a b->a==2]| (2>=a&&b)) False [4,8,11,22]1)]
= foldr (\a b—>a==2| (2>=a&&b)) False [4,8,11,22])
:= foldr £ b []fails
:= foldr £ b (x:xs8)
match [f:= (\a b—>a==2|| (2>=a&&b))
,b:=False,x:=4,xs:=[8,11,22]]
= f x (foldr £ b xs)[f:= (\a b—>a==2|| (2>=a&&b))
,b:=False,x:=4,xs:=[8,11,22]]
= (\a b—>a==2|| (2>=as&&b))4 (foldr (\a b—->a==2]| (2>=a&é&b))False [8,11,22])
—-— substitute anonymous function
= 4==2|| (2>=4&&foldr (\a b->a==2|] (2>=a&&b)) False [8,11,22]))
:= (]|) False b
| 4==2 ... forces evaluation
| False
match [b:=2>=4&&foldr (\a b->a==2|| (2>=a&&b))False [8,11,22]]
= b[b:=2>=4&&foldr (\a b—>a==2|| (2>=a&&b)) False [8,11,22]]
= 2>=4 §&& foldr (\a b—>a==2]]| (2>=a&&b)) False [8,11,22]1]
=: (&&) True b
| 2>=4 forces evaluation
| False ... match fails
=: (&&) _ _ ... match []
= False

Again, one can check this is really what Haskell does by putting a bot t om in the list after the 4!

6 Hand evaluating case statements

Often one wishes to patten match the output of a function with in the body of a function: this is
permitted by using a case statement. Here is a typical example of some code which uses a case:

data SF a = SS a | FF
deriving (Eqg, Show)

append :: [a] -> [a] -> [a]
append xs ys = foldr (:) ys xs

second:: [a] —-> [a] -> SF a

second xs ys = case append xs ys of
z:(x:_) —> SS x
_ —> FF

This code extracts the second element from two lists which have been appended together. Let us
hand evaluate second [1,2,3] [4,5,6]

13

secC

ond [1,2,3] [4,5,6]

second xXs yS succeeds [xs:=[1,2,3],ys:=[4,5,6]]
case append xs ys of
1 (x:_) —> SS x
_ —> FF [xs:=[1,2,3],ys:=[4,5,6]]
case append [1,2,3] [4,5,6] of
:1(x:) —> SS x
__ —> FF
| append [1,2,3] [4,5,6] =: z:(x:_)
(matching problem forces evaluation of append)
| append [1,2,3] [4,5,6] =: append xs ys
.succeeds [xs:=[1,2,3],ys:=[4,5,6]]1
| = foldr (:) ys xs [xs:=[1,2,3],ys:=[4,5,6]]
| = foldr (:) [4,5,06]1 [1,2,3]
=: foldr £ b [] .fails
=: foldr £ b (x:xs)
succeeds [f:=(:),b.=[,5,6],x:=1, xs:=[2,311]
| = £ x (foldr £ b (x:xs)) [f:=(:),b:=[4,5,6],x:=1, xs:=[2,311]
| = () 1 (foldr (:) [4,5,0] [2,3]) =: z:(x:_) [z:= 1]
(composite pattern partially matches)
| | foldr (:) [4,5,6] [2,3] =: (x:_)
(forces evaluation of foldr ...)
| | foldr (:) [4,5,6] [2,3] =: foldr f b [] .fails
| | foldr (:) [4,5,6] [2,3] =: foldr £ b (x:xs)
.succeeds [f:=(:),b:=[4,5,6],x:=2,xs:=[31]]
| | = f x (foldr f b xs)[f:=(:),b:=[4,5,6],x:=2,xs:=[3]]
| | = (:) 2 (foldr (:) [4,5,6] [3]) := x:_

succeeds [x:=2]
(underscore does not generate substitution)
| append [1,2,3] [4,5,6] =: z:(x:_)
.succeeds [z:=1,x:=2]
(original matching problem!)
SS X [z:=1,x:=2]
SS 2

Notice in this evaluation how the case statement generates sequentially two matching problems first

app
[4,

end [1,2,3] [4,5,6] =: z:(x:_) and (if that one had failed) append [1, 2, 3]
5,6] =: _ The composite pattern z : (x: _forces a partial evaluation and generates a par-

tial match (to get the substitution for z) before further forcing evaluation to obtain a substitution
for x.

7

Hand evaluating tuples

Given the matching requirement to a tuple g z =: (x,y), where g z is not (immediately) a tuple, it

may

be supposed that g z must be evaluated until a tuple structure appears at the outermost level.

14

However, this is not the case. Instead, Haskell interprets the g 2z as a tuple without evaluating the
arguments: thus, g z = (#1(g 2),#2(g 2)) and so allows the substitution = := #1(g z) and
y = #2(g z). The “destructors”, #1 or #2 applied to a term, however, do cause the term to be
evaluated until a tuple is produced and the appropriate “destruction” step of selecting a component
can be performed.

In evaluating tuples the other aspect of Haskell’s evaluation — namely, sharing common subex-
pressions — also becomes more important: this avoids duplicate evaluations and tuples allow re-
peated computations (by duplication x — (z, x)).

Consider the following code for looking for the first repetition in a list:

snd:: (a,b) —-> a
snd (_,x) = X

repeat:: Egqg a => [a] -> SF a
repeat ys = snd (foldr bump (FF, FF) ys)

bump:: Eq a => a —> (SF a,SF a) —-> (SF a,SF a)
bump a (x,y) =
(SS a, case x of
SS b —> if a==b then SS a else y
FF —-> vy)

repeat’ :: Eg a => [a] —> SF a
repeat’ ys = snd (foldr bump’ (FF, FF) ys)

bump’ a (FF,_) = (SS a,FF)
bump’ a (SS b,y)| a == = (SS a,SSs a)
| otherwise = (SS a,vy)

repeat and repeat’ are two different ways of writing a test to determine the first repetition
in a list and to report which element is the first repeated (if there is one). Rather subtly the two
programs have different behaviours although as functions they are completely equivalent on finite
lists. Consider the evaluation of repeat:

repeat [1,1,2,2,3]
=: repeat ys

succeeds [ys := [1,1,2,2,3]]
= snd (foldr bump (FF, FF) ys) [ys := [1,1,2,2,3]]
= snd (foldr bump (FF, FF) [1,1,2,2,3])
| := snd (_,x)
...succeeds [x:=#2 foldr bump (FF,FF) [1,1,2,2,31)]
| = #2 (foldr bump (FF, FF) [1,1,2,2,3]) ...force evaluation...
| | foldr bump (FF, FF) [1,1,2,2,3]7
=: foldr £ b [] = b ... fail
=: foldr £ b (x:xs) ... succeeds

15

| | = f x (foldr f b xs) [f:=bump,b=(FF,FF),x:=1,xs:=[1,2,2,3]]
bump 1 (foldr bump (FF,FF) [1,2,2,3])
=: bump a (%x,y) ... succeed...
[a:= 1, x:= #1(foldr bump (FF,FF) [1,2,2,3])
,v:= #2 (foldr bump (FF,FF) [1,2,2,3]1)]
(SS a, case x of SS b -> if a==b then SS a
else y; FF —-> vy)
[a:=1, x:= #1(foldr bump (FF,FF) [1,2,2,3])
,v:= #2 (foldr bump (FF,FF) [1,2,2,31)]
| | = (SS 1, case #1 (foldr bump (FF,FF) [1,2,2,3]) of
SS b->if a==b then SS a
else #2(foldr bump (FF,FF) [1,2,
FF -> #2 (foldr bump (FF,FF) [1,2,2,3]
= case #1(foldr bump (FF,FF) [1,2,2,3]) of
SS b ->if a==b then SS a
else #2 (foldr bump (FF,FF) [1,2,2,31)
FF -> #2 (foldr bump (FF,FF) [1,2,2,31))
forces evaluation

2,3])
))

| | = #1 foldr bump (FF,FF) [1,2,2,3]) .. forces evaluation
| | | = foldr bump (FF,FF) [1,2,2,31)

=: foldr £ b [] = Db fail

=: foldr f b (x:xs) ... succeeds...

[f:=bump, b=(FF,FF),x:=1,xs:[2,2,3]]
| | | = f x (foldr f b xs) [f:=bump,b=(FF,FF),x:=1,xs:[2,2,3]]
| | | = bump 1 (foldr bump (FF,FF) [2,2,3])
=: bump a (x,vy) ...succeeds...
[a:= 1, x:= #1 (foldr bump (FF,FF) [1,2,2,31])
,v:= #2 (foldr bump (FF,FF) [1,2,2,31)]
| | | = (Ss 1, ...)
| | = S5S 1
| = case SS 1 of SS b -> if 1==b then SS 1
else #2(foldr bump (FF,FF) [1,2,2,3])]
FF -> #2(foldr bump (FF,FF) [1,2,2,31)1)
| = if 1==1 then SS 1
else #2(foldr bump (FF,FF) [1,2,2,3])]
= 5SS 1

Note how this exhibits a cut-off behaviour: the end of the list is never examined. However,
repeat’ does not exhibit this cut-off behaviour ... as you can check in Haskell by inserting a
bottom after the first repetition — or indeed by doing a hand evaluation! This illustrates some fairly
subtle aspects to the evaluation ...

16

