
1

ProWGen: A Synthetic Workload Generation Tool
for Simulation Evaluation of Web Proxy Caches

Mudashiru Busari Carey Williamson
Department of Computer Science Department of Computer Science

University of Saskatchewan University of Calgary
carey@cpsc.ucalgary.ca

Abstract— This paper describes the design and use of a synthetic Web
proxy workload generator called ProWGen to investigate the sensitivity of
Web proxy cache replacement policies to five selected Web workload char-
acteristics. Three representative cache replacement policies are considered
in the simulation study: a recency-based policy called Least-Recently-Used
(LRU), a frequency-based policy called Least-Frequently-Used-with-Aging
(LFU-Aging), and a size-based policy called Greedy-Dual-Size (GD-Size).

Trace-driven simulations with synthetic workloads from ProWGen show
the relative sensitivity of these cache replacement policies to three Web
workload characteristics: the slope of the Zipf-like document popularity
distribution, the degree of temporal locality in the document referencing
behaviour, and the correlation (if any) between document size and docu-
ment popularity. The three replacement policies are relatively insensitive
to the percentage of one-timers in the workload, and to the Pareto tail in-
dex of the heavy-tailed document size distribution. Performance differences
between the three cache replacement policies are also highlighted.

I. INTRODUCTION

The continuing growth of the Web can lead to overloaded
Web servers and congestion on the Internet backbone, with the
end result being an increase in user-perceived latency for re-
trieving Web documents. Web document caching, Web site mir-
roring, and content distribution networks are all approaches for
improving the performance and scalability of the Web.

Web document caching is one of the most prevalent
approaches to improving user-perceived Web performance.
Caching can be applied at several locations: at the client [13],
[19], [26], [39], at the server [7], [8], [13], and within the net-
work [1], [2], [5], [9], [10], [13], [14], [18], [21], [36], [37],
[39], [42]. The latter approach involves Web proxy caches [1],
[18], [42], which are the focus of this paper.

Caching proxies have gained widespread popularity on the
Internet. By keeping local copies of documents requested by
Web clients, and using them to satisfy future requests to the
same documents, caching proxies can reduce the amount of traf-
fic flowing between Web clients and Web servers. As a result,
Web servers receive fewer requests to handle, traffic through the
Internet is decreased, and the delays perceived by users are re-
duced.

Web proxy workload characteristics and proxy caching per-
formance have been well-studied in the literature. Some com-
mon characteristics identified in proxy workloads are: (1) the
document popularity often follows a power-law relationship re-
ferred to as Zipf’s law or Zipf-like behaviour [5], [15], [30],
[31], [40]; (2) the document size distribution for Web docu-
ments is heavy-tailed [1], [5], [30], [31]; (3) many (e.g., 50-
70%) of the documents are “one-timers”, which are referenced
only once [1], [30], [31], [39]; and (4) temporal locality exists
in the Web proxy reference stream [20], [28], [29], [30], [32],

[40].
These characteristics pose a challenge for Web proxy cache

design. Some authors argue that the limits of cache performance
have already been reached, and that new techniques are required
to improve performance [25], [34], [41].

This paper addresses the following two research questions:
� In a single-level proxy cache, how sensitive is Web proxy
caching performance to certain workload characteristics (e.g.,
one-timers, the slope of the Zipf-like document popularity dis-
tribution, heavy-tailed file1 size distribution, temporal locality)?

� How does the degree of sensitivity change depending on the
cache replacement policy?

These questions are not straightforward to answer. For in-
stance, investigating how a particular workload characteristic
(e.g., Zipf slope) affects different replacement policies requires
empirical workloads that differ only in that characteristic. Such
workloads are obviously difficult to obtain.

Therefore, to answer the research questions above, we devel-
oped a synthetic Web proxy workload generator that offers the
required flexibility. The workload generation tool is then used
in a sensitivity study of proxy cache replacement policies.

The trace-driven simulation results show that the replacement
policies evaluated are sensitive to three of the Web workload
characteristics studied, namely the slope of the Zipf-like docu-
ment popularity distribution, the degree of temporal locality in
the document referencing behaviour, and the degree of correla-
tion (if any) between document size and document popularity.
The results also show that these three policies are relatively in-
sensitive to the percentage of one-timer documents in the work-
load, and to the Pareto tail index of the heavy-tailed document
size distribution. These cache sensitivity results are useful be-
cause they provide insight into the design of Web proxy caching
policies and Web proxy caching hierarchies [17], [48].

The remaining sections of this paper are organized as follows.
Section II provides a brief discussion of related work, and clar-
ifies the contributions of this paper. Section III describes the
proxy workload generation tool, and Section IV discusses the
validation of the tool. Section V presents the experimental setup
for the study of single-level caches, while the simulation results
are presented in Section VI. Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

Workload synthesis allows systems to be studied in controlled
ways. This helps in management and capacity planning.

�

In this paper, we use the terms “file” and “document” interchangeably.

2

There are several workload generation tools developed to
study Web servers and Web proxies. SPECweb99 [43],
WebBench [45], SURGE [11], and httperf [35] are among work-
load generation tools designed to exercise Web servers by re-
peatedly sending requests (e.g., HTTP requests) from machines
configured as clients to the intended server machine under
test. Several other tools generate synthetic workloads through
transformation (e.g., time scaling, permutation) of an empirical
workload trace [31], [33], [46].

The issue that motivates our proxy workload generation
(ProWGen) tool makes it different from previous tools. The
goal is to examine the sensitivity of proxy caching policies to
certain workload characteristics. Therefore, ProWGen incorpo-
rates only those characteristics deemed relevant to caching. In
addition, ProWGen models only the aggregate client workloads
seen by a typical proxy server, rather than individual clients.

Several studies have focused on the importance of individ-
ual workload characteristics on proxy cache performance. For
example, Roadknight et al. [40] noted a strong relationship be-
tween the power-law exponent of the Zipf-like document popu-
larity distribution and the number of files in the proxy’s cache.
Mahanti et al. [30], [32] determined that temporal locality (i.e.,
the relative ordering of requests) has an important impact on
Web proxy cache performance. Several other researchers have
commented on the importance of other workload characteristics
and their impact on proxy server performance (e.g., correlation
between file size and popularity [15], one-timers [31], heavy-tail
index [23]).

Our work differs from these studies in that a synthetic work-
load generation tool (ProWGen) is used to generate proxy work-
loads that differ in one chosen characteristic at a time. These
workloads, which would have been impossible to obtain empir-
ically, are then methodically used to investigate the sensitivity
of cache replacement policies (recency-based, frequency-based,
and size-based) to each workload characteristic, using trace-
driven simulations. The ProWGen tool is also easily extensible
to add other workload characteristics.

III. DESCRIPTION OF PROWGEN

There are two common approaches to synthesizing Web
proxy workloads [11]. The trace-based approach uses an empir-
ical trace and either samples it or permutes the orderings of the
requests to generate a new workload. This approach is straight-
forward to implement but has limited flexibility, since the work-
load is inherently tied to a known system. The analytical ap-
proach uses mathematical models for the workload characteris-
tics of interest, and uses random number generation to produce
workloads that statistically conform to these models. This ap-
proach, though challenging, offers a lot of flexibility.

ProWGen uses the analytic approach. The workload gener-
ator incorporates five selected workload characteristics, which
are deemed relevant to caching performance. These workload
characteristics are: one-time referencing, file popularity, file size
distribution, correlation between file size and popularity, and
temporal locality. The following subsections describe each of
these characteristics and how they are modeled in ProWGen.

A. Modeling One-time Referencing

Studies of Web server and Web proxy workloads have shown
that many documents requested from a server or a proxy are re-
quested only once, regardless of the duration of the access log
studied [1], [8], [31]. These documents are referred to as “one-
timers” in the literature. Clearly, there is no benefit to caching
one-timer documents, since they are never accessed again. In
fact, caching algorithms need to discriminate against such doc-
uments so that they do not clutter the cache and reduce its effec-
tiveness [8].

The study of one-timers is important because of their preva-
lence in Web workloads. Arlitt and Williamson [8] report that
15-40% of the unique files accessed from a Web server are ac-
cessed only once. The situation is even worse in Web proxy
access logs, where one-timers can account for 50-70% of the
documents [1], [31]. Modeling the one-time referencing char-
acteristic is thus important when generating workloads for eval-
uating different caching algorithms. Fortunately, the modeling
of one-timers is relatively straightforward.

In ProWGen, the user specifies the percentage of one-timers
desired in the synthetic workload (as a percentage of the distinct
files). Once the value of this parameter is specified, the number
of one-timers in the workload is determined, and their reference
counts are fixed at one. The reference counts for the remaining
distinct (non-one-timer) files are determined from a Zipf-like
distribution, as explained in the next section.

B. Modeling File Popularity

One common characteristic in Web workloads is the highly
uneven distribution of references to files [5], [30], [40]. In many
cases, Zipf’s law [38] has been applied to model file popular-
ity [3], [4], [15], [24].

Zipf’s law expresses a power-law relationship between the
popularity

�
of an item (i.e., its frequency of occurrence) and

its rank � (i.e., relative rank among the referenced items, based
on frequency of occurrence). This relationship is of the form������� ��� , where

�
is a constant, and 	 is often close to 1.

For example, Zipf’s law arises in the frequency of occurrence of
English words [15]; when the number of occurrences is plotted
versus the rank, the result is a power-law function with exponent
close to 1.

In the Web context, a similar referencing behaviour is ob-
served [5], [31], [40]. Some researchers have found that the
value of the exponent 	 is close to 1 [4], [24], precisely follow-
ing Zipf’s law. Others [3], [15], [31] have found that the value
of 	 is less than 1, and that the distribution can be described
only as “Zipf-like”, with the value of 	 varying from trace to
trace. Empirical data in the literature suggests that 	�
�� is
typical for Web proxies, while 	�
�� for small Web servers,
and 	���� is common for busy Web servers. The Zipf-like be-
haviour typically results in a straight line of (negative) slope 	
on a log-log plot of

�
versus � . The linear fit is usually good for

the main body of the distribution, though it may deviate slightly
at both the most popular end (due to “hot” documents) and the
least popular end (due to one-timers) [31].

The synthetic workloads produced by ProWGen use the Zipf-
like [15] distribution for file popularity. After fixing the number

3

of one-timers as explained in Section III-A, the reference counts
of the remaining distinct files are determined from a Zipf-like
distribution. The term “Zipf-like” is used here because the value
of 	 supplied to the workload generator determines whether
the generated reference stream follows the Zipf distribution per-
fectly (� �) or approximately (�� �). The ProWGen tool
currently supports �
�	
 � .
C. Modeling File Size Distribution

Workload characterization studies [1], [6], [8], [27], [30] have
shown that the file size distribution for Web transfers is heavy-
tailed. Mathematically, a distribution is said to be heavy-tailed
if the asymptotic shape of the distribution is hyperbolic. That is,

��� � �����
	��

�������������	���
��
��
One example of a heavy-tailed distribution is the doubly-
exponential Pareto distribution. Its probability density function
is: ��� �! � �#" � �

��
%$ �&�'�(" �����)�&*+"
and its cumulative distribution function is:, � �
 � ��� �.- �/� � �10 2 "�43 �
The parameter � , referred to as the tail index, determines the
heaviness of the tail of the distribution. Smaller values of �
represent heavier tails (i.e., more of the “mass” is present in the
tail of the distribution). The parameter " determines where the
tail of the distribution is considered to begin.

A heavy-tailed distribution implies that relatively few large
files account for a significant percentage of the data volume (in
bytes) transferred to Web clients. This heavy-tail property con-
tributes to the self-similarity observed in WWW traffic [23].

Clearly, the distribution of file sizes affects the design and per-
formance of caching strategies. Caching only small files can sig-
nificantly reduce the number of requests to originating servers.
This can result in a high document hit ratio, but a low byte hit ra-
tio2. On the other hand, caching large files can result in a higher
byte hit ratio at the expense of document hit ratio (since many
small documents may be forced out of the cache).

For effective evaluation of cache management strategies, the
heavy-tailed file size distribution must be incorporated into syn-
thetic workloads. Furthermore, the “heaviness” of the tail needs
to be adjustable, to evaluate its impact on caching performance.

Incorporating the heavy tail model into ProWGen begins with
partitioning of the distinct files into two sets: those in the body
and those in the tail. The body of the file size distribution is
modeled with a lognormal distribution, and the tail is modeled
with a Pareto distribution. This approach follows that used by
other researchers [6], [11], [22], and is thus not described at
length here.

Two additional steps are added to the file size modeling pro-
cess in ProWGen. One (optional) step bounds the maximum file
size generated from the Pareto distribution, if so desired. This
bound (e.g., 50 MB) can limit the impacts of extremely large
files in the workload generated, making it easier to match the5

See Section V-C for the definition of these metrics.

workload characteristics of an empirical trace. The other step
carefully joins the two statistical distributions (lognormal body
and Pareto tail) so that there is no discontinuity at the boundary
between the two distributions. Interested readers are referred
to [16] for the details of the file size modeling process.

D. Modeling Correlation (File Size and Popularity)

Proxy workload studies show that many of the files trans-
ferred on the Web are small [1], [8], [15], [30], [31]. A natural
question that arises is whether there is any statistical correlation
between the frequency of access to a file and its size. Some
studies [15], [30] have shown that there is little or no correlation
between the frequency of access to a file and its size, though the
issue is still debated [4], [8], [15].

For flexible modeling, ProWGen allows generation of work-
loads that exhibit positive, negative, or zero correlation between
file size and file popularity. Positive correlation means that large
files are more likely to be accessed, and negative correlation
means that small files are more likely to be accessed. While
zero correlation is arguably the closest approximation of real-
ity, the other workload generation options (positive and negative
correlations) allow exploration of the sensitivity of caching al-
gorithms to this workload characteristic.

Modeling size-popularity correlation in the workload gener-
ator is accomplished in three stages. First, a set of file popu-
larities is generated, as described in Section III-B. Second, the
approach in Section III-C is used to generate a set of file sizes.
Third, a mapping technique is used to introduce either positive,
negative, or zero correlation between file popularities and file
sizes. The mapping technique relies on computing the cumu-
lative distribution functions (CDF) for the file popularities and
the file sizes, and then using uniform U(0,1) random number
generation to generate file popularities and sizes from the CDF
values, using the standard inverse mapping technique. For in-
stance, to introduce strong positive correlation, a random num-
ber � (� - �
 �) is used to access both CDFs, interpolating
when necessary. For negative correlation, if � is used for the
first mapping, then �#0 � is used for the other mapping. For zero
correlation, independent random numbers � and 6 are generated
for the two mappings. Intermediate degrees of correlation can
be achieved by probabilistically choosing between these three
mapping strategies on a per-file basis.

E. Modeling Temporal Locality

Temporal locality refers to the tendency for Web documents
referenced in the recent past to be referenced in the near future.
Clearly, the presence (and strength) of temporal locality in the
synthetic workload can have a dramatic effect on caching per-
formance [20], [28], [32].

The approach used in ProWGen to model temporal locality
is based on the finite size Least-Recently-Used (LRU) stack
model [4], [30], [32], [44]. The LRU stack maintains an ordered
list of documents based on recency of access. The LRU stack is
updated dynamically as a reference is processed. In some cases,
this update involves adding a new item to the top of the stack,
pushing others down; in other cases, it involves extracting an
existing item from the midst of the stack and moving it to the
top again, pushing other items down as necessary.

4

The important aspect of an LRU stack is that each posi-
tion in the stack has an associated probability of referencing
it. Note that the probabilities are associated with the stack po-
sitions and not the documents. In ProWGen, the stack posi-
tion probabilities are determined based on desired document
popularities. For example, suppose that the popularities of
the � distinct files in the workload are represented by

� �
� � $ �)����������� �)���
	 , where � $ * ��� *������#* ��� . Then the (sta-
tionary) probability ��
 for each distinct file � is computed using
��
 � ����������� � � for � � � ����������� � � . Assuming a finite stack

of size � such that � - � , the cumulative probability ��
 of
referencing stack position � is computed as ��
 � �
� � $ � � .

Two different temporal locality models follow naturally from
this formulation. In the static model, the probabilities on the
LRU stack positions are assigned permanently from the begin-
ning of the reference stream generation. In the dynamic model,
the probabilities are computed dynamically depending on the
files currently occupying each stack position. Note that the static
model introduces “homogeneous” temporal locality throughout
the reference stream, while the dynamic approach introduces
“heterogeneous” (i.e., document-specific) temporal locality, bi-
ased toward popular documents.

The reference generation process then proceeds as follows.
First, a U(0,1) random number � is generated. If the stack is
empty, then a reference is generated for a file selected at random
from the set of distinct files requiring further references, and the
remaining reference count for the selected file is decremented
by one. Otherwise, the stack is searched until a position � is
found such that � - �!
 . If position � exists on the stack, then a
reference is generated for the file in that stack position, and that
file is either moved to the top of the stack or removed from the
stack, depending on whether that file requires more references
or not. If there is no position � such that � - ��
 , then a ref-
erence is generated for a file selected randomly from the set of
remaining distinct files not on the stack. The reference stream
generation ends when all references for the distinct files have
been generated.

Each reference in the generated workload is a two-tuple con-
sisting of a file id followed by a file size. The temporal locality
model merely controls the relative ordering of these references
in the generated workload.

F. Summary of ProWGen

ProWGen is a software tool to generate synthetic Web proxy
workloads of arbitrary length. The input parameters for ProW-
Gen provide control over five key workload characteristics,
namely one-time referencing, file popularity, file size distribu-
tion, correlation between file size and popularity, and temporal
locality.

Each reference in the generated workload consists of a file
id and a file size, with each file id representing a distinct URL
in the workload. The re-referencing of files is determined by
the file popularity and temporal locality models. Each modeled
document in the workload is independent of other documents.
Modeling the spatial relationships between files (e.g., HTML
files and embedded images) remains for future work.

ProWGen in its current form does not model individual client

TABLE I

CHARACTERISTICS OF EMPIRICAL AND SYNTHETIC TRACES (UOFS

PROXY)

Item Empirical Synthetic

Total requests 5,000,000 4,965,779
Unique documents 1,700,000 1,700,000
Unique documents (% of requests) 34% 34%
One-timers 1,224,000 1,223,719
One-timers (% of unique documents) 72% 71%
Total Gbytes of unique documents 19 17
Smallest file size (bytes) 0 13
Largest file size (bytes) 53,857,877 42,975,450
Mean file size (bytes) 11,740 11,157
Median file size (bytes) 3,504 3,962
Correlation (size and popularity) 0.0 -0.005
Zipf Slope -0.808 -0.834" � 0.992 0.998
Tail index -1.323 -1.326" � 0.980 0.998

behaviours. Rather, it models the aggregate workload as gen-
erated from many clients, and seen at a Web proxy. Further-
more, ProWGen does not model time-of-day effects (i.e., re-
quest arrival times), document types, dynamic content, or docu-
ment modifications. Post-processing scripts can be used to add
such information to a ProWGen workload, if desired, or indeed
to convert a ProWGen workload into a standardized Web proxy
access log format for processing by other tools.

Parameterization of ProWGen can be used to create a wide
range of characteristics in the synthetic workloads produced, or
to produce characteristics similar to those in an empirically ob-
served Web proxy workload. Validation of ProWGen against an
empirical workload is described in the next section.

IV. VALIDATION OF PROWGEN

The purpose of validation is to ensure that the synthetic work-
loads produced by ProWGen have realistic quantitative and
qualitative characteristics. The validation process establishes
confidence in the workload generator and in the statistical prop-
erties of the workloads produced. This task is accomplished in
two stages: (1) verifying that a sample workload produced by
ProWGen has the desired statistical characteristics; and (2) cali-
brating ProWGen to produce workloads that mimic an empirical
workload from a university-level proxy server [32].

Table I provides statistical summaries of the empirical trace
and a sample synthetic trace used for validation. The statistical
characteristics of the generated trace match closely with those
of the empirical trace used.

A “graphical validation” of the synthetic workload is shown
in Figure 1. Figures 1(a) and (b) show the file popularity re-
sults for the empirical trace and the synthetic trace, respectively.
Least-squares linear regression was used to estimate the slope
of the Zipf-like distribution, resulting in 	 � 0 �#� $��%$ for the
empirical trace, and 	 � 0 �&� $%'%(for the synthetic trace. The
corresponding fitted lines are shown on the graph. Figure 1(c)

5

shows the cumulative distributions for file sizes and bytes trans-
ferred, while Figure 1(d) shows the tail behaviour using a log-
log complementary distribution (LLCD) plot. In the latter two
graphs, the results for the empirical trace are shown using solid
lines, while the results for the synthetric trace are shown using
dashed lines. There is thus strong evidence that workloads gen-
erated using ProWGen can match both the body and the tail of
the empirical file size distribution, in addition to the Zipf-like
referencing behaviour.

The next step of the validation process compares the syn-
thetic and empirical traces in terms of caching performance [16].
These experiments (not shown here) establish that the dynamic
LRU stack temporal locality model yields results closer to the
empirical trace results than the static LRU stack model (see Fig-
ure 7(a), for example). The dynamic LRU stack model is thus
used in the experiments.

One interesting observation from the validation experiments
is that the byte hit ratio performance metric for a Web proxy
cache is extremely sensitive to the number of files that fall into
the category of being both very large and very popular. Thus
two workloads generated from the same set of ProWGen param-
eters but with independent random number streams can differ
significantly in the byte hit ratio results, even for lengthy traces.
The document hit ratio results show much less variability. To
ameliorate this problem with byte hit ratio results, an optional
feature was added to ProWGen to limit the maximum popular-
ity of extremely large files, without seriously compromising the
size-popularity correlation model [16]. A good discussion of the
mathematical relationships between hit ratio, byte hit ratio, and
size-popularity correlation is provided in [12].

V. CASE STUDY: SENSITIVITY ANALYSIS FOR A

SINGLE-LEVEL WEB PROXY CACHE

This section describes the experimental methodology used to
investigate the sensitivity of single-level3 proxy cache perfor-
mance to certain workload characteristics (e.g., one-timers, Zipf
slope, heavy-tailed file size distribution, correlation, temporal
locality). Simulation results are presented in Section VI.

A. Simulation Model

The simulation experiments model a single Web proxy server,
as shown in Figure 2. The aggregate workload generated by the
clients is modeled using ProWGen. In the trace-driven simu-
lation, all requests coming from the clients are directed to the
proxy server. When the proxy receives a request from a client,
it checks its cache to see if it has a copy of the requested file.
If there is a copy in its cache, the proxy records a cache hit and
returns the file to the user. Otherwise, the proxy records a cache
miss, obtains a copy of the file directly from the origin Web
server in the simulation, stores a copy of the file in its cache for
future use, and returns a copy to the requesting client. If the
cache is full when a file needs to be stored, then a replacement
decision is triggered to decide which file (or files) to remove.
Note that there are no coherence misses, since file modification
events are not modeled in ProWGen; only static cacheable con-
�
Simulation results for multi-level caching hierarchies are presented in a sep-

arate paper [17].

Web Proxy
Server

Web
Clients

Web
Servers

Fig. 2. Single Web Proxy Server Simulation Model

tent is modeled. Thus only two types of cache misses can oc-
cur: cold misses (first reference to a file), and capacity misses
(a previously referenced file which has been removed from the
cache because of capacity constraints and the replacement pol-
icy used). Each workload used in the experiments has approx-
imately 5 million requests, of which the first 10% are used for
warm-up, prior to collecting cache statistics [16].

B. Factors and Levels

The sensitivity experiments employ a one-factor-at-a-time
methodology, with three main factors: cache size, cache replace-
ment policy, and workload characteristic.

The simulated cache sizes range from 1 MB to 32 GB. The
latter value represents an infinite cache size (i.e., enough cache
space to store all requested files without any replacements) for
the workloads considered, so that the performance of a smaller
cache size could be compared to that of an infinite cache.

Three different cache replacement policies are considered,
namely Least-Recently-Used (LRU), Least-Frequently-Used-
with-Aging (LFU-Aging), and Greedy-Dual-Size (GD-Size),
representing a broad range of possible replacement policies [7],
[19], [32], [47]. LRU is a recency-based policy that orders files
based on recency of use only. When a replacement decision
is required, LRU removes from the cache the file that has not
been referenced for the longest period of time (i.e., Least Re-
cently Used). LFU-Aging is a frequency-based policy that tries
to keep popular documents in the cache. When space is needed
for a new file in the cache, LFU-Aging removes files with the
lowest reference count (i.e., Least Frequently Used). “Aging” is
used periodically to reduce the reference counts of cached doc-
uments, so that formerly popular documents do not clutter the
cache long after their popularity diminishes. GD-Size is a size-
based policy, which tries to keep “small” files in the cache. This
policy, proposed by Cao and Irani [19], associates a value4 �
with each file brought into the cache. Whenever replacement is
needed, the file with the lowest � value, say ���
 � , is selected
for removal, and the � value of all other files in the cache are
reduced by � �
 � . When a cache hit occurs, the � value of the
file is restored to its original value.

Five different Web workload characteristics are studied,
namely one-time referencing, Zipf slope, heavy tail index, cor-
relation between file size and popularity, and temporal locality.
Each characteristic is represented by a controllable parameter
in ProWGen, so that each workload characteristic can be con-
trolled separately from the other characteristics. For each work-
load characteristic under study, ProWGen is used to synthesize
�
In our work, we use ���	��

� , where � is the size of the file.

6

0

1

2

3

4

5

0 1 2 3 4 5 6 7

Lo
g1

0(
P

op
ul

ar
ity

)

Log10(Rank)

Empirical Trace
f(x) = -0.807867 * x + 4.838461

0

1

2

3

4

5

0 1 2 3 4 5 6 7

Lo
g1

0(
P

op
ul

ar
ity

)

Log10(Rank)

Synthetic Trace
f(x) = -0.833727 * x + 4.923530

(a) Popularity ranking for UofS trace (b) Popularity ranking for Synthetic trace

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000 1e+06 1e+07 1e+08

C
um

m
ul

at
iv

e
F

re
qu

en
cy

File Size (Byte)

References (Empirical Trace)
References (Synthetic Trace)

Bytes Transferred (Synthetic Trace)
Bytes Transferred (Empirical Trace)

-7

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6 7 8

Lo
g1

0(
P

[X
 >

 x
])

Log10(File Size (Byte))

Empirical Trace
Synthetic Trace

(c) CDF plot for UofS Trace and Synthetic trace (d) LLCD Plot for UofS Trace and Synthetic trace

Fig. 1. Comparison of Workload Characteristics for Empirical Trace and Synthetic Trace

workloads differing in only that characteristic. Unless stated
otherwise, the workload characteristics in Table I are used as
the default settings for all experiments.

C. Performance Metrics

The two performance metrics used in the sensitivity study are
document hit ratio and byte hit ratio. The document hit ratio is
the number of requests satisfied by the proxy’s cache divided by
the total number of requests seen by the proxy. The byte hit ra-
tio is the volume of data (in bytes) satisfied by the proxy’s cache
divided by the total volume of data requested from the proxy.
Both metrics are required since Web documents can differ dra-
matically in size.

In general, the higher the hit ratio and byte hit ratio are, the
better a replacement policy is. User-perceived latency is not
used as a performance metric, since retrieval latency depends
on many other factors (e.g., cache miss penalty, round-trip time,
link bandwidth, server load, network congestion), in addition to
the document and byte hit ratios.

VI. SIMULATION RESULTS

This section presents the results from the experiments. For
space reasons, we focus primarily on the results for the LRU
policy (as an example of a canonical replacement policy), and
comment upon the differences (if any) observed with other re-
placement policies. Complete results are available in [16].

A. Sensitivity to One-timers

To study the effect of one-timers on cache replacement poli-
cies, two workloads, TraceA1 and TraceA2, were produced
using ProWGen, with 60% and 70% one-timers, respectively.
The performance results for the LRU replacement policy are
shown in Figure 3.

The results in Figure 3 show that the percentage of one-timers
has little impact on the caching performance results. The differ-
ence in document hit ratios and byte hit ratios is negligible at
small cache sizes, and modest (1-4%) at larger cache sizes. The
results for LFU-Aging and GD-Size are similar [16].

Surprisingly, the caching performance is better for TraceA2
(70% one-timers) than for TraceA1 (60% one-timers). The
reason for this behaviour is the higher concentration of refer-
ences in TraceA2. Because each trace (by construction) has
the same number of references and the same number of unique
documents, the traces differ only in how the references are dis-
tributed across the documents. The additional one-timers in
TraceA2mean that the non-one-timer documents in TraceA2
have (on average) more references per document, resulting in
higher concentration of references and better caching perfor-
mance. The same trend is observed as the percentage of one-
timers is varied from 10% to 90% [16].

The same trend applies for all the replacement policies con-
sidered, though LFU-Aging shows the greatest sensitivity to the
number of one-timers [16]. In general, all cache replacement
algorithms studied (even Random and FIFO [16]) are relatively

7

0

10

20

30

40

50

60

70

80

1 4 16 64 256 1024 4096 16384 65536

D
oc

um
en

t H
it

R
at

io

Cache Size (MB)

TraceA2 (70% one-timers)
TraceA1 (60% one-timers)

(a) Document Hit Ratio

0

10

20

30

40

50

60

70

80

1 4 16 64 256 1024 4096 16384 65536

B
yt

e
H

it
R

at
io

Cache Size (MB)

TraceA2 (70% one-timers)
TraceA1 (60% one-timers)

(b) Byte Hit Ratio

Fig. 3. Sensitivity of LRU Policy to One-timers

insensitive to the percentage of one-timers.

B. Sensitivity to Zipf Slope

Three synthetic workloads are used to study the impact of
Zipf-like referencing, with Zipf slopes of 0.60, 0.75, and 0.95.
The caching performance results for the LRU replacement pol-
icy on these workloads are shown in Figure 4.

The results show that as the exponent of the Zipf formula in-
creases, both the document hit ratio and the byte hit ratio in-
crease. The reason for the improved caching performance is
obvious: an increase in concentration of references as the slope
becomes steeper [16]. For example, 60% of the total references
are accounted for by 3% of the busiest documents in TraceB3,
compared to 12% of the busiest documents for TraceB1.

Figure 4 also shows that there is an interesting crossover ef-
fect in the byte hit ratio5 graph (Figure 4(b)), such that a steeper
Zipf slope leads to a worse byte hit ratio for large cache sizes.
This is due to the sensitivity of the byte hit ratio metric to the
number of large and popular files [16]. That is, the flatter Zipf
slope tends to produce more files in this category, since refer-
ences are in general spread across more of the documents (and
hence across more of the large documents). As a result, the byte
hit ratio increases more significantly for the workload with the
flatter Zipf slope, at larger cache sizes.

In summary, an increase in the Zipf slope generally translates
�

The crossover is also weakly evident in the document hit ratio results.

0

10

20

30

40

50

60

70

80

1 4 16 64 256 1024 4096 16384 65536

D
oc

um
en

t H
it

R
at

io

Cache Size (MB)

TraceB3 (Zipf slope = 0.95)
TraceB2 (Zipf slope = 0.75)
TraceB1 (Zipf slope = 0.60)

(a) Document Hit Ratio

0

10

20

30

40

50

60

70

80

1 4 16 64 256 1024 4096 16384 65536

B
yt

e
H

it
R

at
io

Cache Size (MB)

TraceB3 (Zipf slope = 0.95)
TraceB2 (Zipf slope = 0.75)
TraceB1 (Zipf slope = 0.60)

(b) Byte Hit Ratio

Fig. 4. Sensitivity of LRU Policy to Zipf Slope

into better caching performance, except for the crossover effect
for byte hit ratio at large cache sizes. These observations are
consistent across the three replacement policies studied [16].

C. Sensitivity to Pareto Tail Index

The experiments in this section illustrate the sensitivity of re-
placement policies to the Pareto heavy tail index. ProWGen
is used to generate three workloads, with tail index values of
1.2, 1.3, and 1.4 to reflect “heavier” (TraceC1), “medium”
(TraceC2), and “lighter” (TraceC3) heavy-tailed file size
distributions, respectively.

Figure 5 shows the results for the LRU and GD-Size replace-
ment policies on these workloads. In terms of document hit ra-
tios (Figures 5(a) and (b)), the tail index has little impact. The
reasons for this are twofold: (1) the number of files affected by
the tail index parameter is small; and (2) many of these files
are so large (e.g., 10-42 MB) that they do not fit (or stay long)
in the cache, especially at small cache sizes. As the cache size
increases, the impact of the heavy tail index becomes more pro-
nounced, with greater impact on byte hit ratio than on document
hit ratio.

Among the replacement policies considered, the GD-Size
policy shows the least sensitivity to the tail index parameter [16],
in terms of document hit ratio (compare Figures 5(a) and (b)).
This behaviour is not surprising, since the GD-Size policy tends
to evict large files, while keeping small(er) documents in the
cache. However, its bias against large files makes it more sensi-

8

0

20

40

60

80

100

1 4 16 64 256 1024 4096 16384 65536

D
oc

um
en

t H
it

R
at

io

Cache Size (MB)

TraceD1 (Negative Correlation)
TraceD2 (Zero Correlation)

TraceD3 (Positive Correlation)

(a) Document Hit Ratio

0

20

40

60

80

100

1 4 16 64 256 1024 4096 16384 65536

B
yt

e
H

it
R

at
io

Cache Size (MB)

TraceD3 (Positive Correlation)
TraceD2 (Zero Correlation)

TraceD1 (Negative Correlation)

(b) Byte Hit Ratio

Fig. 6. Sensitivity of LRU Policy to Correlation Between File Size and Popu-
larity

tive to the tail index parameter, in terms of byte hit ratio (com-
pare Figures 5(c) and (d)).

In general, all replacement policies studied provide lower hit
ratios and lower byte hit ratios when the heaviness of the tail
increases, but the impact of the tail index is modest compared
to that of the Zipf exponent (at least over the range of parameter
values studied).

D. Sensitivity to Correlation (File Size and Popularity)

The experiment in this section studies the impact of correla-
tion between file size and popularity on the different replace-
ment policies. In particular, traces with strong positive and
strong negative correlation are used, in addition to a trace with
zero correlation. While zero correlation is arguably the most re-
alistic, the other two workloads can establish the sensitivity of
caching results to correlations, if they were present.

The performance results, again for the LRU policy, are shown
in Figure 6. The results show the dramatic impact of the corre-
lation property on the caching performance.

When there is negative correlation, such as in TraceD1,
small files are popular, while large files are not. The result is
that the small files, many of which can fit in the cache, receive
many re-references, producing a high document hit ratio. The
penalty for this success is a poor byte hit ratio, since the large
files (responsible for many of the bytes transferred) are rarely
accommodated in the cache, except at large cache sizes.

On the other hand, in workload TraceD3 with positive cor-
relation, small files have low popularities and large files have
high popularities. It follows that at small cache sizes (say, up
to 256 MB), the observed document hit ratio is poor. Similarly,
the byte hit ratio is poor (say, up to a cache size of 64 MB),
because few of the large files with many references can be ac-
commodated in the cache. The small files that do fit in the cache
are not heavily re-referenced, while the large files with many
re-references compete with each other for cache space. Beyond
some critical cache size, the document hit ratio and byte hit ra-
tio increase sharply, with the byte hit ratio asymptotically ap-
proaching 100% (for TraceD3 only). Again, this reflects the
sensitivity of the byte hit ratio metric to files that are both very
large and very popular.

The results for zero correlation are (as expected) between the
results for positive and negative correlations.

In summary, the presence of correlation between file size and
popularity can have a dramatic impact on caching performance
(at least for the extreme correlation values considered). The re-
sults for LFU-Aging and GD-Size are similar to those presented
for LRU [16].

E. Sensitivity to Temporal Locality

The final experiment uses workloads with two different tem-
poral locality models, to assess the impact on caching perfor-
mance. The first workload (TraceE1) uses the static LRU
stack model, while the second (TraceE2) uses the dynamic
LRU stack model. By design, the two workloads differ only in
the ordering of their references.

Figure 7 shows the performance of the LRU and the LFU-
Aging cache replacement policies. A general observation from
the figure is that all the policies provided higher document hit ra-
tios and byte hit ratios for TraceE1, which arguably has “bet-
ter” (but not necessarily more realistic6) temporal locality.

Another observation from Figure 7 is that the LRU policy is
more sensitive to the degree of temporal locality in the traces
(note the wider vertical gap between the lines for TraceE1 and
TraceE2), while the LFU-Aging policy is less sensitive [16].
These observations are consistent with those reported by Ma-
hanti et al. [32].

In summary, all three replacement policies are sensitive to
temporal locality, with LRU being the most sensitive, followed
by GD-Size and then LFU-Aging. The stronger the temporal
locality, the better the caching performance. The sensitivity is
similar for both document hit ratio and byte hit ratio.

VII. SUMMARY AND CONCLUSIONS

This paper describes the design of a Web proxy workload
generator called ProWGen, and the use of synthetic workloads
in a sensitivity study of single-level proxy caches. Valida-
tion of ProWGen shows that it models and captures the salient
characteristics of empirical workloads. ProWGen provides fast
workload generation, workload reproducibility, and low storage
space requirements. By modeling workload characteristics with
controllable parameters, ProWGen provides the flexibility re-

�

For reference purposes, the cache hit ratio for the empirical UofS trace is also
shown in Figure 7(a).

9

0

10

20

30

40

50

60

70

80

1 4 16 64 256 1024 4096 16384 65536

D
oc

um
en

t H
it

R
at

io

Cache Size (MB)

TraceC3 ("Lighter", tail index = 1.4)
TraceC2 ("Medium", tail index = 1.3)
TraceC1 ("Heavier", tail index = 1.2)

0

10

20

30

40

50

60

70

80

1 4 16 64 256 1024 4096 16384 65536

D
oc

um
en

t H
it

R
at

io

Cache Size (MB)

Trace3 ("Lighter", tail index = 1.4)
Trace2 ("Medium", tail index = 1.3)
Trace1 ("Heavier", tail index = 1.2)

(a) LRU: Document Hit Ratio (b) GD-Size: Document Hit Ratio

0

10

20

30

40

50

60

70

80

1 4 16 64 256 1024 4096 16384 65536

B
yt

e
H

it
R

at
io

Cache Size (MB)

TraceC3 ("Lighter", tail index = 1.4)
TraceC2 ("Medium", tail index = 1.3)
TraceC1 ("Heavier", tail index = 1.2)

0

10

20

30

40

50

60

70

80

1 4 16 64 256 1024 4096 16384 65536

B
yt

e
H

it
R

at
io

Cache Size (MB)

Trace3 ("Lighter", tail index = 1.4)
Trace2 ("Medium", tail index = 1.3)
Trace1 ("Heavier", tail index = 1.2)

(c) LRU: Byte Hit Ratio (d) GD-Size: Byte Hit Ratio

Fig. 5. Sensitivity of LRU and GD-Size Policies to Heavy Tail Index

quired for synthesizing workloads used to study the effect of
workload characteristics on cache replacement policies.

The simulation results show the sensitivity of cache replace-
ment policies to Zipf slope, temporal locality, and correlation
(if any) between file size and popularity, and the relative insen-
sitivity to one-timers and heavy tail index. These results illus-
trate how workload characteristics affect cache performance for
different replacement policies, and can provide insight into the
design of new cache replacement policies.

Ongoing work [17], [48] is using ProWGen for evaluating
multi-level caching hierarchies, and the filtering effects in Web
caching hierarchies. Results to date indicate modest perfor-
mance advantages for using different cache replacement policies
(and even size-based document partitioning strategies) across
different levels of a caching hierarchy.

ACKNOWLEDGEMENTS

An earlier version of this paper appeared at IEEE INFO-
COM’2001. The authors thank Martin Arlitt and the INFOCOM
reviewers for their comments and feedback on an earlier version
of this paper. The Web proxy workload traces used for the devel-
opment, parameterization, and validation of the ProWGen tool
came from an earlier CANARIE-funded project on Web proxy
workload characterization [31]. Greg Oster provided admirable
technical support for the collection, storage, processing, man-
agement, and analysis of these traces.

Financial support for this research was provided by TRLabs

(Telecommunications Research Laboratories) in Saskatoon, and
by NSERC research grant OGP0121969.

The ProWGen tool is available from
http://www.cs.usask.ca/faculty/carey/software/

REFERENCES

[1] G. Abdulla, E. Fox, M. Abrams, and S. Williams, “WWW Proxy Traffic
Characterization with Application to Caching”, Technical Report TR-97-
03, Computer Science Department, Virginia Tech., March 1997.

[2] M. Abrams, C. Standridge, G. Abdulla, S. Williams, and E. Fox, “Caching
Proxies: Limitations and Potentials”, Electronic Proceedings of the Fourth
World-Wide Web Conference, pp. 119-133, Boston, MA, December 1995.

[3] V. Almeida, M. Cesario, R. Fonseca, W. Meira Jr., and C. Murta,
“Analysing the Behavior of a Proxy Server in Light of Regional and Cul-
tural Issues”, Proceedings of the Third International WWW Caching Work-
shop, Manchester, England, June 1998.

[4] V. Almeida, A. Bestavros, M. Crovella, and A. Oliveira, “Characterizing
Reference Locality in the WWW”, Proceedings of the 1996 International
Conference on Parallel and Distributed Information Systems (PDIS’96),
pp. 92-103, December 1996.

[5] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, “Evaluating
Content Management Techniques for Web Proxy Caches”, Second Work-
shop on Internet Server Performance, Atlanta, GA, May 1999.

[6] M. Arlitt and T. Jin, “A Workload Characterization Study of the 1998
World Cup Web Site”, IEEE Network, vol. 14, no. 3, pp. 30-37, May/June
2000.

[7] M. Arlitt and C. Williamson, “Trace-Driven Simulation of Document
Caching Strategies for Internet Web Servers”, Simulation Journal, vol. 68,
no. 1, pp. 23-33, January 1997.

[8] M. Arlitt and C. Williamson, “Internet Web Servers: Workload Character-
ization and Performance Implications”, IEEE/ACM Transactions on Net-
working, vol. 5, no. 5, pp. 631-645, October 1997.

[9] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm, “World-

10

0

10

20

30

40

50

60

70

1 4 16 64 256 1024 4096 16384 65536

H
it

R
at

io

Cache Size (MB)

TraceE1 (Static Stack Model)
TraceE2 (Dynamic Stack Model)

Empirical UofS Proxy Trace

0

10

20

30

40

50

60

70

1 4 16 64 256 1024 4096 16384 65536

D
oc

um
en

t H
it

R
at

io

Cache Size (MB)

TraceE1 (Static Stack Model)
TraceE2 (Dynamic Stack Model)

(a) LRU: Document Hit Ratio (b) LFU-Aging: Document Hit Ratio

0

10

20

30

40

50

60

70

1 4 16 64 256 1024 4096 16384 65536

B
yt

e
H

it
R

at
io

Cache Size (MB)

TraceE1 (Static Stack Model)
TraceE2 (Dynamic Stack Model)

0

10

20

30

40

50

60

70

1 4 16 64 256 1024 4096 16384 65536

B
yt

e
H

it
R

at
io

Cache Size (MB)

TraceE1 (Static Stack Model)
TraceE2 (Dynamic Stack Model)

(c) LRU: Byte Hit Ratio (d) LFU-Aging: Byte Hit Ratio

Fig. 7. Sensitivity of LRU and LFU-Aging Policies to Temporal Locality

Wide Web Caching: The Application Level View of the Internet”, IEEE
Communications, vol. 35, no. 6, pp. 170-178, June 1997.

[10] M. Baentsch, L. Barum, G. Molter, S. Rothkugel, and P. Sturm, “Enhanc-
ing the Web’s Infrastructure: From Caching to Replication”, IEEE Internet
Computing, vol. 1, no. 2, pp. 18-27, March 1997.

[11] P. Barford and M. Crovella, “Generating Representative Web Workloads
for Network and Server Performance Evaluation”, Proceedings of ACM
SIGMETRICS Conference, Madison, WI, pp. 151-160, June 1998.

[12] P. Barford, A. Bestavros, A. Bradley, and M. Crovella, “Changes in Web
Client Access Patterns: Characteristics and Caching Implications”, World
Wide Web, Vol. 2, No. 1, pp. 15-28, January 1999.

[13] A. Bestavros, R. Carter, M. Crovella, C. Cunha, A. Heddaya, and S. Mir-
dad, “Application-Level Document Caching in the Internet”, Proceedings
of the Second International Workshop on Services in Distributed and Net-
worked Environments (SDNE’95), pp. 166-173, Whistler, BC, June 1995.

[14] J. Bolot and P. Hoschka, “Performance Engineering of WWW: Applica-
tions to Dimensioning and Cache Design”, Electronic Proceedings of the
Fifth International World-Wide Web Conference, Paris, France, May, 1996.

[15] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web Caching and
Zipf-like Distributions: Evidence and Implications”, Proceedings of the
IEEE Infocom Conference, New York, NY, pp. 126-134, March 1999.

[16] M. Busari, Simulation Evaluation of Web Caching Hierarchies,
M.Sc. Thesis, Department of Computer Science, University of
Saskatchewan, June 2000.

[17] M. Busari and C. Williamson, “Simulation Evaluation of a Heterogeneous
Web Proxy Caching Hierarchy”, Proceedings of IEEE MASCOTS, pp. 379-
388, Cincinnati, OH, August 2001.

[18] R. Caceres, F. Douglis, A. Feldmann, G. Glass, and M. Rabinovich, “Web
Proxy Caching: The Devil is in the Details”, ACM Performance Evalua-
tion Review, vol. 26, no. 1, pp. 11-15, December 1998.

[19] P. Cao and S. Irani, “Cost-aware WWW Proxy Caching Algorithms”, Pro-
ceedings of the USENIX Symposium on Internet Technologies and Systems,
pp. 193-206, December 1997.

[20] L. Cherkasova and G. Ciardo, “Characterizing Temporal Locality and its
Impact on Web Server Performance”, Proceedings of ICCCN’2000, Las
Vegas, NV, October 2000.

[21] E. Cohen, B. Krishnamurthy, and J. Rexford, “Improving End-to-End Per-
formance of the Web Using Server Volumes and Proxy Filters”, Proceed-
ings of the ACM SIGCOMM Conference, Vancouver, BC, pp. 241-253,
September 1998.

[22] M. Crovella and M. Taqqu, “Estimating the Heavy Tail Index from Scaling
Properties”, Methodology and Computing in Applied Probability, vol. 1,
no. 1, 1999.

[23] M. Crovella and A. Bestavros, “Self-Similarity in World Wide Web Traf-
fic: Evidence and Possible Causes” IEEE/ACM Transactions on Network-
ing, vol. 5, no. 6, pp. 835-846, December 1997.

[24] C. Cunha, A. Bestavros, and M. Crovella, “Characteristics of WWW
Client-based Traces”, Technical Report TR-95-010, Department of Com-
puter Science, Boston University, July 1995.

[25] J. Dilley, “The Effect of Consistency on Cache Response Time”, IEEE
Network, vol. 14, no. 3, pp. 24-28, May/June 2000.

[26] C. Dodge, B. Marx, and H. Pfeiffenberger, “Web Cataloguing Through
Cache Exploitation and Steps Toward Consistency Maintenance”, Pro-
ceedings of the Third International World-Wide Web Conference, April
1995.

[27] B. Duska, D. Marwood, and M. Feeley, “The Measured Access Charac-
teristics of World-Wide Web Client Proxy Caches”, Proceedings of the
USENIX Symposium on Internet Technologies and Systems, pp. 23-35, De-
cember 1997.

[28] S. Jin and A. Bestavros, “Greedy-Dual* Web Caching Algorithms: Ex-
ploiting the Two Sources of Temporal Locality in Web Request Streams”,
Proceedings of the Fifth Web Caching Workshop, Lisbon, Portugal, May
2000.

[29] S. Jin and A. Bestavros, “Sources and Characteristics of Web Temporal
Locality”, Proceedings of MASCOTS’2000, pp. 28-35, San Francisco, CA,
August 2000.

[30] A. Mahanti, Web Proxy Workload Characterization and Model-
ing, M.Sc. Thesis, Department of Computer Science, University of
Saskatchewan, September 1999.

[31] A. Mahanti, C. Williamson, and D. Eager, “Traffic Analysis of a Web
Proxy Caching Hierarchy”, IEEE Network, vol. 14, no. 3, pp. 16-23,
May/June 2000.

11

[32] A. Mahanti, D. Eager, and C. Williamson, “Temporal Locality and its
Impact on Web Proxy Cache Performance”, Performance Evaluation,
Vol. 42, No. 2-3, pp. 187-203, October 2000.

[33] S. Manley, M. Seltzer, and M. Courage, “A Self-Scaling and Self-
Configuring Benchmark for Web Servers”, Proceedings of the ACM SIG-
METRICS Conference, Madison, WI, June 1998.

[34] J. Mogul, “Squeezing More Bits Out of HTTP Caches”, IEEE Network,
vol. 14, no. 3, pp. 6-14, May/June 2000.

[35] D. Mosberger and T. Jin, “httperf: A Tool for Measuring Web Server Per-
formance”, ACM Performance Evaluation Review, Vol. 26, No. 3, pp. 31-
37, December 1998.

[36] D. Neal, “The Harvest Object Cache in New Zealand”, Proceedings of the
Fifth International World-Wide Web Conference, May 1996.

[37] D. Povey and J. Harrison, “A Distributed Internet Cache”, Proceedings
of the 20th Australian Computer Science Conference, Sydney, Australia,
February 1997.

[38] References on Zipf’s Law. Available at
http://linkage.rockefeller.edu/wli/zipf/

[39] L. Rizzo and L. Vicisano, “Replacement Policies for a Proxy Cache”,
Technical Report RN/98/13, Department of Computer Science, University
College London, 1998.

[40] C. Roadknight, I. Marshall, and D. Vearer, “File Popularity Characteri-
zation”, Proceedings of the Second Workshop on Internet Server Perfor-
mance (WISP’99), Atlanta, Georgia, May 1999.

[41] P. Rodriguez, C. Spanner, and E. Biersack, “Web Caching Architectures:
Hierarchical and Distributed Caching”, Proceedings of the Fourth Web
Caching Workshop, San Diego, CA, pp. 37-48, March 1999.

[42] A. Rousskov and V. Soloviev, “On Performance of Caching Proxies”, Pro-
ceedings of the ACM SIGMETRICS Conference, June 1998.

[43] SPECweb99. http://www.spec.org/osg/web99/
[44] J. Spirn, “Distance String Models for Program Behaviour”, IEEE Com-

puter, vol. 9, no. 11, pp. 14-20, November 1976.
[45] WebBench 3.0. http://www.zdnet.com/zdbop/webbench/webbench.html
[46] Webjamma. http://www.cs.vt.edu/ chitra/webjamma.html
[47] S. Williams, M. Abrams, C. Standridge, G. Abdulla, and E. Fox, “Removal

Policies in Network Caches for World-Wide Web Documents”, Proceed-
ings of the ACM SIGCOMM Conference, Stanford, CA, pp. 293-305, Au-
gust 1996.

[48] C. Williamson, “On Filter Effects in Web Caching Hierarchies”, ACM
Transactions on Internet Technology, in press.

