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Introduction

▪ A classic network traffic measurement study has 
shown that aggregate Ethernet LAN traffic is           
self-similar [Leland et al 1993]

▪ A statistical property that is very different from the 
traditional Poisson-based models

▪ This presentation: definition of network traffic self-
similarity, Bellcore Ethernet LAN data, implications of 
self-similarity



Measurement Methodology

▪ Collected lengthy traces of Ethernet LAN traffic on 
Ethernet LAN(s) at Bellcore

▪ High resolution time stamps

▪ Analyzed statistical properties of the resulting time 
series data

▪ Each observation represents the number of packets 
(or bytes) observed per time interval                     
(e.g., 10  4  8  12  7  2  0  5  17  9  8  8  2...)



Self-Similarity: The Intuition

▪ If you plot the number of packets observed per time 
interval as a function of time, then the plot looks 
‘‘similar’’ regardless of what interval size you choose 

▪ E.g., 10 msec, 100 msec, 1 sec, 10 sec,...

▪ Same applies if you plot number of bytes observed 
per interval of time



Self-Similarity: The Intuition

▪ In other words, self-similarity implies a ‘‘fractal-
like’’ behaviour: no matter what time scale you 
use to examine the data, you see similar patterns

▪ Implications:

— Burstiness exists across many time scales

— No natural length of a burst

— Traffic does not necessarilty get ‘‘smoother” when you 
aggregate it (unlike Poisson traffic)



Self-Similarity: The Mathematics

▪ Self-similarity is a rigourous statistical property 
(i.e., a lot more to it than just the pretty ‘‘fractal-
like’’ pictures)

▪ Assumes you have time series data with finite 
mean and variance (i.e., covariance stationary 
stochastic process)

▪ Must be a very long time series (infinite is best!)

▪ Can test for presence of self-similarity



Self-Similarity: The Mathematics

▪ Self-similarity manifests itself in several equivalent 
fashions:

▪ Slowly decaying variance

▪ Long range dependence

▪ Non-degenerate autocorrelations

▪ Hurst effect



Slowly Decaying Variance

▪ The variance of the sample decreases more slowly 
than the reciprocal of the sample size

▪ For most processes, the variance of a sample 
diminishes quite rapidly as the sample size is 
increased, and stabilizes soon

▪ For self-similar processes, the variance decreases 
very slowly, even when the sample size grows quite 
large



Variance-Time Plot

▪ The ‘‘variance-time plot” is one method to test for 
the slowly decaying variance property

▪ Plots the variance of the sample versus the sample 
size, on a log-log plot

▪ For most processes, the result is a straight line with 
slope -1

▪ For self-similar, the line is much flatter



Variance-Time Plot
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Variance-Time Plot
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Variance-Time Plot
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Variance-Time Plot
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Variance-Time Plot

V
ar

ia
n

ce

m



Variance-Time Plot
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for most processes



Variance-Time Plot
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Variance-Time Plot

V
ar

ia
n

ce

m

Slope flatter than -1
for self-similar process



Long Range Dependence

▪ Correlation is a statistical measure of the 
relationship, if any, between two random variables

▪ Positive correlation: both behave similarly

▪ Negative correlation: behave in opposite fashion

▪ No correlation: behaviour of one is statistically 
unrelated to behaviour of other



Long Range Dependence (Cont’d)

▪ Autocorrelation is a statistical measure of the 
relationship, if any, between a random variable and 
itself, at different time lags

▪ Positive correlation: big observation usually followed 
by another big, or small by small

▪ Negative correlation: big observation usually 
followed by small, or small by big

▪ No correlation: observations unrelated 



Long Range Dependence (Cont’d)

▪ Autocorrelation coefficient can range between +1 
(very high positive correlation) and -1 (very high 
negative correlation)

▪ Zero means no correlation

▪ Autocorrelation function shows the value of the 
autocorrelation coefficient for different time lags k
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Autocorrelation Function
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Autocorrelation Function
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Autocorrelation Function
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Autocorrelation Function
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Long Range Dependence (Cont’d)

▪ For most processes (e.g., Poisson, or compound 
Poisson), the autocorrelation function drops to 
zero very quickly (usually immediately, or 
exponentially fast)

▪ For self-similar processes, the autocorrelation 
function drops very slowly (i.e., hyperbolically) 
toward zero, but may never reach zero

▪ Non-summable autocorrelation function
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Non-Degenerate Autocorrelations

▪ For self-similar processes, the autocorrelation 
function for the aggregated process is 
indistinguishable from that of the original process

▪ If autocorrelation coefficients match for all lags k, 
then called exactly self-similar

▪ If autocorrelation coefficients match only for large 
lags k, then called asymptotically self-similar
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Aggregation

▪ Aggregation of a time series X(t) means smoothing 
the time series by averaging the observations over 
non-overlapping blocks of size m to get a new time 
series X  (t)

m



Aggregation: An Example

▪ Suppose the original time series X(t) contains the 
following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

▪ Then the aggregated series for m = 2 is:



Aggregation: An Example

▪ Suppose the original time series X(t) contains the 
following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

▪ Then the aggregated series for m = 2 is:

4.5  8.0  2.5  5.0  6.0  7.5  7.0  4.0  4.5  5.0...



Aggregation: An Example

▪ Suppose the original time series X(t) contains the 
following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

Then the aggregated time series for m = 5 is:



Aggregation: An Example

▪ Suppose the original time series X(t) contains the 
following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

Then the aggregated time series for m = 5 is:

6.0         4.4          6.4          4.8 ...
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The Hurst Effect

▪ For almost all naturally occurring time series, the 
rescaled adjusted range statistic (also called the 
R/S statistic) for sample size n obeys the 
relationship

E[R(n)/S(n)] = c n 

where:

R(n) = max(0, W , ... W ) - min(0, W , ... W )

S(n) is the sample standard deviation, and

W  =   X  - k X    for k = 1, 2, ... n

H

1 n

k i n
i =1

k

1 n



The Hurst Effect (Cont’d)

▪ For models with only short range dependence, H is 
almost always 0.5

▪ For self-similar processes, 0.5 < H < 1.0

▪ This discrepancy is called the Hurst Effect, and H is 
called the Hurst parameter

▪ Single parameter to characterize self-similar process!



R/S Statistic: An Example

▪ Suppose the original time series X(t) contains the 
following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1

▪ There are 20 data points in this example



R/S Statistic: An Example

▪ Suppose the original time series X(t) contains the 
following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1

▪ There are 20 data points in this example

▪ For R/S analysis with n = 1, you get 20 samples, each 
of size 1: (boring base case)

Block 1: X  = 2, W = 0, R(n) = 0, S(n) = 0

Block 2: X  = 7, W = 0, R(n) = 0, S(n) = 0

Block 3: X  = 4, W = 0, R(n) = 0, S(n) = 01

1

1



R/S Statistic: An Example

▪ Suppose the original time series X(t) contains the 
following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1

▪ For R/S analysis with n = 2, you get 10 samples, each 
of size 2:



R/S Statistic: An Example

▪ Suppose the original time series X(t) contains the 
following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1

▪ For R/S analysis with n = 2, you get 10 samples, each 
of size 2:

Block 1: X  = 4.5, W  = -2.5, W  = 0,  

R(n) = 0 - (-2.5) = 2.5, S(n) = 2.5,

R(n)/S(n) = 1.0

n 1 2



R/S Statistic: An Example

▪ Suppose the original time series X(t) contains the 
following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1

▪ For R/S analysis with n = 2, you get 10 samples, each 
of size 2:

Block 2: X  = 8.0, W  = -4.0, W  = 0,  

R(n) = 0 - (-4.0) = 4.0, S(n) = 4.0,

R(n)/S(n) = 1.0

n 1 2



R/S Statistic: An Example

▪ Suppose the original time series X(t) contains the 
following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1

▪ For R/S analysis with n = 5, you get  4 samples, each 
of size 5:



R/S Statistic: An Example

▪ Suppose the original time series X(t) contains the 
following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1

▪ For R/S analysis with n = 5, you get 4 samples, each 
of size 4:

Block 1: X  = 6.0, W  = -4.0, W  = -3.0,

W  = -5.0 , W  = 1.0 , W  = 0, S(n) = 3.41,

R(n) = 1.0 - (-5.0) = 6.0, R(n)/S(n) = 1.76

n 1 2

3 4 5



R/S Statistic: An Example

▪ Suppose the original time series X(t) contains the 
following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1

▪ For R/S analysis with n = 5, you get 4 samples, each 
of size 4:

Block 2: X  = 4.4, W  = -4.4, W  = -0.8,

W  = -3.2 , W  = 0.4 , W  = 0, S(n) = 3.2,

R(n) = 0.4 - (-4.4) = 4.8, R(n)/S(n) = 1.5

n 1 2

3 4 5



R/S Plot

▪ Another way of testing for self-similarity, and 
estimating the Hurst parameter

▪ Plot the R/S statistic for different values of n, with a 
log scale on each axis

▪ If time series is self-similar, the resulting plot will 
have a straight line shape with a slope H that is 
greater than 0.5

▪ Called an R/S plot, or R/S pox diagram
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R/S Pox Diagram

R
/S

 S
ta

ti
st

ic

Block Size n

R/S statistic  R(n)/S(n)
on a logarithmic scale



R/S Pox Diagram

R
/S

 S
ta

ti
st

ic

Block Size n

Sample size n
on a logarithmic scale



R/S Pox Diagram
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Summary

▪ Self-similarity is an important mathematical 
property that has been identified as present in 
network traffic measurements

▪ Important property: burstiness across many time 
scales, traffic does not aggregate well

▪ There exist several mathematical methods to test 
for the presence of self-similarity, and to estimate 
the Hurst parameter H

▪ There exist models for self-similar traffic


