Computer Science 351

First Undecidable and Unrecognizable Languages

Instructor: Wayne Eberly

Department of Computer Science University of Calgary

Lecture #13

Two Decidable Languages

ATM is Undecidable

The Complement of ATM is Unrecognizable

Goal for Today

 Identification of a language that is *undecidable*, as well as a language that is *unrecognizable*

Two Decidable Languages

Once again, let

 $\Sigma_{\mathsf{TM}} = \{(,),,,q,s,0,1,2,3,4,5,6,7,8,9,Y,N,L,R,\texttt{\#}\}.$

• This is the input alphabet for the *universal Turing machine* that was described in Lecture #12.

Two Decidable Languages

- Let $TM\subseteq \Sigma^{\star}_{TM}$ be the language of encodings of Turing machines

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$$

as described in Lecture #12.

- Let TM+I ⊆ Σ^{*}_{TM} be the language of encodings of Turing machines *M*, as above, and of input strings ω ∈ Σ^{*} for *M*.
- As noted in Lecture #12, the languages TM and TM+I are both *decidable*. The alphabet Σ_{TM} , and the encoding scheme for Turing machines and their input strings were chosen to make it reasonably easy to confirm this.

Let $A_{TM} \subseteq \Sigma_{TM}^{\star}$ be the language of encodings of Turing machines $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ and input strings $\omega \in \Sigma^{\star}$ such that M accepts ω .

- This is the language of the universal Turing machine, $M_{\rm UTM}$, that was described in Lecture #12.
- It follows, from this, that A_{TM} is *recognizable*.

Claim #1: ATM is undecidable.

Proof: By contradiction.

- **Assume** that A_{TM} is decidable. Then there exists a Turing machine, *M*_{ATM}, that decides A_{TM}.
- Consider the algorithm on the following side.

On input $\mu \in \Sigma_{TM}^{\star}$: 1. if $(\mu \in TM)$ { Let M_{μ} be the Turing machine encoded by μ . if (the input alphabet for M_{μ} is Σ_{TM}) { 2. 3. if $(M_{\mu} \text{ accepts } \mu)$ { 4. reject μ } else { 5. accept } else { reject } 6. 7. } else { reject } }

- The test at line 1 can be carried out because the language TM is decidable.
- If the test at line 1 is passed then μ encodes some Turing machine

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$$

The test at line 2 simply asks whether $|\Sigma| = |\Sigma_{TM}| = 20$ — and this is easily checked using the encoding, μ for *M*.

- Suppose that the test at line 2. For a string $\omega \in \Sigma_{\text{TM}}^*$, let $e(\omega)$ be the *longer* string in Σ used to "encode" ω as an input string for the Turing machine, M_{μ} . As described in Lecture #12, this depends on the size of M_{μ} 's tape alphabet, Γ but $e(\omega)$ can certainly be computed if both ω and the input, μ , of the Turing machine M_{μ} are available.
- The test at line 3 is passed if and only if the string

 $(\mu, \boldsymbol{e}(\mu))$

belongs to A_{TM} . Since this string can certainly be computed using the input string, μ , it follows by the *assumption*, that A_{TM} is decidable, that this test can also be carried out.

- Since the remaining steps simply either accept or reject the input, it follows that there is a Turing machine, M_D, which implements this algorithm, and which *decides* a language L_D ⊆ Σ^{*}_{TM}.
- Let $\mu \in \Sigma^{\star}_{TM}$ be a string that encodes this Turing machine, M_D so that " M_{μ} " is the Turing machine M_D .
- Either $\mu \in L_D$, or $\mu \notin L_D$.

$\mu \in L_D \implies M_D \text{ accepts } \mu$

(since M_D decides L_D)

- \implies The step at line 5 is reached when the algorithm implemented by M_D is executed on input μ
- \implies The test at line 3 has failed
- \implies M_{μ} does not accept μ
- \implies *M*_D does not accept μ (since *M*_{μ} = *M*_D)
- $\implies \mu \notin L_D$ (since M_D decides L_D).

Since a claim cannot be true if it implies its own negation, it follows that $\mu \notin L_D$.

On the other hand, since $\mu \in TM$ and μ encodes a Turing machine with input alphabet Σ_{TM} , The tests at lines 1 and 2 are passed when this algorithm is executed on input μ , so that μ can only be rejected by reaching and executing the step at line 4. Thus

$$\mu \notin L_D \implies M_D \text{ rejects } \mu \qquad (\text{since } M_D \text{ decides } L_D)$$

- \implies The step at line 4 is reached when the algorithm implemented by M_D is executed on input μ
- \implies The test at line 3 has passed
- \implies M_{μ} accepts μ
- \implies M_D accepts μ (since $M_\mu = M_D$)

 $\implies \mu \in L_D$

(since M_D decides L_D).

Once again, a claim that implies its own negation cannot be true. It now follows that $\mu \in L_D$.

A_{TM} is Undecidable

- Since a *contradiction* has now been obtained (because it cannot be true both that µ ∉ L_D and that µ ∈ L_D) the only *assumption*, that was made, must be incorrect.
- Thus A_{TM} is undecidable, as claimed.

Claim #2: Let $L \subseteq \Sigma^*$ (for some alphabet Σ). If both L and its complement,

$$L^{\mathcal{C}} = \Sigma^{\star} \setminus L = \{ \omega \in \Sigma^{\star} \mid \omega \notin L \}$$

are *recognizable*, then *L* is *decidable*.

Proof: Suppose that both *L* and L^C are recognizable.

- Then there exists a Turing machine M_Y, with input alphabet Σ, whose language is L, as well as a Turing machine M_N, with input alphabet Σ, whose language is L^C.
- We may assume L ≠ Ø and L ≠ Σ* became these languages are both decidable (and it is sufficient to consider other subsets of Σ* in order to prove the claim).

How Not to Prove This:

• We cannot just run one of these machines on the input string, and then run the other machine after that because each of these machines might loop on the given input string!

What To Do, Instead:

- We will run both computations by parallel by interleaving, or *dovetailing* them.
- A two-tape Turing machine that uses this approach to *decide* the language *L* will be described.
- It will follow, by a result already established about multi-tape Turing machines, that there is also a standard Turing machine that decides *L* — that is, *L* is *decidable*, as claimed.

Starting the Computation:

On input $\omega \in \Sigma^{\star}$ {

- 1. Write a copy of ω on the second tape, restoring the copy of ω on the first tape afterwards (so that both store a copy of ω) with both tape heads at the left end of their tapes.
- 2. Use the finite control to remember that both M_Y and M_N are in their start states.

Now, the *first* tape can be used to simulate the execution of M_Y on input ω while the second tape can be used to simulate the execution of M_N on input ω . The finite control will be used to remember which state each machine would be in, at each point during this simulation.

Continuing the Computation:

- 3. while (true) $\{$
- 4. Use Tape #1 and the finite control to carry out the next step in the execution of M_Y on input ω .
- 5. if $(M_Y \text{ accepted}, \text{ at this point})$ {
- 6. accept
- 7. } else if (M_Y rejected at this point) {

8. reject

The loop, started at line 3, continues on the next slide...

Continuing the Computation ...

- 9. Use Tape #2 and the finite control to carry out the next step in the execution of M_N on input ω .
- 10. if $(M_N \text{ accepted at this point})$ {

```
11. reject
```

12. } else if (M_N rejected at this point) {

The execution ends if and only if one of the steps at lines 6, 8, 11 or 13 is reached.

Consider an execution of a string $\omega \in \Sigma^*$ such that $\omega \in L$.

- Since L(M_Y) = L, M_Y accepts ω after k steps for positive integer k.
- It is possible that *M_N rejects* ω after ℓ steps for some integer ℓ such that 1 ≤ ℓ ≤ k − 1. In this case the step at line 13 is reached, and ω is *accepted*, during the ℓth execution of the body of the loop.
- Otherwise, the step at line 6 is reached and ω is *accepted* during the kth execution of the body of the loop.

Thus every string $\omega \in L$ is *accepted* by this two-tape Turing machine.

Consider an execution of a string $\omega \in \Sigma^*$ such that $\omega \notin L$.

- Since L(M_N) = L^C, M_N accepts ω after k steps for positive integer k.
- It is possible that *M_Y rejects* ω after ℓ steps for some integer ℓ such that 1 ≤ ℓ ≤ k. In this case the step at line 8 is reached, and ω is *rejected*, during the ℓth execution of the body of the loop.
- Otherwise, the step at line 11 is reached and ω is *rejected* during the kth execution of the body of the loop.

Thus every string $\omega \in \Sigma^*$ such that $\omega \notin L$ is *rejected* by this two-tape Turing machine.

It follows from the above that this two-tape Turing machine *decides* the language *L*.

• As noted above it follows, by a result already established for multi-tape Turing machines, that *L* is *decidable*, as claimed.

The Complement of A_{TM} is Unrecognizable

Corollary #3 The language A_{TM}^C (that is, the complement of the language A_{TM}) is unrecognizable.

Proof: By contradiction.

- **Assume** that A_{TM}^C is recognizable.
- As noted above, it was proved in Lecture #12 that A_{TM} is recognizable.
- It now follows by Claim #2 (with L = A_{TM}) that A_{TM} is decidable.
- However, this *contradicts* Claim #1, which established that A_{TM} is undecidable.
- Our *assumption* must, therefore, be false: A^C_{TM} is unrecognizable, as claimed.

Finishing Up

- Claim #1 was proved using a *diagonalization* argument. These have been used in mathematics to prove a variety of significant results — including the fact that the set ℝ of real numbers is "uncountable".
- The technique used to prove Claim #2 sometimes called dovetailing — is also useful for proving at least a few more interesting properties of the set of recognizable languages.
- However, we *will not* be using these techniques to prove that other languages are undecidable or unrecognizable. Techniques that *will* be used this will be introduced in Lecture #14.