The Tale of the Weather Worm

Joe Szabo, John Aycock, Randal Acton, and Jorg Denzinger
Department of Computer Science, University of Calgary
2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4

{szaboj,aycock,acton,denzingel@cpsc.ucalgary.ca

ABSTRACT

How humans behave when faced with a disaster, natural or
man-made, can be exploited automatically by news-aware
malicious software. We introduce weather worms, worms
that can automatically identify abnormal events and their
location, and target computers at that physical location.
Such worms could be used to take advantage of poorly-
defended computers in a disaster zone, and could amplify
the effects of a physical attack. Defenses against weather
worms require examination of policy and presentation of in-
formation on the Internet.

Categories and Subject Descriptors

D.4.6 [Operating Systems]|: Security and Protection—in-
vasive software; K.4.1 [Computers and Society]|: Pub-
lic Policy Issues—human safety; K.6.5 [Management of
Computing and Information Systems|: Security and
Protection—invasive software

General Terms

Security, Human Factors

Keywords

network security, worms, emergencies, disasters, geoloca-
tion, information policy

1. INTRODUCTION

The role that humans play in computer security is well-
known. Humans are frequently touted as the weakest link
in security, and there are always risks of insider attacks,
social engineering, and misconfigured and unpatched ma-
chines leading to vulnerabilities. These risks result from the
behavior of individual humans.

What is not well-known is the effect of large-scale human
behavior on security, behavior that large groups of people
naturally exhibit at the same time. In previous work, we

Permission to make digital or hard copies of all or part of this work for

examined how worldwide combinations of normal business
hours and public holidays could yield large windows of vul-
nerability [8]. This idea can be extended further, as people
are also distracted en masse by abnormal events like severe
weather.

For example, a blizzard could occur in a location which
is ill-prepared to deal with one — a blizzard in New York
might have the effect of forcing people to stay home for
several days. By staying home, people who are normally
on-site, maintaining and patching corporate computers may
be less able to do so, and their ability to respond to an
attack may be limited as well. Other events might have
similar effects; tornadoes, tsunamis, earthquakes, riots, and
even transit strikes could result in similar circumstances, ei-
ther directly by preventing access to computers or indirectly
by providing considerable distraction. More sinister is the
threat of terrorism, where a physical attack is accompanied
by a virtual attack, automatically targeting computers in
the affected area.

Obviously these attacks would not always be feasible. For
example, a severe weather event may cut power and com-
munications to potential targets (although some large data
centers may have their own power sources). This is also rec-
ognized in military operations, where a physical attack de-
stroys the infrastructure required to conduct electronic war-
fare [10]. However, relying on the loss of power and commu-
nications as a defense is hardly prudent, and the possibility
of the attacks we describe must be considered seriously.

In this paper, we present weather worms, worms which
are able to automatically detect disruptive events like severe
weather, and locate and attack computers in the region. The
novel parts of a weather worm, which are not malicious by
themselves, have been tested as proofs of concept.

We stress that even though we use weather as a running
example, the worm mechanism we describe is not limited to
this scenario. Any abnormal event that affects humans can
be automatically targeted, a vital point because an effective
response to an public emergency relies on communication.
A worm attacking already-stressed infrastructure would only
add to the havoc, especially as our dependence on the Inter-
net increases, such as VoIP phone services. While these sorts
of attacks could be performed manually, the automation we
demonstrate allows the attacker to be separated from the

personal or classroom use is granted without fee provided that copies areattack itself — in some ways, it is a sophisticated form of
not made or distributed for profit or commercial advantage and that copies 4 logic bomb. The automation is also a logical step in the

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
SAC’08March 16-20, 2008, Fortaleza, CéaBrazil
Copyright 2008 ACM 978-1-59593-753-7/08/00085.00.

progression of software tools, both legitimate and malicious,
which in the case of a worm makes the technology increas-
ingly available to “script kiddies.”



Sections 2 and 3 discuss weather worm implementation
and defense, respectively. Related work is discussed in Sec-
tion 4; Section 5 concludes.

2. WEATHER WORMS

A “traditional” worm can be thought of as having four
main components: target identification (often called scan-
ning), target infection, trigger, and payload. A weather
worm is a variant of a traditional worm, which may manifest
itself in two main ways:

Event-based target identification. After its initial seed-
ing, a weather worm would not spread further, but wait for
a major event to occur. Once a major event happened, the
weather worm would try to infect machines geographically-
located in the affected area. This type of weather worm

would try to take advantage of machines being less-maintained

while people are distracted by an abnormal event.

Event-based trigger. A weather worm could identify and
infect targets through normal means; infected machines would
look for a major event to trigger the payload. The pay-
load itself, possibly a DDoS attack, would be focused on
machines in the geographic area where the major event oc-
curred. Weather worms of this type would be trying to add
to the confusion of a major event by disrupting Internet
traffic in the region. As a special case, one specific physical
location (e.g., a world capital) could be targeted by looking
for an event only in that location. DDoS attacks like the
recent ones in Estonia [23] could be launched automatically
by weather worms looking for rioting events.

It is important to note the distinction between weather
worms and malware like Small. DAM, a.k.a. Storm Worm [7].
In Small. DAM, manually-constructed email subject lines,
one even related to a severe storm in Europe [19], are used to
entice users to run a malicious email attachment. A weather
worm, in contrast, automatically identifies important news
events and their location, and automatically finds targets at
the location to attack.

There are two novel technical aspects to a weather worm.
First, Internet information sources are used to identify events
and locations, resulting in what we call news-aware mali-
cious software. Second, IP addresses of potential targets in
a given location are found through a process we call inverse
geolocation. In both cases, we have looked for lightweight
solutions that might be used by a worm author, which gives
us some insight into the possible scope of such a threat and
effective defenses. This section discusses these lightweight
solutions in detail.

2.1 ldentifying Events and Locations

The Internet offers a plethora of data sources that might
be useful for identifying events and locations, though not
all sources are suitable for this particular task. If we take
weather as an example, depending on the location, the same
two weather events may have a drastically different impact.
A blizzard can be a regular occurrence in northern Canada,
and the event would have far less impact than the same bliz-
zard occurring in New York. While online weather sources
would report both events, news sources would only choose to
report the more significant of the two, making news services
a better source for this particular application. In addition,
using multiple news sources allows measurement of the im-
portance of a particular event. A large number of news

sources reporting on the same event might indicate that the
event in question is actually very important and could pos-
sibly impact a large number of people. News sources also
permit the identification of events to extend beyond weather.
We see malicious software that makes use of news sources,
i.e., news-aware malicious software, as a potential threat to
computer security.

In general, our problem of event identification and loca-
tion is an information retrieval application (see [13]). For
our purposes, information retrieval is an area that tries to
achieve some limited understanding of (English) texts with-
out doing any real natural language processing. In the fol-
lowing, we describe a system that uses only straightforward
instantiations of information retrieval techniques that are
easy to implement. While these instantiations come with
known problems, more sophisticated techniques that do not
suffer from these problems may require more heavyweight
implementations.

Our prototype system, NewsWatcher, requires input from
three separate files: a “seed” URL list, an event list, and
a location list containing city names. The seed URL list
specifies starting URLs where NewsWatcher can begin its
news search.! The event list provides event names for the
system to search for, and match to locations provided in the
location list.

2.1.1 URL Processing

NewsWatcher operates by processing a queue of URLs.
Initially, the queue consists of the seed URLs. Each URL in
the queue is processed in three steps:

Step 1: downloading. The URL content is downloaded,
but only if the content size is under 150 K; this prevents
NewsWatcher from downloading large media files instead of
web pages. HTML metadata is discarded, because it was
found to list many event types that would otherwise cause
false matches.

Step 2: link detection. Each HTML page is scanned
for links to add to the URL queue. Some links are ig-
nored outright, like self-referencing URLs and URLs that
use JavaScript. URLs are also ignored that have already
been seen by NewsWatcher.

Subject to these constraints, NewsWatcher traverses all
links found on the seed URL pages. Links on subsequent
pages are only followed if the (human-readable) URL link
text contains an event name. This allows traversing a sec-
ond level of links, but only when the link appears to be of
interest.

At no time does NewsWatcher follow more than two levels
of links from a seed URL, and may only traverse one level
deep. This happens for two reasons. First, important news
stories will not be buried in a news website. Second, our
experiments showed that regularly traversing beyond one
level of links yielded an unmanageably large number of new
URLs.

Step 3: event searching. The HTML page is searched
for all events provided in the event list. If an event is found

'RSS feeds from news sources could be used similarly, but
would present the same problems identifying events and
their locations; we thus omit further mention of RSS with-
out loss of generality. Also, some news sources’ RSS feeds
(e.g., cnn.com) regularly include the news headline but no
article content, so a web page fetch would be needed anyway.



in the page, NewsWatcher defines a search field around that
event name, 100 characters on each side, in which it searches
for any matching location names. If periods are found within
the search field on either side of the event name, then the
search field is truncated, because we only want to examine
the sentence in which the event name is found. A location
found in the search field causes the event and its location to
be stored for later output.

Once these steps are complete, the URL is fully processed,
and NewsWatcher continues onto the next queued URL until
the queue is empty.

2.1.2 Problems

Several problems were identified during the design and
development of NewsWatcher.

Problem 1. How is the system to discern whether a news
story is reporting an event that is currently happening, or
that had occurred a year earlier (i.e., a retrospective anniver-
sary)?

This issue was mostly addressed by ignoring event matches
whose corresponding search field were found to contain the
words “ago” or “anniversary.” Further problems of this na-
ture were also averted by ignoring URLs that contained the
string “archive.” This problem is difficult to overcome en-
tirely, as some news stories reference prior events while re-
porting current events.

Problem 2. In cases such as hurricanes, where news ser-
vices are able to report the event long prior to it actually
occurring, will it be possible to distinguish between event
buildup and the event itself ?

Over the course of an event, we found that the output
from the prototype can be used to identify event buildup
and cool-down periods. Events that started with one or two
URL matches would have many more URL matches in later
runs. Later still, there would again be few URL matches for
the event.

This can be partially addressed using thresholds (Sec-
tion 2.1.3). Without examining web pages for event occur-
rence times and dates, it may not be generally possible to
identify such periods in single runs of NewsWatcher without
jeopardizing its lightweight nature.

Problem 3. Name confusion has to be accounted for. The
system must be able to discern whether names found in news
stories such as the Carolina Hurricanes or Calgary Flames
(both professional hockey teams) are actually events.

An easy solution is to require an exact match with the
names in the event list and to avoid the use of event names
like “Hurricanes” or “Flames.”

Problem 4. The system must be as small and lightweight
as possible, to compare meaningfully to one that might be
bundled in the (small) package of a worm.

The set of input files for NewsWatcher contains 6416 lo-
cation names, 38 event names, and 24 starting URLs. The
total size of these text files is under 64 K, 29 K if compressed.
The size can be reduced further by having fewer locations
in the location list; in any case the size is insignificant.

Problem 5. Events can span many degrees of severity. Is it
possible for the system to be able to determine if an event is
still in its infancy, or if an event is too great that all comput-
ers in the corresponding location would be either destroyed

or unable to infect because of the extreme circumstances? In
both cases, having the event reported would be of little use.

This problem is very similar to that of identifying event
buildup and cool-down periods and those observations also
apply here.

To further address the issue, some modifications to News-
Watcher could be made. It is possible to have an additional
input list containing “blacklist” events. Finding a black-
listed event would cause any other event matches in the
search field to be ignored.

Suppose “volcano erupted” was contained in the event
list and “buildings destroyed by lava” was contained in the
event blacklist. If a news article read “the volcano erupted
on Tuesday, and the resulting devastation left hundreds of
buildings destroyed by lava,” the “volcano” event would be
ignored. Similarly, if “hurricane” was in the event list and
“expected to arrive” were in the event blacklist, no events
would be matched in the text “hurricane Bob is expected to
arrive next week.”

Problem 6. Some event names are also names of certain
objects, and in some contexts it can be impossible to distin-
guish between actual events and other non-related reports.

Problem 7. Some event names can be used to metaphori-
cally describe totally unrelated events.

The last two problems have been encountered during test-
ing. Consider this actual news headline:

‘War games: Tornado jets zoom out of Calgary
as British troops train for combat’ [6]

from which NewsWatcher identifies the event “Tornado” at
location “Calgary,” and

‘Tuesday’s electoral earthquake triggered an equally
seismic reaction in Washington yesterday, ...’ [3]

mistakenly finds an “earthquake” in “Washington.”

Though a possible solution might involve an event black-
list (blacklisting “jets” would have prevented the first prob-
lem), it might be necessary to use more complicated sentence
or pattern recognition techniques from information retrieval
(see [13]). As for metaphors, even relatively recent work in
computational linguistics ‘is far from being able to recognize
metaphoric language in general’ [14, p. 43].

2.1.3 Interpreting NewsWatcher Output

NewsWatcher’s output is a list of triples, abstractly speak-
ing, where each triple identifies an event, a location, and the
number of URLs the match was found at. How should this
output be interpreted?

If a greater number of event matches are desired, at the
expense of some incorrect matches, the most straightfor-
ward interpretation of the output is to simply regard the
events reported as correct and target all of the locations
listed in the output. Unfortunately, NewsWatcher is not ac-
curate enough to allow its output to be safely regarded in
this way. For example, “violence in Washington” showed up
frequently, but these were news articles reporting on people
in Washington discussing violence elsewhere in the world.

While some incorrect matches can be tolerated, it is gen-
erally the case that very few URL matches for an event im-
plies the event itself is either not very important, or is not
an actual event and may have been erroneously detected.

To address this problem, a threshold value can be selected:
only the events having a number of URLs higher than the



Table 1: Top three events by URLs matched

Event Location # URLs
Slow tornado Carolina 17
news violence Baghdad 16
day floods Kabul 11
Moderate flooding Nairobi 38
news violence Washington 21
day violence Baghdad 19
Busy fires Oaxaca 60
news violence Baghdad 36
day violence ‘Washington 25

threshold value would be considered correct. Choosing a
single, static threshold value is difficult, though, because
there is a normal variation in news volumes. Intuitively,
this can be thought of as how “busy” the news day is.

Table 1 illustrates the difference in terms of the number
of URLs reported. A static threshold of 12 would eliminate
much of the noise regardless of news volume. Unfortunately,
a static threshold might result in very few event matches and
might actually filter out wanted data. Using the “slow news
day” as an example, a threshold of 12 eliminates the “floods
for location Kabul” event (because only 11 URLs were found
reporting the event), whereas this event is detected correctly
and is potentially of interest.

An alternative to using a static threshold is implementing
a dynamic threshold with respect to the output, such as only
using the top k triples with the largest number of URLs.
Again, this has problems, because even the most-reported
events on a slow news day are probably not cataclysmic
enough to result in the human distraction the weather worm
tries to take advantage of.

We conjecture that the likeliest implementation would use
a combination of static and dynamic thresholds. A static
threshold would help filter spurious matches and weed out
correctly-detected but minor events; this would probably be
no lower than 50 URLs. A dynamic threshold would pick
out the top remaining major events, if any. Invariably some
tuning of the static threshold would be necessary.

NewsWatcher clearly demonstrates that it is possible to
detect news events and their locations in a lightweight fash-
ion. While its detection is not perfect, malware does not
need to operate with complete precision, and we conclude
that this aspect of a weather worm is technically feasible.

2.2 Inverse Geolocation

By identifying events and locations, a worm author could
build an automated version of the “Storm Worm” [7]. No
need to manually distribute worm variants with new, en-
ticing headlines: the worm itself would identify important
headlines and modify its infectious emails accordingly. In-
deed, this is a possible next step in worm evolution.

The situation is worse, however, if a full weather worm
is developed. This would allow worm activity to be tar-
geted to an event-affected region using information that is
already available to worm authors. We have published this
work elsewhere [1], but we summarize the results here for
completeness.

Geolocation is the process of mapping an IP address into a
physical location. We refer to the inverse process as inverse
geolocation: mapping a physical location into IP addresses.

In terms of a weather worm, when an event is detected and
located, what are the IP addresses of potential targets?

There are two main ways we have demonstrated that in-
verse geolocation is possible:

1. A database intended for geolocation was transformed
for inverse geolocation. By permitting small errors
(which would be acceptable for malware), and limiting
the locations to cities with over 1 M people, our inverse
geolocation database was just over 700 K compressed.

2. Large lists of IP addresses for specified locations were
produced using well-known Internet services: a search
engine and the whois database.

Using either approach, a weather worm could build a list of
potential targets in a relatively lightweight fashion. We con-
clude that this aspect of a weather worm is also technically
feasible.

3. WEATHER WORM DEFENSES

There are four primary avenues to consider for defend-
ing against weather worms and other news-aware malicious
software.

First, there is the usual suspect. Assuming a weather
worm sample had been acquired, anti-virus software is prob-
ably the only defense common enough to eradicate an estab-
lished weather worm prior to it triggering.

In the event of a highly-targeted attack by news-aware
malicious software, such as coordinating virtual and physical
terrorist attacks, capturing a sample before the triggering
event may be critical. A sample may reveal the site of a
planned physical terrorist attack by virtue of an unusually-
short location list, allowing proper precautions to be taken.

Second, reliance on human maintenance of computers must
be reduced. For example, automatic patching of machines
might be considered [24]. Normally this is suggested because
of concern over worms which spread extremely quickly, like
“flash worms” [22, 21]; humans are unable to react to such
worms in time. The weather worm concept suggests that
less reliance on humans is good not because humans can’t
react in time, but because they can be distracted by a ma-
jor event and rank other priorities (e.g., family, personal
survival) more highly then computer security.

Third, the weather worm can be prevented from gather-
ing the information it needs to operate. The weather worm
primarily draws upon news web sites; HT'TP access is ex-
tremely unlikely to be blocked, and there are no telltale
search engine queries to detect and block either, so any de-
fense has to be from the information source itself.

Information sources can be blocked from fully-automated
use. This is currently accomplished using CAPTCHAs [25],
tests which are easy for a human to solve but hard for a
computer to solve, in theory. But use of CAPTCHAs for
accessing news websites would be incredibly annoying and
would break legitimate automatic news programs, so we do
not see CAPTCHASs being an effective defense.

The results from information sources can be made harder
to interpret automatically. As Section 2.1 alluded to, the
current version of NewsWatcher has limitations that render
it ineffective against web pages having any of the following
characteristics:

e The page identifies event and location names in sepa-
rate sentences, or at least 200 characters apart.



e The page contents are greater than 150 K in size (larger
files are ignored by NewsWatcher).

e Event or location names are spelled with spacesin
them, or spelled incorrectly.

These are defenses that exploit specific, known aspects of
NewsWatcher. To defend against news-aware malicious soft-
ware in general, as a news source, the following techniques
can be useful:

e Using frames to display the event and location names
from distinct HTML source pages.

e Displaying data in a non-text form, representing events
and locations using image files or Flash.

e Using any form of HTML obfuscation [9].

e Changing the words and phrases used to describe events,
and using more ambiguous words and metaphor.

But all these techniques come with costs and there is al-
ready known research in information retrieval that can make
the techniques useless. The first three general techniques re-
sult in news pages that are larger, thus putting more strain
on networks. In addition, they make it more difficult for
the human user to use tools that help with the classification
of news for non-malicious purposes. This is also true for
the fourth general technique, which might make it difficult
for the user to understand the information easily. In fact,
a common expectation of human users is to get news in a
concise, clear, and easy-to-understand form from news web
sites.

Technical and usability considerations aside, there is cur-
rently no compelling business reason for news sources to
alter their output to be hostile to weather worms. We there-
fore would not rely on this as a defensive measure in practice.

The fourth and final avenue of defense is on the side of
the targeted computers. Countermeasures must include the
possibility of a news-aware attack in the emergency plans
that people, businesses, and other organizations have. If it
is not possible to shut down the machines during the period
of an emergency then the following measures could be taken:

e Transfer necessary offered services to better supervised
computers in unaffected areas.

e Arrange for intensified remote supervision of the com-
puters in the emergency area.

e Use stricter security policies for the duration of the
emergency that might deny some legitimate requests
but block the attack or its effects.

A thorough disaster recovery plan should require little change
to adapt to news-aware malicious software attacks. The key
realization is simply that such attacks are possible, and to
be prepared for them.

4. RELATED WORK

The related work can be divided into three parts. We
discuss work related to NewsWatcher and the overall idea
of weather worms in this section; work related to inverse
geolocation may be found in [1].

4.1 NewsWatcher-Related Work

NewsWatcher can be viewed as performing very simpli-
fied web crawling, related to Internet search engines like
Google (see [4]). NewsWatcher can also be seen as com-
puting a crude news summary, and [16] provides users with
summaries of news articles.

NewsWatcher achieves the coordination of a group of mali-
cious programs by having them process the same news infor-
mation. The potential of using the Internet for coordinating
software was suggested in [12]. NewsWatcher adds to this
by not requiring precisely-defined event descriptions, essen-
tially using event types and being opportunistic in its target
selection. That communication between programs can be
avoided if the programs share the exact same information
about their (perceived) environment and use the same deci-
sion making algorithms was pointed out in [18].

Several techniques have been previously suggested for iden-
tifying real-world locations referred to by documents, includ-
ing web pages. Special attention is paid to resolve place
name “disambiguation” [27]: resolving the difference be-
tween ambiguous place names such as the city named Bat-
man in Turkey, or the Batman comic-book character. This
is also referred to as geo/non-geo ambiguity [2]. To further
complicate the problem, one must also address geo/geo am-
biguity, or the ambiguity caused by different places sharing
the same name. Another closely related issue is ‘the problem
of indexing and navigation of web resources by geospatial
criteria,” [15, p. 221] and the problem of location aliasing
(for example, L.A. instead of Los Angeles).

NewsWatcher’s lightweight approach precludes carrying
the amount of data or performing the level of computation
required by other proposed solutions. The NewsWatcher
prototype location list contains only locations having large
populations, which removes most ambiguous location names.
Beyond that, we found that the best way to address am-
biguity was to manually remove offending location names,
making these locations immune to NewsWatcher.

The problem of geo/geo ambiguity is ignored completely;
NewsWatcher is concerned with gathering location names,
and not the actual whereabouts of the location in question.
The location aliasing problem rarely occurs on news web
sites; during prototype testing, news sites that were encoun-
tered always tended to use the full location names (although
state names were commonly abbreviated).

4.2 Weather Worm-Related Work

Byers et al. describe a specific attack scenario through/on
the physical postal service, launched from the Internet us-
ing publicly-available information [5]. Although they do not
cause a direct physical effect, weather worms are an exam-
ple of an attack using publicly-available information, which
can focus on Internet-only targets, or amplify the effect of
preexisting physical events.

HTML obfuscation is of course well-known to spammers [20].
Using HTML obfuscation and CAPTCHASs as a defense has
been suggested previously [5, 12], although we doubt their
overall usefulness against weather worms.

The abuse of search engines and the information they pro-
vide was pointed out by Byers et al. [5]. Weaver et al.’s worm
taxonomy noted the possibility of using search engines to
identify vulnerable targets [26], an idea expanded upon by
Provos et al.’s “search worms” [17]. We know of only one
example of this occurring in the wild: Santy [11]. However,



Santy and the previous work deals with searching for targets
exploitable using some specific vulnerability.

While worm activation through human activity has been
mentioned [26], the activities noted were those of individual
humans. The only work on large-scale human behavior we
know of is our own [§].

5. CONCLUSION

The weather worm shows that news-aware malicious soft-
ware is possible: software that automatically notes a major
event, identifies the location, and finds targets at the physi-
cal location of the event. Human behavior, the mass distrac-
tion of a major event, might thus be exploited maliciously.

While defenses, both specific and general, can be deployed
by information providers, it is unlikely that they will be
deployed unless news-aware malware becomes a frequent
threat. Instead, the onus is on public- and private-sector
organizations — potential targets — to incorporate counter-
measures into their disaster plans.

Generally, we are forced to conjecture that any informa-
tion provided for legitimate purposes can be used for mali-
cious purposes. The very information and infrastructure we
rely upon as a society is the information and infrastructure
through which society can be attacked.

6. ACKNOWLEDGMENTS

The second author’s research is supported in part by a
grant from the Natural Sciences and Engineering Research
Council of Canada. Nathan Friess performed the inverse
geolocation database experiments.

7. REFERENCES

[1] R. Acton, N. Friess, and J. Aycock. Inverse
geolocation: Worms with a sense of direction. In
Malware ’07, pages 487-493, 2007.

[2] E. Amitay, N. Har’El, R. Sivan, and A. Soffer.
Web-a-where: geotagging web content. In Proceedings
of the 27th Annual International ACM SIGIR
Conference on Research and development in
Information Retrieval, pages 273-280, 2004.

[3] D. Balz. For Bush’s new direction, cooperation is the
challenge. http://www.washingtonpost.com/wp-dyn/-
content/article/2006/11/08/AR2006110800489.html,
Nov. 2006. Page as of 11-11-06.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1-7):107-117, 1998.

[5] S. Byers, A. D. Rubin, and D. Kormann. Defending
against an Internet-based attack on the physical
world. ACM Transactions on Internet Technology,
4(3):239-254, 2004.

[6] Calgary Herald. War games: Tornado jets zoom out of
Calgary as British troops train for combat.
http://www.canada.com/calgaryherald /news/city/-
story.html?id=32dad626-2a7d-497b-a369-
64e2f68b91a3, Nov. 2006. Page as of
11-11-06.

[7] F-Secure. Small. DAM. F-Secure Trojan Information
Pages, 17 January 2007.

[8] N. Friess, R. Vogt, and J. Aycock. Timing is
everything. Computers & Security, 24(8):599-603,
2005.

[9] J. Graham-Cumming. The spammer’s compendium.
http://www.jgc.org/tsc/.

[10] Headquarters, Department of the Army. Information
operations. Field manual No. 100-6, 27 August 1996.
United States Army.

[11] M. Hyponnen. F-Secure virus descriptions: Santy,
2004.

[12] H. H. Lee, E.-C. Chang, and M. C. Chan. Pervasive
random beacon in the Internet for covert coordination.
In Information Hiding, 7th International Workshop,
IH 2005 (LNCS 3727), pages 53-61, 2005.

[13] C. D. Manning, P. Raghavan, and H. Schiitze.
Introduction to Information Retrieval. Cambridge
University Press, 2007.

[14] Z. J. Mason. CorMet: A computational, corpus-based
conventional metaphor extraction system.
Computational Linguistics, 30(1):23—-44, 2004.

[15] K. S. McCurley. Geospatial mapping and navigation
of the Web. In Proceedings of the 10th international
conference on World Wide Web, pages 221-229, 2001.

[16] K. McKeown and D. R. Radev. Generating summaries
of multiple news articles. In Proceedings of the 18th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 74-82, July 1995.

[17] N. Provos, J. McClain, and K. Wang. Search worms.
In WORM 06, pages 1-8, 2006.

[18] D. V. Pynadath and M. Tambe. Multiagent teamwork:
Analyzing the optimality and complexity of key
theories and models. In Proceedings AAMAS 2002,
pages 873-880, Bologna, 2002.

[19] D. Rising. Storms in Europe kill 46, disrupt travel.
Associated Press, 19 January 2007.

[20] Spammer-X. Inside the SPAM Cartel. Syngress, 2004.

[21] S. Staniford, D. Moore, V. Paxson, and N. Weaver.
The top speed of flash worms. In Proceedings of the
2004 ACM Workshop on Rapid Malcode, pages 33—42,
2004.

[22] S. Staniford, V. Paxson, and N. Weaver. How to Own
the Internet in your spare time. In Proceedings of the
11th USENIX Security Symposium, 2002.

[23] The Economist (U.S.). A cyber-riot; Estonia and
Russia. 383(8528):55, 2007.

[24] M. Vojnovi¢ and A. Ganesh. On the effectiveness of
automatic patching. In Proceedings of the 2005 ACM
Workshop on Rapid Malcode, pages 41-50, 2005.

[25] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford.
CAPTCHA: Using hard Al problems for security. In
Proceedings of EUROCRYPT 2003 (LNCS 2656),
pages 294-311, 2003.

[26] N. Weaver, V. Paxson, S. Staniford, and
R. Cunningham. A taxonomy of computer worms. In
WORM ’03, pages 11-18, 2003.

[27] W. Zong, D. Wu, A. Sun, E.-P. Lim, and D. H.-L.
Goh. On assigning place names to geography related
web pages. In JCDL ’05: Proceedings of the 5th
ACM/IEEE-CS Joint Conference on Digital Libraries,
pages 354-362, 2005.



