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Abstract. We present an improvement to evolutionary learning of co-
operative behavior which incorporates some accountability measure for
strategy components into the evolutionary learning process. Our evo-
lutionary approach is based on evolving sets of prototypical situation-
action pairs (strategies) that together, with the nearest-neighbor rule,
represent the decision making of our agents. The basic idea of our im-
provement is to collect data for each pair showing the results of its ap-
plications. We then choose those pairs in the parent strategies that had
positive results for the construction of new sets of pairs for our strategies.
Our experiments within the OLEMAS system show that the incorpo-
ration of accountability results in substantial improvements of both on-
and off-line learning when compared to the basic evolutionary approach.
In nearly all experiments, either the agent teams required less learning
time or found better strategies. In many cases both were observed.

1 Introduction

Having the ability to learn is often viewed as a very important feature of an agent
in a multi-agent system. Adapting to new (resp. slightly changed) environments,
dealing with new agents, or relieving the human developer from having to de-
velop all details of a cooperation concept are just a few of the consequences we
hope for when agents are able to learn. Naturally, different agent architectures
require different learning methods, but a lot of the research done on learning
in multi-agent systems has focused on rather reactive agents. Two general ideas
for such learning have surfaced: reinforcement learning (see [11], [10], or [6]) and
evolutionary learning.

In this paper, we focus on evolutionary learning of cooperative behavior.
Evolutionary learning (EL) concentrates on finding whole strategies (in contrast
to the reinforcement approach that focuses on all possible situations and all pos-
sible actions in these situations). Working on a pool of strategies, evolutionary
techniques are used to generate new strategies (mostly out of the better strate-
gies in the pool) that hopefully combine positive aspects from the parents. Over
time, strategies evolve that come progressively closer to achieving the intended
behavior (for examples, see [8], [5], or [3]). The evolved strategies are usually
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much more compact than the weight matrices or graphs of reinforcement learn-
ing. Due to this, substantially fewer experiences are necessary to evolve working
strategies when compared to reinforcement learning (even if we combine the ex-
periences obtained by every strategy tried out in the evolutionary process). On
the negative side, so far, even the successful strategies often include elements
that are not needed (resp. wrong) and are therefore simply not used in the so-
lution. In addition, since experiences are attributed to whole strategies and not
individual actions (or small action sequences) the learning is less focused than
it is in reinforcement learning (which sometimes can be a positive asset, but can
also hinder the progress of learning).

In this paper, we present an improvement of the evolutionary learning method
of [3] and [4] that integrates an accountability aspect to deal with the problem
mentioned above, namely statistics about single pairs of situations and actions,
into the evolutionary learning process. More precisely, our learning approach is
based on prototypical situation-action pairs (SAPs) and the nearest-neighbor
rule as the agent architecture. A strategy of an agent is then a set of such
prototypical SAPs. In the basic version, the fitness of a strategy is obtained
by measuring how near a strategy comes to solving the given problem during
simulations of the whole multi-agent system and its environment.

Our improvement idea is to not only compute the fitness of a strategy out of
the simulations, but also statistics about the use and consequent success of the
SAPs in the strategy. We then use these statistics to influence the application
of the genetic operators that generate new strategies. In the basic version of
the learning algorithm, after selecting parent strategies based on their fitness
(and some random decisions), picking SAPs to either be included or excluded
from the new strategy is done purely at random. In our improved version, this
picking is now performed based on the statistics about the pairs (and again,
some random decisions), thus repeating the selection idea of the strategy level.
The general idea we use is that SAPs whose application often resulted in better
situations should be selected with a higher probability than pairs that generally
did not improve the situation of agent and agent team and the pairs that made
the situation worse.

We implemented this improvement into the OLEMAS system (see [4] and
[2]). Our experiments in the area of Pursuit Games show that the new version
including accountability aspects clearly outperforms the basic version of OLE-
MAS for almost all game variants and for both usage in off-line and on-line
learning. Outperforms in this context means that either less generations of the
GA are needed to find a successful strategy (thus also reducing the learning time)
or that the found strategies are better than those found by the basic version (i.e.
less actions are performed by the agent team until success) or both.

2 Learning with SAPs

In this section, we present the method of evolutionary learning of [3] and [4], as
realized in the OLEMAS system (On-Line Evolution of Multi-Agent Systems),
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that is the basis for our work. We start by presenting the agent architecture
used, followed by the GA we use for learning, and finally we briefly discuss the
use of this basic learning method for off- and on-line learning.

2.1 Agent Architecture: SAPs and NNR

Very abstractly, an agent Ag can be described by a triple Ag = (Sit,Act,Dat),
where Sit is the set of situations Ag can be in, Act is the set of actions Ag
can perform, and Dat is the set of possible values of the internal data areas of
Ag. Ag then realizes a function fAg: Sit × Dat → Act. In reactive agents, the
emphasis of fAg is mainly on Sit.

In our agent architecture, fAg bases its decisions on a set of prototypical
situation-action pairs, its strategy, that are part of an area in Dat. As the name
suggests, an SAP contains an element of Sit1 and an action from Act. For deter-
mining what action to perform in a situation s, the agent computes the similarity
(resp. distance) of all situations in its strategy and s, and performs the action of
the SAP whose situation is most similar to s (i.e. it applies the nearest-neighbor
rule, NNR). Naturally, there usually are different possible definitions for simi-
larity. Also, we have to describe situations in such a way that the definition of a
sensible similarity measure is possible.

The behavior B of an agent Ag starting with a situation s0 can be described
as a sequence B(Ag,s0) = s0,sap1,s1,...,si−1, sapi,si,..., where sapj is an element
of its strategy and the action associated with it leads Ag from situation sj−1 to
sj . Naturally, if there are other agents in the system, then sj also depends on
the actions they perform in sj−1.

2.2 The Basic GA for Learning

Our evolutionary learning method is based on a Genetic Algorithm for sets
(since we use sets of SAPs as strategies). This means that for learning we always
consider a set of strategies. New strategies are generated out of old strategies
by applying so-called Genetic Operators, which in our case are Crossover and
Mutation. The initial set of strategies (initial population) is generated randomly
(although in [2] we presented a variant that makes use of previous knowledge),
i.e. by generating random SAPs.

Crossover requires two parent strategies, st1 = {sap11,..., sap1n} and st2 =
{sap21,...,sap2m}, and generates a new strategy stnew by picking randomly the
needed number of SAPs out of st1∪ st2 (without duplicates). Mutation requires
only one parent st1 and in order to generate a stnew, it allows for three possibili-
ties, namely deleting a random SAP of st1, i.e. stnew = st1 - sap1j , j ∈ {1, ..., n},
generating a SAP sap randomly and adding it to st1 (provided that st1 does not
already have the maximal allowed number of SAPs), i.e. stnew = st1∪ sap, or
exchanging a SAP in st1 by a randomly generated one (sap), i.e. stnew = st1 -
1 Situations might be extended to also contain data from the current value of Dat of

the agent.
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sap1j ∪ sap (which combines the other two possibilities; again, duplicates are
not allowed). We have organized generating new strategies into so-called “gen-
erations”, i.e. we generate a given number l of new strategies and then form a
new generation by deleting the l worst strategies from the old generation and
adding to it the l newly generated ones.

The last sentence already referred to another basic requirement of GAs: the
ability to measure the quality, or the fitness, of the individuals in a population.
The fitness is not only needed to delete strategies, it also is a key component in
selecting the parent strategies, although it is combined with a random influence.
There are many different ways to combine fitness and randomness, and in OLE-
MAS we have chosen a variant in which the probability of a strategy for being
selected as parent is proportional to its fitness.

For measuring the fitness of an individual strategy (in fact, for the strategies
of all agents of a team) we measure the success it produces in every step of
its application (for a given limited number of steps, either in the real world or
in a simulation of it), except if the strategy is totally successful, in which case
the fitness is just the number of steps (length of the action sequence) needed
to fulfill the given goal. More precisely, since the success obviously is related
to the application, we need a function δ : Sit → IN measuring how far away a
situation is from success. Then we take the behavior of the agent Ag employing
the strategy from the start situation s0, i.e. B(Ag,s0), and sum up δ(sj) for all
sj in B(Ag,s0).

If the agents have to deal with effects out of their control (for example,
random effects or other agents that cannot be predicted) then, starting from
s0, different behaviors can be observed in different runs. The fitness is then
computed as the sum of the elemental fitnesses generated by each of the observed
behaviors in a given number of runs of the strategy.

If we want to learn strategies for several agents, then an individual in our
Genetic Algorithm contains an individual strategy for each of the agents. The
fitness of an individual is still the summed up δ(sj) for all situations in the
behavior of one agent, since each sj is the consequence of the actions of all
agents taken in the previous situation.

2.3 Offline and Online Learning

With regard to learning, one very often finds the distinction between on-line and
off-line learning with the later meaning that learning and applying the learned
knowledge are separated in different phases. In contrast, the former means that
the learning, and the application of what is learned are interleaved so that prob-
lems like when to learn, or what to do when learning is not finished, have to
be solved. For learning cooperative behavior for a team of agents that has to
learn to solve a certain problem/task, pure off-line would mean that learning
takes place first and then the agent team has to perform a run that solves the
task without doing any more learning. Consequently, an on-line learning agent or
agent team will also learn during the run. These are only the extremes, however,
and a lot of combinations of them are also possible.
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Our evolutionary learning, as described in the previous subsection, can be
used for both, off- and on-line learning. If the start situation s0 is the situation
the team has to start from when solving the given task, and if the number of
steps allowed for the fitness evaluation is the number of steps allowed for the
task, then our learning approach can be used for off-line learning. This is to say
that at the end of the learning we will have a strategy (for each learning agent)
that then will be used for solving the task (see [3]). In [4], we presented a way
to use our approach for on-line learning as well by introducing a special action
“learn” for the agents. Its application leads to executing our learning GA for a
rather small number of steps, starting from a situation that the agent thinks it
will be in after executing “learn”, and using models of the other agents to predict
their behavior. So, in on-line learning the individuals in our Genetic Algorithm
contain only the one strategy for the agent executing “learn”, even if several
agents are doing on-line learning. With regard to learning, every agent “is on its
own”. As we will see in Section 5, our improvement of the basic GA will improve
both the use for off- and on-line learning.

3 Adding Accountability of SAPs

One of the big advantages of evolutionary learning as described in the last section
is that it partially avoids having to solve the credit assignment problem (i.e.
having to determine how much a particular action contributed to the success of
an action sequence, a basic problem in reinforcement learning). Since a fitness
is computed for a whole strategy (a posteriori), it is not necessary to develop
a sophisticated mechanism for deciding a priori how much a particular action
and its immediate outcome will be responsible for the final outcome of an action
sequence (although our fitness uses some crude estimation of the success of each
action in a sequence to compare strategies that were not totally successful). In
the case of off-line learning for several agents, we also do not have to decide
which agent contributed how well to the team effort. Unfortunately, this means
that very good actions (or good strategies for other agents) can compensate for
not-so good ones, as long as we achieve success in the end. Even worse, with
our particular agent architecture we can have useless SAPs in very successful
strategies and their uselessness is not detected due to the fact that they were
never responsible for an action taken.

Our idea for improving our evolutionary approach is to add some account-
ability to the prototypical SAPs of a strategy (not to all possible SAPs) and to
use this accountability to influence the Genetic Operators. This influence will be
in such a way that “bad” or useless SAPs are less likely to appear in offspring
of strategies (only less likely, because together with another set of SAPs they
might be valuable; see our experimental evaluation in Section 5 that compares
this approach to an approach were the SAP selection is purely based on the
observed quality of the SAPs). Each action occurring in the observed behavior
of an agent will provide feedback, and this feedback will be used to determine
good, indifferent, bad, and unused SAPs. This idea combines the a posteriori



210 J. Denzinger and S. Ennis

evaluation of whole strategies, provided by the basic evolutionary learning, with
the advantage of accountability of strategy parts.

More precisely, we extend a SAP in a strategy by a so-called statistic-tuple
stat(sap) = (use-nr, good, bad, indiff). Whenever a new strategy st is created,
the statistic-tuples of all its SAPs {sapst

1 ,..., sapst
n } are initialized to (0,0,0,0).

For each run of st as agent Ag (starting with a situation s0), we use the resulting
behavior B(Ag,s0) = s0,sap1,s1,...,si−1,sapi, si to update the statistic-tuples in
st as follows:
For all sk−1,sapk,sk in B(Ag,s0), 1 ≤ k ≤ i:

stat(sapst
j ) =






stat(sapst
j ), if sapst

j �= sapk

(use-nr + 1, good + 1, bad, indiff), if δ(sk−1) > δ(sk)
(use-nr + 1, good, bad, indiff + 1), if δ(sk−1) = δ(sk)
(use-nr + 1, good, bad + 1, indiff), if δ(sk−1) < δ(sk)

for all j ∈ {1, ..., n}. Naturally, the last 3 cases require that sapst
j = sapk. Note

that we have chosen to reuse the δ-function we already use in the fitness function.
Obviously, other functions can also be used. This is also the case for several other
decisions we already have made and will make in the following. So, we judge the
impact that each use of a SAP has, but we only use three categories, namely
positive, negative, and indifferent impact. Note that, by using δ, the impact of a
SAP is measured relative to the decisions the other agents did make, since they
also influence what the successor situation of a situation is, but for learning of
cooperative behavior, this should obviously be the case!

The statistic-tuples of SAPs are then used to modify our Genetic Oper-
ators. For Crossover, we have strategies st1 = {sap11,..., sap1n} and st2 =
{sap21,...,sap2m}. We take st1 ∪ st2 and divide its SAPs into three pools:

good pool = {sap ∈ st1∪ st2 | use-nr > 0 and good - bad > good min}
indiff pool = {sap ∈ st1∪ st2 | use-nr > 0

and good min ≥ good - bad ≥ bad max}
bad pool = {sap ∈ st1∪ st2 | use-nr = 0 or use-nr > 0

and bad max > good - bad}
Here, good min and bad max are parameters that allow us better control over

which SAPs go into which pool. One obvious value for both of them is 0, which
results in having in good pool all SAPs that more often resulted in better situa-
tions than worse. Then indiff pool is usually rather small. By having good min >
0 and bad max < 0, we can broaden indiff pool a little bit and make it tougher
to get into good pool. The same three pools can also be defined for only one
strategy, which we have in case of Mutation.

For generating a new strategy st by Crossover, we use the pools as follows.
We use two parameters pgood and pindiff , pgood + pindiff ≤ 1, that define the
percentages for the SAPs taken from the pools. If st is supposed to have q SAPs,
then we randomly select

– �pgood × q� SAPs out of good pool,
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– �pindiff × q� SAPs out of good pool ∪ indiff pool, and
– q−�pgood×q� - �pindiff ×q� SAPs out of good pool ∪ indiff pool ∪ bad pool.

This means that for each of the q SAPs needed, SAPs in good pool have a chance
to be selected, while SAPs in the other pools are eligible for less “positions” in
the new strategy. Note that in the case of a pool containing less SAPs than
needed, all SAPs of this pool are selected and the remaining allotment for this
pool will be selected out of the next lower pool.

The intent of having Mutation is to add new SAPs to the gene pool (i.e.
the SAPs occurring in any strategy of the population). Therefore accountability
aspects are not so important for Mutation. So, we still use the three kinds of
Mutation we discussed in Section 2.2, but we can also add variants of the delete
and exchange Mutations, in which we delete/exchange not a random SAP, but
a random SAP of bad pool.

After having seen the usage of statistic-tuples, one might ask if it is really
necessary to initialize the tuples for the SAPs in a new strategy to a zero-vector.
Why not inherit the statistics from the parent? Due to using the nearest-neighbor
rule for action selection, the statistic-tuples have a certain dependency on the
other SAPs in a strategy, especially with respect to the bad and indiff numbers in
the tuple. If a particular SAP is put into a new strategy, in situations it previously
was responsible for the action taken now another SAP might become responsible
for the action (if its situation is more similar). In addition, if we learn strategies
for several agents in one individual, the statistic tuples reflect accountability of
actions with respect to the actions of the other agents (as already mentioned). In
a new individual, some of the other agents will act differently. Therefore SAPs
should not inherit their statistics from their parents.

4 Pursuit Games and the OLEMAS System

In order to test our improvement of evolutionary learning with accountability of
SAPs, we integrated our approach into the OLEMAS system (see [4] and [2]).
OLEMAS presents many variants of Pursuit Games as an application domain.

4.1 Pursuit Games

Pursuit Games were first introduced in multi-agent systems in [1]. Since then,
many variants of them have been introduced, see [3] for a list of features that
can be varied. The general idea of a Pursuit Game is to have a group of hunter
agents and one or several prey agents that move on a playing field consisting
of connected grids. The goal of the game is to have the hunters catch the prey
within a given limit of so-called turns, where the “catch” can be defined in several
ways (see Section 5).

Due to the many features that can be varied –like number of agents involved,
obstacles, possible actions agents can take, their size, shape and speed, many
possible random influences– very different game variants can be defined, some
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favoring the hunters, some the prey. Developing good strategies for the hunter
agents that achieve the necessary cooperative behavior to win the game, is, even
for a single variant, not always easy. However, given the enormous number of
possible variants, letting the hunters learn their strategies becomes a must.

4.2 Instantiating Our Approach for OLEMAS

In OLEMAS, a situation is described by a vector providing the coordinates of
all visible agents relative to the agent for which the situation is described, in a
fixed agent order. In addition, for each of these agents we also provide in the
vector their type and orientation. The set of actions of an agent can contain,
in addition to moves in the different directions and staying put, turns and for
on-line learning agents “learn”. Associated with each action of an agent is the
number of turns this agent needs to perform the action.

For measuring the similarity of two situations, we sum up the squares of the
difference in numbers of the corresponding coordinate fields and the orientation
fields of the two situation vectors. The function δ, that is used for both, fitness
computation and updating the statistic-tuples, is the sum of the Manhattan
distances between each hunter agent and each prey agent.

5 Experimental Evaluation

We have performed experimental series with a number of variants of Pursuits
Games to evaluate the general usefulness of our improvement. Due to lack of
space, we cannot present all experiments and therefore selected the most dif-
ferent ones with regard to the different features. We tested both the on- and
off-line versions of OLEMAS. In our experiments, we examined the (average)
time needed for learning and the quality of the found solution. The later is ex-
pressed by the (average) number of steps (turns) needed by the hunter agents to
catch the prey and by the success rate, i.e. the percentage of system runs that
have a positive result (i.e. hunters catching the prey within the given limit of
steps). Naturally, the success rate is only of interest if either the game variants
include random factors or we perform on-line learning.

In addition to comparing the base learning algorithm of [3], resp. [4], with
our improvement, we also compared our improvement described in Section 3
with an obvious variant of our general idea of including accountability into EL.
This variant is selecting the SAPs from the parent strategies totally controlled
by the success of the SAPs with the parents, without the additional random
influences that we proposed in Section 3. As we will see, this variant, that we
call pure success-based, is already better than the base algorithm and sometimes
also better than what we proposed in Section 3, which in the following we will
call success-influenced. The overall performance of the success-influenced version
is better than the pure success-based one (see later).

The general setting of all experiments is that we defined a game variant, the
basic parameters of our GA and the basic learning parameters, and between the
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Table 1. Experimental results for off-line learning, times in minutes

Variant Base algorithm Pure success-based Success-influenced
time steps success time steps success time steps success

1 555.00 99 - - - - - - -
2 1144.00 77 50% 1071.00 82 60% 971.00 51 60%
3 20.18 73 60% 20.70 37 70% 9.18 30 85%
4 34.25 51 70% 17.18 47 80% 12.07 45 80%
5 - - - 544.00 326 20% 375.00 272 15%
6 0.38 73.5 100% 0.18 59.4 100% 0.23 59.9 100%
7 375.00 107 30% 281.00 47 55% 244.00 51 55%
8 5.18 190 - 4.85 109 - 5.03 177 -
9 82.07 43 - 79.05 44 - 74.00 31 -
10 69.10 71 - 41.18 69 - 40.67 57 -
11 135.18 117 - 82.07 91 - 60.00 72 -

Table 2. Experimental results for on-line learning, times in minutes

Variant Base algorithm Pure success-based Success-influenced
time steps success time steps success time steps success

1 6.65 153.4 90% 8.58 232.9 80% 7.38 197.4 90%
2 448.00 97.3 60% 464.00 79.2 70% 419.00 65.4 70%
3 0.36 59.8 90% 0.33 50.4 100% 0.24 48.1 100%
4 0.32 54.1 95% 0.30 50.4 100% 0.28 41.5 100%
5 177.12 61.3 65% 105.00 71.9 85% 92.23 60.9 90%
6 0.29 35 100% 0.19 29.4 100% 0.20 32.4 100%
7 132.08 72.5 55% 111.23 51.7 70% 103.98 40.1 80%
8 2.70 214.5 80% 2.34 199.3 80% 2.37 201.3 75%
9 5.78 141.9 90% 2.59 68.8 100% 2.90 65.5 100%
10 14.05 73.5 55% 11.08 61.8 65% 10.68 39.7 70%
11 7.00 171.3 45% 5.13 116.7 55% 3.53 64.9 90%

three tested learning algorithm variants the only differences are whether and
how the statistical data of the SAPs was used in the Genetic Operators. For
the success-influenced variant, the values used for the parameters defining the
influence of the different pools are pgood=0.65 and pindiff=0.25. The additional
parameters of Section 3 were good min = 0 and bad max = 0. For Mutation, we
only used the three kinds we discussed in Section 2.2 with the same probability.

The game variants with fixed start positions have these positions depicted in
Figure 1. Also in Figure 1, on the right side, we present names for the different
agent shapes used in the experiments. In variants 1,8,9,and 11 the goal of the
game is to “kill” the prey(s), i.e. a hunter occupying a grid field that is also
occupied by the prey (for variant 8, both preys have to be killed at the same
time). In all other variants, the game goal is to immobilize the prey. In game
variants with only one hunter, this hunter’s strategy is to be learned. In variants
2 and 7, both hunters’ strategies are learned, resp. both hunters perform on-
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Fig. 1. Start positions for game variants and shapes of agent types

line learning. In variant 3, we have a hunter of type H1 (learning) and one of
type H2 with a fixed strategy (simply moving towards the prey, which forces the
other hunter to come up with a good support strategy). This fixed strategy is
also employed by one hunter of type H2 in variant 4, the hunter of shape H2 in
variant 5 and the hunter of type H3 in variant 6. The learning hunter in variant
4 also has shape H2, while the learning hunter in variant 6 has shape H1. The
preys in variants 1,3,4,6 and 8 to 11 use a strategy that tries to evade the nearest
hunter, while in the other variants the preys move randomly. If not otherwise
depicted, the preys are of type P1. Note that variants 2 and 11 have an infinite
grid, while all other variants are played on a 30×30 grid.

Let us first look at the results for off-line learning in Table 1. With the
exception of the maze variant 1, both the pure success-based and the success-
influenced modifications outperform the original algorithm. For many variants,
we have large improvements in run (i.e. learning) time and where the improve-
ments are not so big, we see large reductions in the number of steps, i.e. in the
quality of the found strategies. Comparing our two modifications, for 8 of the
variants the success-influenced approach is faster (often substantially), while for
the other two it is not much slower.

For on-line learning (see Table 2), we again have no improvement by either
of our modifications for the maze variant 1, while for all other game variants
the success-influenced algorithm has better run times, better average number of
steps and (with one exception) a higher success rate. The pure success-based
method is always better than the base algorithm in at least one measure, but
not consistently with all measures. If we compare our two modifications then the
success-influenced one has the upper hand for most variants and for those where
it does not, it is very close (for variant 9, the run time is not so close, but the
average number of steps is better, instead).

So, with the exception of variant 1 (in fact, we tried several other, more
complex mazes and variant 1 is typical for the outcome), including accountability
of SAPs into EL leads to substantial improvements with regards to both learning
time and quality of the found (cooperative) strategies. Why do our modifications
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lead to worse performances for mazes? Looking at the difference in definition and
performance between the pure success-based approach and the success-influenced
approach (that we propose as the approach to choose in future) helps us to find
the reasons behind it. And these reasons go back to the general problem of
exploration vs. exploitation that learning approaches of behavior have.

Obstacles in general, but very especially mazes require from an agent a lot
of exploration in order to deal with them. Especially with a function δ that
does not take into account obstacles or other agents that are in the way, it is
very important that agents explore their possibilities long enough to get into
situations that are clearly better. With a maze, rather long action sequences
are required to reach a situation that obviously leads towards the goal (with
some intermediate situations that even might look like they lead away from the
goal) and therefore allows for an appropriate reward for the decisions that led
to the actions. In our base algorithm, the random effects that an evolutionary
algorithm makes use of are responsible for exploring the possibilities. Adding
accountability to the approach by using the statistic data counters the random
effects, obviously more in the pure success-based approach than in the success-
influenced one. Taking away some of the randomness makes it harder to explore
and consequently our improvement is not an improvement at all but instead
makes learning worse. In less extreme situations, with more realistic obstacles,
the success-influenced approach on the one side focuses the randomness, which
results in being better than the base algorithm. On the other side, by having
the accountability of the SAPs just as an influence and not as the only selection
criteria on the SAP level, there is the right amount of randomness there to
explore the situations, which results in the success-influenced approach being
better than the pure success-based approach.

6 Related Work

While using different learning algorithms on different levels of an agent has been
suggested as the future of learning in multi-agent systems (see, for example,
[9]), our improvement of EL by adding accountability does tackle just one level
of learning (although both, our improvement and different algorithms on dif-
ferent levels can be seen as combinations of learning approaches, see the next
paragraph).

Within evolutionary computing, learning classifier systems (LCS) are also
used to learn the behavior of an agent. In fact, as pointed out in [7], LCS can
be seen as a more general technique than reinforcement learning, being able to
mimic it. In LCS, the whole set of individuals (that represent single rules) at any
point in time represents one agent strategy, so that the fitness of an individual
has to be seen as a measure for a strategy component (this is often referred to
as the Michigan approach to evolutionary computing). In contrast, our basic EL
approach has as individual still a whole strategy (this is called the Pittsburgh
approach) and our improvement adds accountability of components on a lower
level. Consequently, we still have the advantages of the basic approach, like
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not having to completely solve the credit assignment problem and judging a
whole strategy after a complete run, but now combined with the accountability
advantage of LCS (and reinforcement learning).

7 Conclusion

We have presented an improvement to evolutionary learning of cooperative be-
havior for agents based on prototypical situation-action pairs and the nearest-
neighbor rule. The improvement aims at accountability of all decisions with
regard to learning, adding a second layer to learning structure within the basic
genetic operators. In our experiments, we used two different ways to make use of
this and our evaluation showed that, with the exception of mazes, both improve-
ments achieved better results than the original evolutionary learning algorithm,
i.e. the time spent for learning was less or the quality of the learned strategies was
better or both. When comparing the two ways of making use of accountability,
a success-influenced approach that combines accountability of SAPs with some
random influences in most cases achieved better results, due to a better mixture
of exploration and exploitation in it, than a pure success-based approach. Since
maze-like settings can be easily detected, our results recommend to employ our
success-influenced approach whenever the setting is not maze-like.
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