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Abstract

We investigate possible improvements to modeling other
agents based on observed situation-action pairs and the
nearest neighbor rule. Tentative stereotype models allow
for good predictions of a modeled agent’s behavior even af-
ter few observations. Periodic reevaluation of the chosen
stereotype and the potential for switching between differ-
ent stereotypes or to the observation based model aids in
dealing with very similar (but not identical) stereotypes and
agents that do not conform to any stereotype. Finally, com-
pactification of observations keeps the application of the
model efficient by reducing comparisons within the nearest
neighbor rule.

Our experiments show that stereotyping significantly im-
proves cases where using just the original method performs
badly and that reevaluation and switching fortify stereotyp-
ing against the potential risk of using an incorrect stereo-
type. Compactification shows good potential for improving
efficiency, but is sometimes at risk of losing important ob-
servations.

1 Introduction

Getting an idea about the decision making processes of
others is a very useful and often necessary endeavour for
both human beings and computer agents. In a multitude of
scenarios, an agent’s aptitude at modeling other agents di-
rectly effects its chances of successfully achieving its goals.

But modeling another agent is not easy. Since knowing
the internal mechanisms of another agent is generally im-
possible, observing perceivable behavior is the best source
of information for an agent trying to model other agents. In
[4], combining observed pairs of situations and actions with
a similarity measure on situations and the use of the nearest
neighbor rule was suggested as a relatively simple method
of modeling other agents based purely on observations. But,

compared to the ability of a human being to model others,
the method is not very successful or efficient. The first, due
to a scarcity of available observations leading to inaccurate
predictions, and the latter due to an overabundance of avail-
able observations which slows down the search and selec-
tion process of the most similar situation and action pair.

In this paper, we evaluate improvements that deal with
the problems arising from extreme numbers of observations.
For the case of having very few observations we use reeval-
uative stereotyping with switching. Stereotyping is the us-
age of a complete model of another agent (or stereotype) to
provide a modeling agent with a solid basis on which to base
its predictions until more information is available. Reeval-
uation periodically assesses the validity of a chosen stereo-
type. Switching allows for a modeling agent to switch be-
tween different sterotypes to deal with similar stereotypes,
or to the original method of modeling with observations if
no stereotype seems to fit the modeled agent. To keep the
number of similarity computations at an acceptable level,
we suggest compactifying the observations to a smaller col-
lection that guarantees efficiency without greatly compro-
mising accuracy. We attempt to achieve this goal by only
selecting observations within a certain vicinity of the situ-
ation an agent has to react to, and throwing away all other
observations.

We tested these ideas on a simulation of the Pursuit
Game, that allows modeling agents to on-line learn coop-
erative behavior for solving the game. Our experiments
showed that when the correct stereotype was available, the
performance of the modeling agents was similar to their per-
formance when initially given the correct decision methods
of modeled agents. In cases where very similar stereotypes
were available, errors in stereotype selection were quickly
detected and corrected through reevaluation and switching
between stereotypes. Finally, even in cases where only in-
correct stereotypes were available , switching to the original
method using observations and the nearest neighbor rule en-
abled the modeling agents to achieve their goals. For com-
pactification, we were able to observe many experiments



which not only showed improved run times but also resulted
in better solutions, due to pruning away potentially mislead-
ing observations. However, this pruning sometimes came at
a cost. Some experiments did not always speed up the mod-
eling agents’ decision making, due to pruning away obser-
vations that later did prove essential.

2 Modeling other Agents Behaviors

In order to model other agents, it is necessary to dis-
cuss what an agent is in general, what information can be
used by an agent to make decisions, and what modeling an-
other agent means. After this, we will present modeling us-
ing observed situation-action pairs (OSAPs) and the nearest
neighbor rule (NNR), a method first suggested in [4] to deal
with the modeling of reactive agents. We will also point out
the weaknesses of this approach.

2.1 Basic Definitions

In MAS, there is no agreement on the exact definition of
an agent. However, most authors agree that an agent 4g
can be described as a triplet Ag = (Sit,Act,Dat). Sit is the
set of situations .4g can experience, Act is the set of actions
Ag can perform and Dat is the set of the possible values for
Ag’s internal data areas. For an agent in a MAS these com-
ponents can be further structured, for example Dat distin-
guishes between data areas that contain information about
the agent itself (Dat,.,,), areas that contain sure knowl-
edge about other agents (Datsy) and areas that contain as-
sumed (and therefore unsure) knowledge about other agents
(Datg,r). Internally, Ag’s decision mechanism is a func-
tion f44: Sit x Dat — Act. But for an external observer
lacking initial knowledge about the agent, it appears to be a
function g 44: Sit — Act, i.e. an observing agent can only
perceive actions and situations, but not the internal mecha-
nisms that drive an agent’s decision making. The extent of
the difference between an actual f 4, and apparent g 4, dis-
tinguishes between reactive and proactive agents. We say
an agent Ag is reactive if its Dat has negligible influence
on its decision making, and proactive (or knowledge-based)
if its Dat has significant influence on its decision making.
Finally, the realization of Ag’s actual f 4, depends on the
agent’s architecture.

The process of collecting information about another
agent to guess its actions is usually refered to as model-
ing other agents. Many existing modeling approaches rely
on observing the behavior B(Ag,s¢) of the agent Ag to
be modeled, starting from a situation so. Usually, B can
be described as a sequence of situations and the actions
taken in these situations, i.e. B(Ag, so) = $0,00,51,01,-.-
(with s; € Sit, a; € Act). An agent modeling an-
other agent through observed behavior relies on all obser-

vations up to the current situation, i.e. a behavior sequence
50,00,51,41,..ySk—1,Qk—1-

A major obstacle to modeling another agent is the influ-
ence of the modeled agent’s internal data areas - the more
influence Dat has on g 4, the more likely that modeling will
be based on incorrect assumptions. Therefore, although not
impossible, it is extremely difficult to adequately model a
proactive agent. On the other hand, modeling a reactive
agent is more feasible, due to the negligible influence of
its Dat on decision making. Other general problems with
modeling agents are different perceptions of modeling and
modeled agent and changing behavior of the modeled agent.

2.2 Modeling Reactive Agents using OSAPs and
NNR

As stated in the previous section, modeling a reactive
agent is a more feasible task than modeling a proactive
agent. [4] proposed a simple modeling method that enabled
agents to model other reactive agents by using OSAPs and
NNR together with some similarity (or distance) measure
dist on situations.

dist depends on how situations are represented, there-
fore a detailed definition will be presented along with
our application in Section 4, but in general dist:Sit x
Sit — IN measures how similar two situations are, with
smaller values implying more similarity between two sit-
uations and vice versa. If we want to model agent .Ag and
have observed its behavior B(Ag,s0) = 80,00,51,01,---1Sk,0k
from situation sg to situation sg, then the modeling
method’s prediction for a situation s is a;, if dist(s;,s) =
min{dist(so,s),...dist(sg,s)} — this is the well-known near-
est neighbor rule. If there are several situations with the
same similarity, then newer observations are given priority
in the modeling process.

During experimentation, it was seen that when model-
ing using OSAPs and NNR, a model generated out of few
observations often results in inaccurate predictions. On the
opposite end of the extreme, a model comprised of many
observations decreases the efficiency of the modeling pro-
cess. Improvements to these problems were the prime goal
of this work.

3 Improving Modeling using OSAPs and
NNR

In this section, we suggest two improvements to model-
ing using OSAPs and NNR. The first improvement, reeval-
uative stereotyping with switching targets having only a few
OSAPs and was motivated by psychological explanations of
human stereotyping. The second improvement, compactifi-
cation of observations tries to reduce observations to only
those that are most relevant, using a tree-like structure.



3.1 Reevaluative Stereotyping with Switching

Stereotyping is a well-known concept in human behav-
ior — loosely it is the classification of humans into basic be-
havior models (or stereotypes). Although generally seen in
a negative light, it also may have some benefits — especially
if a stereotyped human actually does fit a certain stereotype
(see [9D).

If we look at modeling other agents using OSAPs and
NNR, stereotyping can improve prediction accuracy when
modeling after few observations. If the proper stereotype
is available to the modeling agent then only a few obser-
vations of the modeled agent can identify it, and using that
stereotype ultimately allows for better predictions. On the
other hand, selecting the wrong (but similar) stereotype will
not help in the long run — so stereotype choices can be con-
tinously reevaluated according to new experiences, with the
potential of switching between sterotypes to ensure choice
correctness. Finally, if a stereotype even remotely similar to
the modeled agent’s decision function f 4, isn’t available, a
modeling agent can also switch from using stereotypes to
using OSAPS and the NNR. Therefore we do not propose
stereotyping as an alternative to using OSAPs and NNR for
modeling, we want to combine stereotyping, reevaluation
and switching with the use of OSAPs and NNR. We called
our improvement reevaluative stereotyping with switching
due to these reevaluations and because we can switch be-
tween different stereotypes or to OSAPs with NNR if nec-
essary. For the sake of brevity we will call the complete
process tentative stereotyping (or just stereotyping).

We assume that the modeling agent has observed the
modeled agent for some small period of time before mod-
eling it. If agent Ag,,.q wants to model agent Ag.ps
using stereotyping and OSAPs with NNR, then Ag.,..4
needs a set of stereotypes Stereo = {f1,...,f,, }, where each
f;:Sitmeqa — Acteps IS @ possible agent decision function
that uses the set of situations Sit,,.q that Ag,,.4 can ob-
serve and the set of actions Actps that Ag,ps can perform
(according to Ag.,,04’s knowledge about Ag,ps). If the ob-
served behavior is B(Agops:S0) = $0,00,51,01,---,Sk,a, then
Agmoq does its modeling as follows:

For each f; € Stereo its potential behavior
Bst(f;,B(Agops,S0)) is evaluated as

k

BSt(fi, B(Agobsy 30)) = Z e(](fi(sj), aj)

Jj=0

where

1, ifa=4d
eq(a, a’) = { 0, else

This means that Bst tells us how often f; would have pre-
dicted the right action of Ageps.

Assume a “switch time” posap which defines a min-
imum number of modeling periods in which stereotyping
must take place and a “threshold value” tps; is given. A
stereotype is selected to be used for predicting Ag.ps’s be-
havior if; it has the maximal Bst > tp, and the posap
modeling periods have passed or it just has maximal Bst
and posap modeling periods have not yet passed. We use
posap to give the stereotyping a chance and to ensure an
increase in the number of observations made. We switch
to OSAPs and NNR in two cases: posap modeling pe-
riods have passed and no stereotype gave Bst > tpg; OF
posap modeling periods have passed and the performance
of Agmoq has gotten worse since the last time a stereotype
was selected. The definition of ”worse performance” is ob-
viously task dependent, therefore a specific definition will
be provided in Section 5.

3.2 Compactifying OSAPs Based on kd-Trees

On the other end of the spectrum with regard to num-
ber of observations, we have the problem that if a model
is based on k OSAPs, then OSAPs and NNR computes the
dist-value between the current situation and all k situations,
which can be time consuming if k is large. A similar prob-
lem is faced in case—based reasoning, for finding the most
similar case in a case base and is addressed in [14].

Cases are composed of multiple features, where each
case has the same number of features as the other cases in
the same case—base. For quicker indexing, the cases can be
structured into a tree. The general idea behind these kd-trees
is to build a tree that branches at each level according to a
different feature, and a partition value selected according
to some partition criteria that would ensure a balanced tree.
The leaves of the tree then contain all cases with feature val-
ues in the intervals determined by the path to the leaf. Then
finding the right leaf requires comparing the current case
with the inner nodes of the path matching it (to identify the
right path). And finding the most similar case to the case
at hand requires comparing it to all cases contained in the
found leaf.

If we consider situations and their features as cases, the
approach of [14] can be directly applied to our problem with
OSAPs and NNR. And although we were majorly inspired
by the concept, we chose to use more of a compactification
of the OSAPs, rather than the structuring provided by a tree.
Extremities of the situations’ features are taken to form a
virtual boundary around the observed situation space. Ac-
cording to a predefined partition criteria, this virtual bound-
ary is divided into subspaces at the onset of modeling and
the subspace to which the current situation belongs is de-
termined. Observed situations outside of that subspace are
completely discarded, and the NNR only considers the re-
maining observed situations for comparison to the current



situation. As we will see, this is not without problems.

4 OLEMAS: Using Agent Modeling for On-
line L ear ning of Cooper ative Behavior

Pursuit Games cover a wide range of variants from rather
simple to very complex and therefore allow for rather com-
plex behaviors of agents. Due to this range of variants, we
have chosen to evaluate the ideas of Section 3 using Pursuit
Games, more precisely using the ideas to model prey agents
during on-line learning of cooperative behavior for hunter
agents in different variants of the game (as suggested in [4]).
First we will present the role of modeling other agents in
on-line learning of behavior and then we will give a brief
description of Pursuit Games and our OLEMAS system.

4.1 On-line Learning of Cooperative Behavior

Learning is an ability that many people want to see in an
agent since it allows agents to react to changes and new
information and adapt to them. [4] presented a general
method of how off-line learning approaches can be used to
do on-line learning. The basic idea is to add a special ac-
tion “learn” to the actions of each learning agent. “Learn”
is periodically performed and results in activating a simu-
lation of the environment an agent is in, including all other
agents, that is used by the off-line learning method to gen-
erate a new agent strategy, i.e. produce a new, improved
decision function. The simulation first determines what the
situation will be for the agent after the time needed for ex-
ecuting “learn” and starting with this situation the off-line
learning method can work as usual, using the simulation to
get the feedback or experiences it needs.

In order for this approach to work, the accuracy of the
simulation is of quite some importance, because bad simu-
lations will at best slow down task completion and at worst
make it impossible. And modeling of the other agents is es-
sential for the quality of the simulations. Therefore, on-line
learning of cooperative behavior is a very good testbed for
approaches on modeling other agents.

4.2 Pursuit Games and the OLEMAS System

Pursuit Games are scenarios that have long been sug-
gested as testbeds for cooperation approaches for agents
(see [1]). They offer a lot of experimental variations and
so are very interesting for evaluating learning approaches
for agents and agent teams, since different variants require
rather different strategies. The general idea of a pursuit
game is that a group of hunter agents has to catch one or sev-
eral prey agents in some primitive (grid) world. Game vari-
ants diversify the definition of catch, the actions the agents
can do, their shape and speed, the world and much more.
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Figure 1. Start situations

The OLEMAS system (On-Line Evolution of Multi-
Agent Systems) was developed to evaluate evolutionary
learning approaches using Pursuit Games as an application
area. The particular learning approach we were interested in
used situation-action pairs (SAPs) and NNR as agent archi-
tecture and evolved sets of SAPs to be used as agent strate-
gies (see [4] for further details on the learning approach).

A situation in a Pursuit Game in OLEMAS for a par-
ticular agent is described as a vector that contains for each
other agent and obstacle the coordinates of the other agent
relative to the agent and its orientation (measured for prede-
fined centerpoints so that agent shape is not an issue). This
allows us to define the function dist for two situations s
= (21,Y1,01 T Yn,0n) AN s' = (2] ,y1,0} ...z}, 4! 0L) as
follows:

n
dist(s,s') = > (i~} >+(gi—y})> +((0i—0})*mods)).
=1
The o;’s are the orientation of the agent (one of 0 = north,
1 = east, 2 = south, 3 = west), which is also measured with
respect to a predefined base orientation for each agent.

5 Experimental Evaluation

We tried to present rather different Pursuit Game vari-
ants to show the generality of the improvements, in addition
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Table 2.

Switching from Stereotyping to OSAPs for Different pposap-values

\Y OSAPs Correct Model Incorrect Stereotype PosAp =2 posAp =3 posap =4
St T Su St T Su St T Su St T Su St T Su St T Su
7 70.9 11.6 | 100 38.6 7.4 | 100 || 123.8 | 18.0 70 835 | 12.6 | 100 || 105.3 14.8 | 100 915 | 132 | 100
8 55.3 9.1 | 100 42.7 85 | 100 166.4 | 21.7 50 96.0 | 135 | 100 107.2 155 | 100 1159 | 16.1 | 100
9 121.8 75.2 | 100 771 | 253 | 100 || 200.0 | 36.3 0 || 1187 | 435 | 100 || 138.7 | 101.1 70 || 160.0 | 83.6 70
10 178.1 29.3 30 141.1 | 38.1 40 162.9 | 434 30 160.0 | 31.9 30 168.8 34.8 30 137.2 | 304 60
11 || 200.0 | 102.3 0 605 | 13.3 | 100 || 139.2 | 435 60 || 117.1 | 41.2 60 || 147.2 50.3 70 || 1132 | 315 20
12 || 1220 311 80 || 100.0 | 245 | 100 || 177.2 | 336 20 || 1237 | 295 90 || 145.9 30.7 80 || 149.0 | 328 80
Table 4. Combination of the Ideas
V Only Incorrect Stereotype With Switching and Full OSAP Set || With Switching and Compactification || posap
St T Su St T Su St T Su
21 426.2 | 53.7 20 188.9 42.1 100 147.7 224 100 3
22 || 4165 | 52.7 50 || 217.3 40.5 90 || 146.6 224 100 2
23 4886 | 615 40 156.7 25.1 100 180.5 27.8 100 3
24 || 500.0 | 62.6 0 || 167.8 27.2 100 || 182.1 27.1 100 2
25 4649 | 583 80 409.0 | 103.6 30 392.8 73.0 50 2
26 391.8 | 49.9 40 151.8 28.5 100 164.2 251 100 2
27 || 4318 | 944 40 || 252.7 | 1473 80 || 263.6 | 139.5 100 2

Table 1. Correct Stereotype Available

Table 3. Influence of Compactifying

\Y Full Compactified
\Y OSAPs Correct Model Stereotyping St T Su St T Su
St T Su St T Su St T Su 13 207.3 535 90 139.0 23.7 | 100
1 96.7 | 17.3 90 50.1 8.8 | 100 480 | 10.2 | 100 14 413.6 | 150.2 40 452.2 | 108.2 20
2 1914 | 36.8 10 61.6 | 12.8 | 100 73.0 | 145 | 100 15 140.5 319 | 100 86.6 145 | 100
3 48.9 8.6 | 100 431 89 | 100 430 | 10.0 | 100 16 114.0 224 | 100 99.8 16.7 | 100
4 100.5 | 16.2 80 40.0 6.8 | 100 68.6 | 104 | 100 17 130.1 30.9 | 100 89.8 16.9 | 100
5 196.7 | 36.3 10 78.1 | 144 | 100 90.0 | 15.1 90 18 72.0 13.1 | 100 74.1 119 | 100
6 90.0 | 16.0 | 100 49.3 | 158 | 100 49.6 | 159 | 100 19 116.3 211 | 100 142.1 22.3 | 100
20 53.6 8.8 | 100 54.3 9.0 | 100

to the problematic results that will require further improve-
ments. The experiments are divided into four groups: hav-
ing a correct stereotype available, having no correct stereo-
type available, compactification of OSAPs, and the com-
bined improvements.

Our analysis concentrates on the average number of steps
and average amount of time required for a game (including
those of unsuccessful trials), in addition to the rate of suc-
cessful trials (in percent). In the result tables, these are rep-
resented as St, T and Su respectively. The results of each
table entry are the average of ten runs.

In all experiments, agents were situated on a 30 by 30
grid. They could move in all eight directions (N, NE, E, SE,
S, SW, W, NW) and could rotate 90 degrees to the left or
right. Every move took 1 step to accomplish, and a “learn”
phase would occur after at least 13 and at most 33 steps. For
experiments involving stereotyping, agents had 200 steps to
achieve their goal, in order to put a kind of pressure on win-
ning in a short amount of time. As stereotypes, we used
5 strategy functions provided by OLEMAS and 10 sets of

SAPs. For compactification experiments agents had 500
steps, in order to effectively show the impact of compact-
ification at the end stages of the game. A median dividing
the x axis of the observed situations was used as the sin-
gle partition criteria. Note that in the following, improved
hunter performance refers to a decrease in the number of
steps necessary for goal achievement and/or an increase in
success rate.

The following variants had as game goal kill (i.e. occu-
pying the same square as the prey): 1-9 and 13-26. All other
variants had to immobilize the prey. Variants 1, 2, 6, 13-17,
and 21-25 started from a) in Figure 1. Variant 3 substituted
b) for the agents in a), 4 and 11 substituted c) and variants 8
and 20 substitued e). Variants 5, 18, and 19 used the agents
of a) but placed them randomly. Variant 7 also placed the
hunter from a) and the prey from e) randomly. Variant 9
started with j), 10 with h), 12 with i), 26 with f) and 27
with g). The preys in variants 1, 13 and 21 tried to evade
the nearest hunter, the preys in variants 2, 4, 5, 10, 11, 14,




17, 19, 23, 25 and 26 tried to avoid all hunters and all grid
borders (measuring distances in various ways), in variants
9, 12, 15, 16, 18, 22, 24, and 27 only the hunters counted.
Finally, the preys in variants 3, 6-8 and 20 used some sets
of SAPs as strategies.

The first group of experiments evaluates hunter perfor-
mance when a correct stereotype for the prey is available
(see Table 1). Our objective here was to show that using
a correct stereotype can significantly improve hunter per-
formance in cases where using OSAPs yields poor results
(which, as Table 1 shows, is the case). On the other hand,
we do not expect much improvement when using OSAPs
already yields good results (as shown by variant 3). We
also expected stereotyping to result in slightly worse perfor-
mance compared to when a hunter knows the prey’s actual
strategy — also shown in Table 1. The utility of reevalua-
tion becomes especially evident in variant 6, although it is
not apparent from the results. In variant 6, the available
stereotypes were very similar and the first selected was not
the prey’s actual strategy. But as more observations were
made, and periodic reevaluation ensued, the correct stereo-
type was eventually chosen. As the result shows, this reeval-
uation and switching to another stereotype process does not
adversely effect performance.

The second group of experiments shows the results of
using an incorrect prey stereotype with switching to OS-
APs at different values of posap — recall that posap de-
notes the minimum number of learning periods in which
stereotyping must occur (see Table 2). The main objec-
tive of these experiments was to assess the adverse effects
of stereotyping without good knowledge, and to evaluate
how the switch to OSAPs and NNR limits potential dam-
age. As the table shows, switching from using an incorrect
stereotype to modeling with OSAPs significantly improved
the performance of all variants when compared to sticking
with the wrong stereotype. We did not expect wrong stereo-
types to yield better results than using OSAPs and NNR
or a correct prey stereotype. But surprisingly variants 9-11
showed that wrong stereotypes might not always be more
misleading than OSAPs. And for variant 10, we actually
got better results (at posap=4) than with using the correct
model, which suggests that sometimes a detour might even
have positive effects. With regard to determining a good
posap-value, the table shows that it depends on the vari-
ant, although a value of 2 is often good. Note that in the
context of when to switch, worse performance is defined as
an increased distance between the hunter and prey in two
consecutive modeling periods.

The third group of experiments examined the results of
a hunter using a compactified set of OSAPs for prey mod-
eling (see Table 3). Our objective was to show that using
this set is more efficient than using the full set of OSAPs.
This can be seen in a decrease of the time per step ratio

T/ St, which we had for every variant, expect for 20, where
T/St was unchanged. We did expect that in some cases
performance may slightly degrade when compactifying be-
cause of the removal of potentially relevant OSAPs, lead-
ing to inaccurate predictions. But as a very positive result,
some cases actually showed a decrease in the number of
steps for goal achievement. This indicates an increase in
prediction accuracy for some scenarios, which can be at-
tributed to the compactification process removing a number
of OSAPs that may have incorrectly influenced the hunter’s
predictions without compactification. However, the other
side of the coin is also visible, a (not only slight) increase
in steps (and consequently time) or even a decrease in suc-
cess. The concept of compactification seems promising, but
the particular approach tested requires improvement.

The final group of experiments presents the results of
reevaluative stereotyping with switching to OSAPs includ-
ing compactification of those OSAPs (see Table 4). Again it
is clear that switching from an incorrect stereotype to mod-
eling with OSAPs significantly improved the hunter’s suc-
cess in goal achievement compared to using an incorrect
stereotype. In addition, using the compactified set of OS-
APs following switching decreased 7'/.St in most variants,
verifying that the ideas can be combined (as expected).

6 Reated Work

Modeling other agents has been researched from sev-
eral perspectives. For example, [6] describes the Recursive
Modeling Method, which incorporates concepts from deci-
sion and game theory into agent modeling. In [8], agents are
assumed to be homogeneous and predictions can be based
on that assumption. [15] assumes some theoretical opti-
mal behavior as the model for an agent. [3] uses observa-
tions to produce finite automata as models for other agents,
while [13] represents models of other agents as influence
diagrams. In [10], coordinating agents use case—based de-
cision theory and communicated meta—level information for
learning.

We see connections between our improvements to OS-
APs and NNR and to [5] and [11]. The approach in [5]
can be seen as producing probability values for combina-
tions of features that together constitute an agent model.
Our stereotypes can be seen as a subset of the set of all
feature combinations, thus having a much smaller number
of predefined models to handle, while being able to switch
to OSAPs and NNR still gives us the full flexibility of this
agent architecture (and all possible features that can be ob-
served). In [11], agents used observed data to classify op-
ponent agents into predefined opponent teams for simulated
robotic soccer, under the assumption that opponent teams
did not change strategies. No reevaluation of these classi-
fications is done, nor is it possible to deal with opponents



that are outside of the classification.

Our approach to modeling other agents also has some
connections to the area of plan recognition (see [2] for an
overview), especially case-based plan recognition. In [7],
for example, observations are used to fill holes in partial
plans, based on similarity of situations, very similar to [4].
The use of partial plans has some resemblance to stereo-
types, but because holes in those plans are required to be
filled, the necessity of having a complete model for pre-
diction after just a few observations (which is achieved by
our approach) is not addressed. For an overview of proto-
type selection and generation techniques in the area of case-
based reasoning, see [16].

Finally, modeling another agent can be seen as a very
special case of Belief Revision. But most of the work in this
area, due to the need to be more general than just modeling
a reactive agent, is based on Truth Maintenance Systems
and does not make use of the features of our special case
(see [12] for a brief overview of this area).

7 Conclusion

We presented two possible improvements to modeling of
other agents based on OSAPs and NNR. By starting off with
tentative stereotyping, a stereotype can provide a complete
model of another agent and can be determined after just a
few observations. In the case that the agent fits the stereo-
type, the modeling agent‘s performance is usually greatly
improved. When multiple stereotypes are very similar, peri-
odic reevaluation ensures that the most correct stereotype is
always in use. If no correct stereotype is available, the abil-
ity to switch to the basic observation based method prevents
the modeling agent from poor performance. Compactifying
observations through simple feature-based partitioning not
only offers a more efficient use of a model, it can also elim-
inate misleading observations. But our experiments show
that it can also pose the risk of losing important observa-
tions. In this area, more research is necessary to find better
partitioning criteria to minimize this risk.
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