
TCP Review

Carey Williamson

Department of Computer Science

University of Calgary

Credit: Most of this content was provided by Erich Nahum (IBM Research)

2

Transmission Control Protocol (TCP)

▪ Connection-oriented, point-to-point protocol:
— Connection establishment and teardown phases

— ‘Phone-like’ circuit abstraction (application-layer view)

— One sender, one receiver

— Called a “reliable byte stream” protocol

— General purpose (for any network environment)

▪ Originally optimized for certain kinds of transfer:
— Telnet (interactive remote login)

— FTP (long, slow transfers)

— Web is like neither of these!

3

TCP Protocol (cont’d)

▪ Provides a reliable, in-order, byte stream abstraction:
— Recover lost packets and detect/drop duplicates

— Detect and drop corrupted packets

— Preserve order in byte stream, no “message boundaries”

— Full-duplex: bi-directional data flow in same connection

▪ Flow and congestion control:
— Flow control: sender will not overwhelm receiver

— Congestion control: sender will not overwhelm the network

— Sliding window flow control

— Send and receive buffers

— Congestion control done via adaptive flow control window size

socket

layer

TCP

send buffer

application

writes data

TCP

receive buffer

socket

layer

application

reads data

data segment

ACK segment

4

The TCP Header

Fields enable the following:

▪ Uniquely identifying each TCP
connection

(4-tuple: client IP and port,
server IP and port)

▪ Identifying a byte range
within that connection

▪ Checksum value to detect
corruption

▪ Flags to identify protocol state
transitions (SYN, FIN, RST)

▪ Informing other side of your
state (ACK)

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number
rcvr window size

ptr urgent datachecksum

FSRPAU
head
len

not
used

Options (variable length)

5

Establishing a TCP Connection

▪ Client sends SYN with initial
sequence number (ISN = X)

▪ Server responds with its
own SYN w/seq number Y
and ACK of client ISN with
X+1 (next expected byte)

▪ Client ACKs server's ISN
with Y+1

▪ The ‘3-way handshake’

▪ X, Y randomly chosen

▪ All modulo 32-bit
arithmetic

client server

connect()
listen()
port 80

accept()

read()

time

6

Sending Data

▪ Sender TCP passes segments to IP to transmit:
— Keeps a copy in buffer at send side in case of loss

— Called a “reliable byte stream” protocol

— Sender must obey receiver advertised window

▪ Receiver sends acknowledgments (ACKs)
— ACKs can be piggybacked on data going the other way

— Protocol allows receiver to ACK every other packet in attempt to
reduce ACK traffic (delayed ACKs)

— Delay should not be more than 500 ms (typically 200 ms)

— We’ll later see how this causes a few problems

socket

layer

TCP

send buffer

application

writes data

TCP

receive buffer

socket

layer

application

reads data

data segment

ACK segment

7

Preventing Congestion

▪ Sender may not only overrun receiver, but may also
overrun intermediate routers:

— No way to explicitly know router buffer occupancy,

so we need to infer it from packet losses

— Assumption is that losses stem from congestion in the network
(i.e., an intermediate router has no more buffers available)

▪ Sender maintains a congestion window (called cwnd or CW)
— Never have more than CW of un-acknowledged data outstanding

(or RWIN data; min of the two)

— Successive ACKs from receiver cause CW to grow.

▪ How CW grows depends on which of 2 phases TCP is in:
— Slow-start: initial state. Grows CW quickly (exponentially).

— Congestion avoidance: steady-state. Grows CW slowly (linearly).

— Switch between the two when CW > slow-start threshold

8

Congestion Control Principles

▪ Lack of congestion control would lead to congestion collapse
(Jacobson 88).

▪ Idea is to be a “good network citizen”.

▪ Would like to transmit as fast as possible without loss.

▪ Probe network to find available bandwidth.

▪ In steady-state: linear increase in CW per RTT.

▪ After loss event: CW is halved.

▪ This general approach is called Additive Increase and
Multiplicative Decrease (AIMD).

▪ Various papers on why AIMD leads to network stability.

9

Slow Start

▪ Initial CW = 1.

▪ After each ACK, CW += 1;

▪ Continue until:
— Loss occurs OR

— CW > slow start threshold

▪ Then switch to congestion
avoidance

▪ If we detect loss, cut CW in
half

▪ Exponential increase in
window size per RTT

sender

R
T

T

receiver

time

10

Congestion Avoidance

Until (loss) {
after CW packets ACKed:

CW += 1;
}
ssthresh = CW/2;
Depending on loss type:

SACK/Fast Retransmit:
CW/= 2; continue;

Course grained timeout:
CW = 1; go to slow start.

(This is for TCP Reno/SACK: TCP
Tahoe always sets CW=1 after a loss)

11

How are losses recovered?

What if packet is lost (data or ACK!)

▪ Coarse-grained Timeout:
— Sender does not receive ACK after

some period of time

— Event is called a retransmission time-
out (RTO)

— RTO value is based on estimated
round-trip time (RTT)

— RTT is adjusted over time using
exponential weighted moving
average:

RTT = (1-x)*RTT + (x)*sample

(x is typically 0.1)

First done in TCP Tahoe

loss

ti
m

e
ou

t

lost ACK scenario

X

sender receiver

time

12

Fast Retransmit

▪ Receiver expects N, gets N+1:
— Immediately sends ACK(N)
— This is called a duplicate ACK
— Does NOT delay ACKs here!
— Continue sending dup ACKs for each

subsequent packet (not N)

▪ Sender gets 3 duplicate ACKs:
— Infers N is lost and resends
— 3 chosen so out-of-order packets

don’t trigger Fast Retransmit
accidentally

— Called “fast” since we don’t need to
wait for a full RTT

sender receiver

time

X

Introduced in TCP Reno

13

Other Loss Recovery Methods

▪ Selective Acknowledgements (SACK):
— Returned ACKs contain option w/SACK block

— Block says, "got up N-1 AND got N+1 through N+3"

— A single ACK can generate a retransmission

▪ New Reno partial ACKs:
— New ACK during fast retransmit may not ACK all outstanding data.

Ex:
▪ Have ACK of 1, waiting for 2-6, get 3 dup acks of 1

▪ Retransmit 2, get ACK of 3, can now infer 4 lost as well

▪ Other schemes exist (e.g., Vegas)

▪ Reno has been prevalent; SACK now catching on

14

Connection Termination

▪ Either side may terminate a
connection. (In fact, connection
can stay half-closed.) Let's say
the server closes (typical in
WWW)

▪ Server sends FIN with seq
Number (SN+1) (i.e., FIN is a
byte in sequence)

▪ Client ACK's the FIN with SN+2
("next expected")

▪ Client sends it's own FIN when
ready

▪ Server ACK's client FIN as well
with SN+1.

client server

close()

close()

closed

ti
m

e
d
 w

ai
ttime

15

The TCP State Machine

▪ TCP uses a Finite State Machine, kept by each side of a
connection, to keep track of what state a connection is in.

▪ State transitions reflect inherent races that can happen in
the network, e.g., two FIN's passing each other in the
network.

▪ Certain things can go wrong along the way, i.e., packets
can be dropped or corrupted. In fact, machine is not
perfect; certain problems can arise not anticipated in the
original RFC.

▪ This is where timers will come in, which we will discuss
more later.

16

TCP Connection Establishment

ESTABLISHED

SYN_RCVD

SYN_SENT

CLOSED

LISTEN

client application
calls connect()

send SYN

receive SYN
send SYN + ACK

server application
calls listen()

receive SYN & ACK
send ACK

receive ACK

▪ CLOSED: more implied than actual,
i.e., no connection

▪ LISTEN: willing to receive
connections (accept call)

▪ SYN-SENT: sent a SYN, waiting for
SYN-ACK

▪ SYN-RECEIVED: received a SYN,
waiting for an ACK of our SYN

▪ ESTABLISHED: connection ready for
data transfer

receive SYN
send ACK

17

TCP Connection Termination

ESTABLISHED

FIN_WAIT_2

TIME_WAIT

FIN_WAIT_1

LAST_ACK

CLOSE_WAIT

CLOSED

wait 2*MSL
(240 seconds)

receive ACK

receive FIN
send ACK

receive ACK
of FIN

close() called
send FIN

receive FIN
send ACK

▪ FIN-WAIT-1: we closed first,
waiting for ACK of our FIN (active
close)

▪ FIN-WAIT-2: we closed first, other
side has ACKED our FIN, but not
yet FIN'ed

▪ CLOSING: other side closed before
it received our FIN

▪ TIME-WAIT: we closed, other side
closed, got ACK of our FIN

▪ CLOSE-WAIT: other side sent FIN
first, not us (passive close)

▪ LAST-ACK: other side sent FIN,
then we did, now waiting for ACK

CLOSING

receive FIN
send ACK

receive ACK
of FIN

close() called
send FIN

18

Summary: TCP Protocol

▪ Protocol provides reliability in face of complex and
unpredictable network behavior

▪ Tries to trade off efficiency with being "good network
citizen“ (i.e., fairness)

▪ Vast majority of bytes transferred on Internet today are
TCP-based:

— Web

— Email

— Peer-to-peer (Napster, Gnutella, FreeNet, KaZaa, BitTorrent)

— Video streaming applications (Netflix, YouTube)

— Online social networks (Facebook, Twitter)

— Other emerging network applications

