Scaling Internet TV Content Delivery

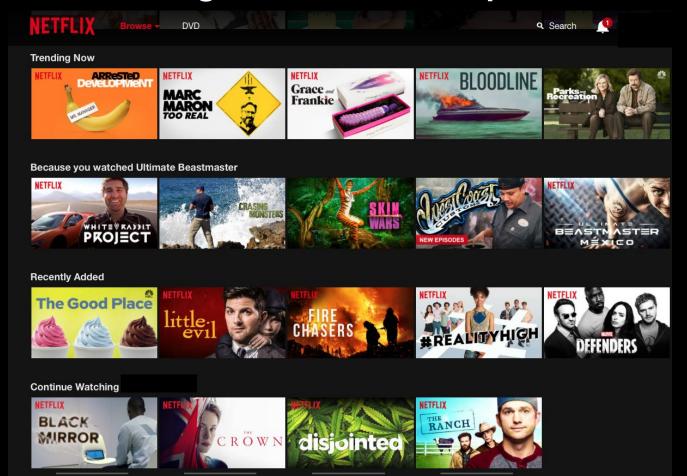
ALEX GUTARIN
DIRECTOR OF ENGINEERING, NETFLIX

NETFLIX

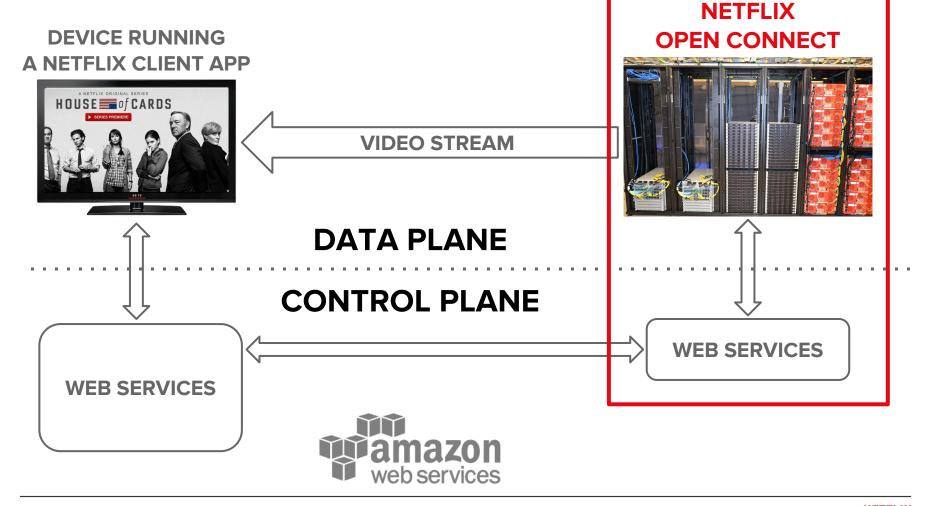
Effetflixeveryantere

- Inventing Internet T\u00e4
- Available in more than 190 countries
- 104+ million subscribers

Lots of Streaming == Lots of Traffic


- Streaming 125+ million hours per day of TV shows and movies
- Responsible for over one-third of
 North American peak internet traffic

Architecture


DEVICE RUNNING A NETFLIX CLIENT APP HOUSE of CARDS **VIDEO STREAM DATA PLANE CONTROL PLANE WEB SERVICES WEB SERVICES**

web services

before streaming starts = control plane = AWS

Open Connect is a Content Delivery Network (CDN)

- A set of content delivery servers (appliances)
 - Geographically distributed
 - Attached to or embedded within ISP networks
- A way of routing requests to the optimal server

We provide free Open
Connect Appliances (OCA's)
for Internet Service Provider
(ISP) data centers.

We also provide settlement free interconnection to ISPs at Internet Exchange (IX) locations throughout the world.

Wait, what's an IX?

An Internet exchange point (IX or IXP) is

a physical infrastructure

through which

Internet Service

Providers (ISPs)

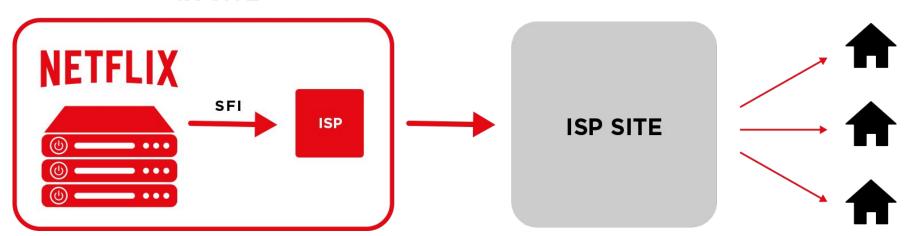
and

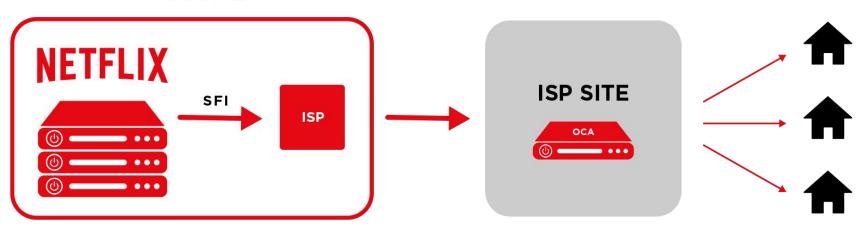
Content Delivery

Networks (CDNs)

exchange Internet traffic

between their networks


-Wikipedia



IX SITE

IX SITE

Control Plane

1. Where (on which OCAs) to pre-position the content?

2. Where to steer (which OCAs to hand out to) the client for streaming the content?

Offload

bytes served from ideal location total bytes served

Pre-positioning the Content

For every file, figure out a list of OCAs it should be deployed to:

- Predict popularity
- Maximize (predicted) offload
- Minimize OCA requirements

Steering Clients

For every playback session, return a set of OCAs based on:

- Content availability
- Network proximity
- OCA capacity to serve (health)

Control Plane: Interesting Problems

Predicting Popularity

Inputs

- Observed popularity
- View hour predictions for new titles

Goals

- Maximize offload
- Minimize churn (number of bytes that need to be copied as popularity changes)

Content Sharding

Inputs

- Cluster of heterogeneous OCAs
 - Very different storage and throughput capabilities

Goals

- Maximize offload (with fault tolerance)
- Maximize load balance

Tiered Content Fill

Inputs

Network topology

Goals

- Minimize number of bytes copied over narrow / expensive links
- Minimize deployment latency

Scaling Issues

Inputs

- Up to hundreds of thousands of routes per network location
- Hundreds of thousands of files per OCA
- Thousands of OCAs and locations

Goals

Perform steering quickly and efficiently

Content Delivery Appliances

What is an OCA?

- Massive web server
- Serving static content
- HTTP GET range requests
- (Mostly) TLS connections

Two Types of Appliances:

"Storage"

Lots of storage, medium throughput

"Flash" (aka "offload")

- Limited storage, high throughput
- Used to serve popular content where traffic density allows for it

16 core Intel Xeon E5 CPU, 128 GB RAM 10 x 1 TB SSD; 24 x 10 TB HDD 4 x 10GbE links

16 core Intel Xeon E5 CPU, 128 GB RAM 4 x 4 TB NVMe flash storage 1 x 100GbE links

OSS Stack

- FreeBSD OS
- NGINX web server
- BIRD BGP daemon
- Netflix apps to interface with the control plane and fill content

Flash OCAs

- 90 Gbps of TLS encrypted traffic
 - Memory bandwidth limited
- 100K TCP connections
- 30-40K RPS
- Most of the traffic not served from RAM

Storage OCAs

20 - 30 Gbps (disk IO limited)

OCA: Interesting Problems

CPU & Memory Efficiency

- Optimize
 - OS kernel
 - Network adapter drivers
 - Web server
- Remove bottlenecks that prevent us from achieving higher throughput
- Reduce CPU requirements (cost)

IO Efficiency

- Get more throughput from HDDs
 - Reduce IOPS and increase read sizes via intelligent pre-fetching
- Improve RAM and SSD caching of content

Network Transport Algorithms

- Improve TCP on the sender side
 - Loss detection and recovery
 - Congestion control
- UDP-based transport deployable to clients
- Goal is achieve higher goodput to clients and improve customer quality of experience

http://techblog.netflix.com

Thank you. Questions?

