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Abstract 

This paper presents an accurate stochastic model for transfer 
latency of short-lived Web-like TCP flows with random 
packet losses. Our model characterizes a data transfer in 
alternating cycles, with TCP state information carried over 
from one cycle to the next. Simulation experiments show that 
our model matches simulation results for short-lived flows 
better than earlier TCP models, and fits long-lived TCP flows 
as well. Our model is then extended to estimate transfer times 
for CATNIP TCP, which is shown to be 5-42% faster than 
TCP Reno, depending on transfer size and packet loss ratio.  
 

1. Introduction 
Response time is a primary concern for Web users. Users 
are unlikely to wait for a Web page that takes a long time to 
retrieve. However, continued growth in Internet traffic can 
cause congestion problems, leading to delays in Web page 
delivery due to packet loss. The Web, like many other 
Internet applications, uses the Transmission Control 
Protocol (TCP) as its transport layer protocol for reliable 
data transfer. The dynamics of TCP greatly affect Web 
performance (Claffy et al. 1998; Thompson et al. 1997), and 
TCP transfer latency often dominates Web response time. 

Modeling TCP via mathematical analysis provides a way 
to characterize TCP performance quantitatively under 
specific operating conditions. In this paper, we focus on 
modeling short-lived TCP flows, which are representative of 
Web traffic. Measurements (Cunha et al. 1995; Mah, 1997; 
Thompson et al., 1997) show that the average size of TCP 
flows is generally less than 10 Kbytes for non-persistent 
connections, and 26-32 Kbytes with persistent connections.  

Some TCP models for short-lived flows (e.g., Cardwell et 
al., 1998, 2000) are directly extended from TCP steady-state 
throughput analysis (e.g., Padhye et al. 1998). However the 
underlying assumptions of these models may not hold for 
short-lived transfers, since short-lived flows spend most of 
their time in the slow start phase, rather than in the 
congestion avoidance phase like long-lived flows. 

More recent TCP models are derived explicitly for short-
lived flows (e.g., Cardwell, et al., 1998; Heidemann et al. 
1997; Mahdavi, 1997; Partridge & Shepard, 1997). 
However, some of these models (Heidemann et al., 1997; 
Mahdavi, 1997; Partridge & Shepard, 1997) do not consider 
packet losses, which can have a dramatic impact on TCP 
performance. Measurement results (Balakrishnan et al., 
1998; Paxson, 1997) suggest that packet loss rates in the 
Internet can be as high as 5%. The work in (Cardwell et al., 
1998) assumes that a packet loss always triggers a TCP 
timeout, which is overly pessimistic. Short-lived TCP flows 

could recover from losses using fast retransmit (Mathis et 
al., 1997; Padhye et al., 2000) and fast recovery, depending 
on which packet is lost and the congestion window size at 
the time of the loss. In addition, most research in the 
literature ignores subtle features of TCP, such as the timer-
based TCP delayed acknowledgement (ACK) mechanism to 
reduce ACK packet overhead. Since delayed 
acknowledgments complicate matters, most models ignore 
its effects, or use a simple approximation. These 
simplifications inevitably compromise the accuracy of the 
models.   

In this paper, we propose a stochastic model for short-
lived TCP flows with random packet losses. The distinctive 
feature of our model is that we model a data transfer as 
alternating cycles, with TCP state information (e.g., 
congestion window) carried over from one cycle to the next. 
We believe that this “hysteresis” property is essential in 
capturing TCP dynamics effectively. In addition, our model 
includes delayed acknowledgment effects, time-outs, and 
the fast retransmission mechanism. Our simulation 
experiments show that our stochastic model matches the 
simulation results for short-lived flows more accurately than 
earlier models, and fits long-lived TCP flows as well. 

The remainder of this paper is organized as follows. 
Section 2 provides background on TCP and related work on 
modeling TCP response time. Section 3 describes our 
proposed TCP model for short-lived flows. Section 4 
describes the simulation experiments and results. Section 5 
extends our proposed model to CATNIP TCP. Section 6 
concludes the paper.  

2. Background and Related Work 

TCP Overview 
TCP is a connection-oriented transport layer protocol, 
widely used on the Internet. It provides reliable data 
delivery through positive acknowledgement with 
retransmission, as well as flow control to prevent fast 
senders from overloading slow receivers.  

There are two parts in the TCP congestion control 
algorithm, known as slow start and congestion avoidance. 
Successful transmission results in the congestion window 
size (cwnd) growing exponentially up to a threshold value 
(ssthresh), and then linearly thereafter.  

TCP uses packet loss as an implicit signal of network 
congestion. When a packet loss happens, two possible 
events might occur: one is a retransmission time-out (RTO) 
at the sender; the other is the sender receiving duplicate 
ACKs to trigger fast retransmission. For TCP Reno, it 



retransmits the lost packet, and reduces cwnd by half. This 
technique is called fast recovery. 

Another technique widely adopted by TCP 
implementations is delayed ACK. This allows the receiver 
to delay the acknowledgement of a data packet for a short 
period of time - the delayed ACK interval.  

Related Work 
Stochastic models of TCP for short-lived flows can be 
classified into two types: models based on steady-state 
analysis, and models explicitly for short-lived flows. Four 
representative models are described here. 

Padhye Model: Padhye et al. (1998) derived a model 
for the steady-state throughput of a bulk data transfer. 
This model later was used in (Cardwell et al., 1998) as 
the estimate for the bandwidth achieved for short-lived 
flows. By simply adding the cost of connection 
establishment and the expected cost of delayed ACKs, 
the TCP transfer latency for short-lived flows was 
constructed (Cardwell et al., 1998).  
Cardwell-00 Model: Cardwell et al. (2000) provided 
another model for short-lived flows, based on the 
steady-state results in (Padhye et al., 1998). The authors 
decomposed the data transfer into four aspects: the 
initial slow start phase, the resulting packet loss (if 
any), the transfer of any remaining data, and the 
additional expected delay from the delayed ACK timer.  
The throughput of the flow after the first loss was 
estimated using steady-state analysis.   
Cardwell-98 Model: Cardwell et al. (1998) developed 
a more detailed model of short-lived TCP flows. They 
viewed a short-lived TCP flow as an initial connection 
establishment handshake, followed by alternating 
phases of slow start and successive RTOs. The progress 
of a TCP connection is thus considered as a series of 
phases where TCP is sending data, and each sending 
phase is separated from the next by one or more RTOs. 
Fast retransmission is ignored.  
Sikdar Model: Sikdar, Kalyanaraman, & Vastola 
(2001) presented a mathematical model for TCP flows 
of arbitrary size. Their model decomposed the TCP 
transfer latency into three cases: the no loss case, single 
loss case, and multiple loss case. For the window 
increase pattern in the slow start phase, the authors 
introduced the expression 

⎦−+−⎣= 222212 )/(n)/(n packets(n)    (1) 
to approximate the number of packets in the nth round, 
instead of the general exponential increase pattern 
(Cardwell, et al., 2000) 

n packets(n) 5.1=                (2) 
Simulation-based comparisons (Li, 2002) show that TCP 

latency for short-lived flows is roughly logarithmic in the 
size of the data. Among these four models, the Cardwell-00 
model provides more accurate predictions than other 
models. The Sikdar model performs well when the loss 
probability is 1% to 5%. Work in (Li, 2002) also shows that 
for long-lived TCP flows, TCP latency is approximately 

linear with the transfer data size. The explanation is that the 
flows are nearing steady state, where the transfer time is 
well modeled as bandwidthdatat /≈ , for some steady-state 
bandwidth estimate. Models extended from the steady-state 
modeling work, such as the Cardwell-00 and the Padhye 
models, provide reasonable prediction for these scenarios. 

3. A Hysteresis-based Model 

Assumptions 
The proposed model is based on the TCP Reno release from 
Berkeley (Stevens, 1994), which is still prevalent in the 
Internet today (Mathis et al., 1996; Padhye & Floyd, 2001). 
Since we are only concerned about modeling TCP 
performance, we assume that the link speed is high, the 
sender sends full-sized packets whenever the congestion 
window allows, and that the receiver advertises a consistent 
flow control window Wmax. 

We model the dynamics of TCP in terms of “rounds” as 
in (Cardwell et al., 2000; Padhye et al., 2000; Sikdar et al., 
2001). A round starts when the sender sends a window of 
packets, and ends when one or more acknowledgements are 
received for these packets. We assume that the packet loss 
behavior follows the Bernoulli loss model, i.e., packet losses 
in one round are independent of the losses in any other 
round, and losses within a single round are independent. We 
allow packet loss indications by either RTO or triple 
duplicate ACKs.  

We do not explicitly model the congestion avoidance 
algorithm. Rather we assume that cwnd always increases by 
one packet for each ACK (just as in slow start), to make the 
mathematics tractable. As demonstrated by the simulation 
results, this assumption has minimal effects on the accuracy 
of our model. The main reasons are threefold. First, the 
initial slow start threshold is typically set to 64 KB 
(Tanenbaum, 1996). Short-lived flows commence in slow 
start, and rarely reach large cwnd values, so they will spend 
a majority of their time in slow start. Second, TCP enters 
the congestion avoidance phase only when the congestion 
window size is 2 or more (Stevens, 1994). Third, when the 
window size is very small, the increase of the congestion 
window under slow start is similar to that under congestion 
avoidance. 

The effect of delayed acknowledgement is also 
considered. The most common delay occurs whenever TCP 
suffers a packet loss and restarts with a cwnd of 1 packet. 
The receiver waits for a second packet, until finally its 
delayed ACK timer expires and it sends an ACK. In most 
UNIX based systems this timer is set to 200 ms, which leads 
to an expected delay of 100 ms before the ACK for the first 
packet of the flow is sent. 

Model Overview 
We adopt the analysis of connection establishment from 
(Cardwell et al., 2000) as the expected three-way-handshake 
duration, as in (Sikdar et al., 2001). However, in model 
validation, we focus on the data transfer part, and ignore the 



three-way handshake latency. One reason is that the one-
way TCP implementation in the ns-2 network simulator 
does not include the latency for the three-way handshake. 
Simplifying our model makes direct comparison to 
simulation results possible. 

We model the data transfer part as alternating cycles. 
Each cycle includes a slow start phase and a successive 
packet loss phase, except that the last cycle has no packet 
loss phase. Figure 1 shows the evolution over time of the 
congestion window size in our model, where loss 
indications are either by RTO or triple-duplicate ACKs. In 
case of RTO, TCP re-enters slow start with cwnd set to 1 
(e.g., the second loss in Figure 1). In case of triple duplicate 
ACKs, it triggers fast retransmission (e.g., the first loss in 
Figure 1). For this case, TCP reduces cwnd by half and then 
re-enters slow start (exponential increase), rather than 
congestion avoidance (linear increase). 

 

Figure 1:  Congestion window evolution for the proposed 
model. 

 
Let N represent the total packets to transfer initially, and d 

the remaining data to transfer. Initially, d is equal to N. TCP 
begins with the first cycle, where it sends data packets in 
slow start, quickly increasing its congestion window, until it 
detects a packet loss. The congestion window is reset to 1 
(due to RTO) or reduced by half (due to triple duplicate 
ACKs). Then the TCP flow enters the next cycle until all 
data are transferred.  

An important property of the proposed model is that it 
carries over state information (i.e., cwnd and remaining data 
to transfer) from one cycle to the next. This is different from 
regenerative Markov models (Cardwell et al., 2000; Padhye 
et al., 2000; Sikdar et al., 2001). The calculations for the 
slow start phase and the packet loss phase within each cycle 
are described in the following subsections. 

 
The Slow Start Phase We follow the work in (Cardwell et 
al., 2000) to determine the expected latency for the slow 
start phase within each cycle. First, based on the Bernoulli 
packet loss assumption, the expected number of data 
packets sent in the slow start phase before a loss occurs, 
E[dss], can be calculated as: 
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With the exponential congestion window increase pattern 
shown in Equation 2, the number of slow start rounds to 
transfer E[dss] packets of data is: 
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where:  
γ:  congestion window increase factor, equal to 1.5; 
w1: initial window size for the current cycle. It is 

set to 1 for the first cycle. 
E[Wss], the expected window size at the end of slow start 

(ignoring Wmax) is calculated as: 
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Finally, the time to send E[dss] packets of data in slow 
start can be calculated as: 
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  (6) 
After the initial slow start phase, the remaining data to 

transfer is d=N-E[dss]. 
  

The Packet Loss Phase We use an analysis similar to 
(Cardwell et al., 2000) to determine the expected cost of 
packet loss within each cycle. First, the probability that slow 
start ends with a packet loss is: 

   (7) ( )dpssp −−= 11

The probability that TCP detects a packet loss with RTO 
is adopted from (Padhye et al., 2000) as follows: 
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It is a function of packet loss rate (p) and window size 

(w). The expected cost of an RTO is derived in (Padhye et 
al., 2000): 
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where T0 is the average duration of the first timeout in a 
sequence of one or more successive timeouts, and f(p) is 
given by: 

6325164834221)( pppppppf ++++++=      (10) 
The expected duration of a fast recovery period is a single 

round trip time (RTT) (Cardwell et al., 2000). The algorithm 
to calculate the cost for the packet loss phase within each 
cycle is as follows: 

Generate a random number RAND 
If (RAND<=Q(p,w)) 

  Tloss=pss*E[ZTO]       // RTO 
Else  

  Tloss=pss *RTT       // fast retransmit 



We use the above algorithm, rather than a combination of 
weighted loss by RTO and loss by triple duplicate ACKs 
(Cardwell et al., 2000), to model the cost of the packet loss 
phase within each cycle. The reason is based on the choice 
of the initial window size for the next cycle, and 
consideration of the effect of delayed acknowledgements. 
The congestion window is set to 1 packet in the beginning. 
For each cycle, if packet loss triggers a RTO, cwnd is reset 
to 1 for the next cycle to resume slow start. If the packet 
loss is detected with triple duplicate ACKs, the initial 
window for the next cycle is reduced to half of the previous 
congestion window size: 

 ]ssE[Ww ⋅=
2

1
1    (11) 

The expected cost for delayed acknowledgment, Tdelack, is 
added to the latency for the current cycle if slow start 
commences from a window size of 1 for the current cycle. 
This is different from previous work (Cardwell et al., 1998, 
2000; Sikdar, et al., 2001), which simply adds Tdelack as a 
one-time cost in the overall TCP latency. 
 
Total Latency Combining the results of the previous 
subsections, the transfer latency for a flow of N packets is 
the sum of the latencies for all of the alternating cycles: 
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=
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1   (12) 
Note that Equation 12 is a prediction of latency 

experienced by a “typical” flow given the input parameters. 
Because the packet loss case within each cycle is randomly 
determined, Equation 12 does not necessarily yield a closed 
form unique answer. Using the algorithm to sample 
“typical” transfer latencies is necessary to get the expected 
time for a data transfer given the particular parameters.    

4. Simulation Experiments 

Methodology 
We use the ns-2 network simulator for the simulation 
experiments. Figure 2 shows the simple network topology 
used in our experiments. Since there is no competing cross-
traffic, we attached a packet error model to the router R1 to 
create random packet losses. For CATNIP TCP validation, 
we created our own CATNIP Error Model since ns-2 does 
not have a CATNIP loss model built-in. This model drops 
packets of low priority with probability p, and packets of 
high priority with probability . The Bernoulli loss model 
is a special case of the CATNIP error model when

'p
pp =' . 

We use FTP as the application model for sending a specified 
number of packets over a 10 Mbps link. However, we set 
the number of packets in each flow to be representative of 
HTTP Web transfer sizes. 

Each experiment consists of 1000 trials with different 
seeds for the random packet loss generation process. This 
number is adequate to provide a good estimate of the TCP 
latency distribution, and thus the expected latency. In each 
trial, a Reno TCP agent on the server opens a connection 

and immediately begins sending the required amount of 
data. Once the last data packet is acknowledged, the data 
transfer is finished.  

 

 
 

Figure 2:  Simulated network topology 
 
The primary performance metric is the data transfer time, 

by which we mean the time from when the sender sends the 
first packet until the time when the sender receives the 
acknowledgement of the last data packet. The time for 
three-way handshake establishment and teardown are not 
simulated in the Reno TCP agent. Hence, our experiments 
focus only on the data transfer time. 

There are two main factors in our simulation experiments: 
transfer size, and packet loss probability. A one-factor-at-a-
time experiment is conducted using these factors. A 
summary of the experimental design appears in Table 1. 
Only a subset of the simulation results are presented here. 
 

Table 1:  Experimental factors and levels  
 

Factor Levels 
Transfer Size (KB) 1, 4, 8, 16, 32, 50, 64, 90, 

110, 128, 160, 180, 200 

Packet Loss Probability 1%, 3%, 5%, 8%, 10% 
 
Transfer sizes are divided into short-lived TCP flows 

from 1 KB to 50 KB (1 – 36 data packets), and long-lived 
flows from 50 KB to 200 KB (36 – 143 data packets). For 
clarity, we present the results for short-lived and long-lived 
TCP flows separately. The default parameters for 
simulations are based on values that are representative of 
Internet Web traffic: MSS=1433 bytes, 200 ms RTT, 
Wmax=24. The minimum RTO timer is set to 1 second. 
When any successive retransmission timer is set, its timeout 
is set using TCP’s exponential back-off algorithm (Stevens, 
1994). 

Comparison with Previous TCP Models 
Figure 3 compares TCP latencies between our model and 
the Cardwell-00 and Sikdar models for short-lived TCP  
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Figure 3: Simulated and modeled TCP transfer latencies for small transfer sizes.

flows transferring between 1 KB and 50 KB, when packet 
loss probability is 1% and 10%, respectively. Our model fits 
the simulation results closely for these loss probabilities. 
Our model’s prediction values match the simulated values 
better than those obtained by the other models. We further 
compare the relative error (variance) estimation (Law & 
Kelton, 2000) for a given loss probability: 

( )
transfersofNumber

transfers psimulatedTppredictedT
pV

∑ −
=

2)()(
)(  (13) 

where Tpredicted is the predicted value and Tsimulated is the 
simulated value. A smaller error (or variance) implies a 
better model accuracy. Table 2 provides the relative error 
estimation for short-lived flows. It shows that in all cases 
the relative error is less than 10% for our hysteresis model, 
while it often exceeds 10% for the Cardwell-00 model and 
15% for the Sikdar model. 

While our model and the Cardwell-00 model both have an 
initial slow start and packet loss phase, our model improves 
significantly upon the Cardwell-00 model. To estimate the 
time to send any data remaining after the first loss, the 
Cardwell-00 model applies the steady-state throughput 
result from long-lived TCP flows (Padhye et al., 1998). This 
is not a good approximation due to different behavior for 
short-lived TCP flows (Sikdar et al., 2001), and it introduces 
several errors (Cardwell et al., 2000). Our proposed model 
does not use the results from the steady-state model (Padhye 
et al., 1998) for the remaining data. Instead, we apply the 
same mathematics used for the first cycle (including the 
initial slow start and the first packet loss) to the remaining 
data. This is similar to the situation that a typical TCP flow 
suffers with random losses, i.e., the flow periodically 
experiences slow start and successive packet loss. The 
success of our  model comes from TCP state information 
carried over from one cycle to the next.  

Another source of improvement for our model over the 
Cardwell-00 model and other models (Cardwell et al., 1998; 
Sikdar et al., 2001) is the consideration of delayed 
acknowledgements. The Cardwell-00 model simply adds the 
expected cost of delayed ACK, Tdelack, once as one 
component of TCP latency. In our model, Tdelack is naturally 

integrated into the packet loss phase whenever a packet loss 
triggered by RTO resets cwnd to 1 packet. 

 
Table 2:  Relative error comparison of the hysteresis model 

with existing models for short-lived flows. 
 

Model p=1% p=3% p=8% p=10% 
Sikdar 0.15 0.41 0.51 1.06 
Cardwell-00 0.17 0.44 0.10 0.15 
Hysteresis 0.03 0.05 0.05 0.08 

 
Compared with the Sikdar model (Sikdar et al., 2001), our 

model includes not only the effect of round trip time and 
loss probability as given in the Sikdar model, but also the 
factors such as Tdelack, and loss detection by RTOs and triple 
duplicate ACKs. Hence, the proposed model captures the 
dependence of TCP latency on delayed acknowledgements, 
and the cost of loss events triggered by either RTO or triple 
duplicate ACKs.  

We further conducted experiments for long-lived flows as 
shown in Figure 4, with statistical comparison given in 
Table 3. Surprisingly, the results from our model match 
very closely with simulation results, and are a significant 
improvement over the Cardwell-00 and Sikdar models. 
 
Table 3:  Relative error comparison of the hysteresis model 

with existing models for long-lived flows. 
 

Model p=1% p=3% p=8% p=10% 
Sikdar 0.78 1.82 4.75 16.12 
Cardwell-00 0.22 0.47 4.20 22.24 
Hysteresis 0.02 0.09 2.20 8.66 

 
When the loss probability is 10%, our proposed model 

overestimates the transfer latency for long-lived flows, as 
does the Cardwell-00 model. The main reason comes from 
Equation 8, i.e., the probability that a sender detects a 
packet loss with RTO, which we adapted from the steady-
state TCP model analysis in (Padhye et al., 2000). We 
observe that this function is sensitive to the packet loss 
probability. For example, with the packet loss probability of 
10%, about 10 packets are expected to be sent before a 
packet is lost. Assume the congestion window size is 10  
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Figure 4:  Simulated and modeled TCP transfer latencies for large transfer sizes 
 

data packets. When the packet loss probability increases 
from 3% to 10%, the probability that a packet loss is 
detected via RTO increases from 0.39 to 0.57. The smaller 
the congestion window size is, the higher is the probability 
that a packet loss requires an RTO. Thus, for a transfer of 92 
data packets when the packet loss probability is 10% (the 
expected number of losses is 9.2), all the losses are expected 
to be detected via RTO. This adds a lot of time to the data 
transfer time in the model, but is not the case for 
simulations. 

5. Extension to CATNIP TCP 
In this section, we demonstrate the generality of our TCP 
model by extending it to model CATNIP TCP. Recently, 
Wu and Williamson (2002) proposed CATNIP TCP, a 
Context-Aware Transport/Network Internet Protocol for the 
Web. CATNIP TCP classifies packets in a transfer into two 
categories (high priority and low priority) based on their 
potential impact on TCP response time when lost. CATNIP 
TCP allows network routers to use this priority information 
to make smarter packet-discard decisions when congested, 
rather than using (for example) Drop-Tail (Padhye et al., 
2000) or Random Early Detection (RED) (Mah, 1997) as a 
queue management strategy. 

Extending the Model to Partial CATNIP TCP 
Due to the difficulty of modeling the TCP congestion 
window dynamics for a target packet loss probability, we 
approximate CATNIP TCP by considering only the first 3 
and last 3 packets as high priority packets. That is, we 
ignore the high priority marking of any intermediate packets 
sent when . With this pessimistic assumption, our 
stochastic model is easily extended to CATNIP TCP. 
Assume that there are N packets to transfer. The packet loss 
probability for any of the high priority packets is , and 
the loss probability of any other packets is , where 

. Considering that each packet loss is independent of 

sender behavior, the modeling work can be decomposed into 
three steps: 

3≤cwnd

'p
p

pp ≤'

1. Transfer the first 3 packets. 
2. Transfer the N-6 packets assuming there are N-3 

packets to transfer. 
3. Transfer the last 3 packets. 

Note that for step 2, we count the time to transfer N-6 
packets with the total number of packets to transfer as N-3, 
rather than N-6. Otherwise, Equation 3 in the model 
generates fewer data packets than expected to be sent in the 
slow start phase before a loss occurs for each cycle. This 
forces more cycles to complete a data transfer, and thus 
overestimates the transfer latency. Also for step 3, the initial 
congestion window size, w1, can be calculated based on the 
value of E[Wss] at the end of last round when transferring 
the N-6 packets, as . If we consider the 
limitation of the maximum congestion window size, there 
are restrictions on w

γ⋅= ][1 ssWEw

1 as follows: 
if , . max1 Ww ≥ max1 Ww =

if , . 0.21 <w 0.21 =w

By applying the new model to each step and summing the 
latencies, we obtain the expected transfer latency for the 
entire transfer. The above approach to model CATNIP TCP 
is referred to as the Partial CATNIP TCP model, because it 
does not consider any intermediate high priority packets 
sent when 3≤cwnd . The differences between Partial 
CATNIP TCP and CATNIP TCP are compared in 
simulation experiments. 

Comparison between CATNIP TCP and Partial 
CATNIP TCP 
Figure 5 compares the frequency distribution and 
cumulative distribution of transfer times between CATNIP 
TCP and Partial CATNIP TCP for a short-lived flow 
transferring 32 KB when the packet loss probability is 5%.  
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Figure 5:  Comparison between CATNIP & Partial CATNIP for 32 KB data transfers 
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Figure 6:  Simulated and modeled transfer latencies of short-lived flows for Partial CATNIP 
 

The transfer time distributions of CATNIP TCP and 
Partial CATNIP TCP are almost the same. This is because 
the expected number of losses (congestion window decrease 
events) is about 1, and thus the number of packets sent when 

 (except the first 3 and last 3 packets) is small. So 
the difference between CATNIP TCP and Partial CATNIP 
TCP is not apparent. 

3≤cwnd

Performance Evaluation for Partial CATNIP TCP 
Figures 6 shows the simulated transfer latencies for short-
lived flows when the loss probability p for low priority 
packets is 1% and 10%, and the loss probability  for high 
priority packets is 0%.  This is the best possible case for 
Partial CATNIP TCP. Obviously, Partial CATNIP TCP 
improves the TCP latencies compared to TCP Reno. When 
the data transfer size increases from 6 to 36 data packets, the 
ratio of the number of high priority packets over the total 
number of packets in a transfer decreases from 100% to 

17%. Correspondingly, the transfer time of Partial CATNIP 
TCP is less than that of TCP Reno when p is set at 1% and 
10%, and the difference ranges by 5-32% and 20-42%, 
respectively. Thus, we can conclude that Partial CATNIP 
TCP is 5-42% faster than TCP Reno, depending on the 
transfer size and the packet loss ratio. 

'p

To evaluate the Partial CATNIP TCP model, the 
predicted transfer latencies are also plotted in Figure 6. 
Regardless of the loss probability p, the Partial CATNIP 
TCP model fits the simulation closely. Partial CATNIP TCP 
model provides relative error less than 22%. 

6. Summary 
In this paper, we propose an accurate TCP latency model for 
short-lived TCP flows with random packet loss, which 
reflect current TCP transfers carrying Web traffic. We 
model a data transfer as alternating cycles, with TCP state 
information (i.e., congestion window size and remaining 



 

data to transfer) carried over from one cycle to the next. 
This is different from previous Markov regenerative models. 
Simulation results using the ns-2 simulator show that our 
model fits the simulated values closely for a wide range of 
packet loss probabilities, performing better than previous 
models.  Simulation results also show close agreement for 
long-lived TCP transfers. 

We also extended our model to Partial CATNIP TCP. 
Partial CATNIP TCP is different from CATNIP TCP in that 
it does not consider as high-priority intermediate packets of 
the flow sent when . Simulation experiments and 
statistical analysis indicate that the transfer times of Partial 
CATNIP TCP are within 15% of those of CATNIP TCP. 
The validation experiments demonstrate that the Partial 
CATNIP TCP model fits the simulation closely. 

3≤cwnd

In addition, performance comparisons between Partial 
CATNIP TCP and TCP Reno demonstrate that for short-
lived flows, Partial CATNIP TCP is 5-42% faster than TCP 
Reno when packet loss probability is less than 10%. This 
shows that CATNIP TCP is a suitable approach to improve 
TCP performance. The results provide further insight into 
CATNIP TCP performance.  
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