Lecture \#13: First Hard and Undecidable Languages Lecture Presentation

Preliminaries: Listing Various Kinds of Infinite Sets

Countable Sets

Let $\mathbb{N}=\{0,1,2,3, \ldots\}$ be the set of non-negative integers.
A set S is countable is there is a total function $f: \mathbb{N} \rightarrow S$ that is surjective, that is "onto": For every element x of S there exists a non-negative integer n such that $f(n)=x$.

- Any non-empty finite set

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}
$$

is countable: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ such that, for every non-negative integer n,

$$
f(n)= \begin{cases}x_{n+1} & \text { if } 0 \leq n \leq k-1 \\ x_{k} & \text { if } n \geq k\end{cases}
$$

This is a well-defined total function from \mathbb{N} to S. To see that it is surjective, let $x \in S$. Then $x=x_{i}$ for some integer i such that $1 \leq i \leq k$, and $f(i-1)=x_{i}=x$. Since x was arbitrarily chosen from S it follows that f is surjective (and S is countable.

As the examples to follow show, some (but not all) infinite sets are countable, as well.

Countability of the Set of Strings over an Alphabet

Consider an alphabet

$$
\Sigma=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right\}
$$

- For every non-negative integer n, the number of strings in Σ^{\star}, with length n, is k^{n}.
- For every non-negative integer n, the number of strings in Σ^{\star}, with length at most n is

$$
\begin{equation*}
\mu(n)=\sum_{i=0}^{n} k^{i}=\frac{k^{n+1}-1}{k-1} \tag{1}
\end{equation*}
$$

— using a formula for the closed form of a geometric series that you have, ideally, seen before.

- Consider a map $\rho: \Sigma \rightarrow \mathbb{N}$ such that $\rho\left(\sigma_{i}\right)=i-1$ for every integer i such that $1 \leq i \leq k$. Then

$$
\begin{aligned}
& \{j \in \mathbb{N} \mid j=\rho(\alpha) \text { for a symbol } \alpha \\
& \qquad=\Sigma\} \\
& \qquad=\{j \in \mathbb{N} \mid 0 \leq j \leq k-1\}=\{0,1,2, \ldots, k-1\} .
\end{aligned}
$$

- This can be extended to obtain a mapping ρ_{n} from the set of strings in Σ^{\star} with length n, to \mathbb{N}, by setting

$$
\begin{aligned}
\rho_{n}\left(\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right) & =\sum_{i=1}^{n} \rho\left(\alpha_{i}\right) \cdot k^{n-i} \\
& =\rho\left(\alpha_{1}\right) \cdot k^{n-1}+\rho\left(\alpha_{2}\right) \cdot k^{n-2}+\cdots+\rho\left(\alpha_{n-1}\right) \cdot k+\rho\left(\alpha_{n}\right) .
\end{aligned}
$$

Suppose, for example, that $\Sigma=\{0,1\}=\left\{\sigma_{1}, \sigma_{2}\right\}$ (where $\sigma_{1}=0$ and $\sigma_{2}=1$) - so that $\rho(0)=\rho\left(\sigma_{1}\right)=0$ and $\rho(1)=\rho\left(\sigma_{2}\right)=1$. If $n=3$ then this defines a mapping $\left.\rho_{3}\right)$ such that $\rho_{3}(000)=0, \rho_{3}(001)=1, \rho_{3}(010)=2, \rho_{3}(011)=3, \rho_{3}(100)=4, \rho_{3}(101)=5$, $\rho_{3}(110)=6$, and $\rho_{3}(111)=7$.
A Useful Property: In general, if $|\Sigma|=k$ as above, and $n \in \mathbb{N}$ then, for every integer i such that $0 \leq i \leq k^{n}-1$, there is exactly one string $\omega \in \Sigma^{\star}$ such that $|\omega|=k$ and $\rho_{k}(\omega)=i$.

- Consider a mapping $\widehat{\rho}: \Sigma^{\star} \rightarrow \mathbb{N}$ such the following properties are satisfied:
(i) $\widehat{\rho}(\lambda)=0$.
(ii) For every positive integer n, and for every string $\omega \in \Sigma^{\star}$ such that $|\omega|=n$,

$$
\begin{equation*}
\widehat{\rho}(\omega)=\mu(n-1)+\rho_{n}(\omega) . \tag{2}
\end{equation*}
$$

Once again, consider the alphabet $\Sigma=\{0,1\}$ (where $\sigma_{1}=0$ and $\sigma_{2}=1$) as above. The values $\widehat{\omega}(\omega)$, for every string $\omega \in \Sigma^{\star}$ such that $|\omega| \leq 3$, is as shown in the following table.

ω	$n=\|\omega\|$	$\mu(n-1)$	$\rho_{n}(\omega)$	$\widehat{\rho}(\omega)$
λ				0
0	1	1	0	1
1	1	1	1	2
00	2	3	0	3
01	2	3	1	4
10	2	3	2	5
11	2	3	3	6
000	3	7	0	7
001	3	7	1	8
010	3	7	2	9
011	3	7	3	10
100	3	7	4	11
101	3	7	5	12
110	3	7	6	13
111	3	7	7	14

Now, since $\mu(3)=15$ one can also see that $\widehat{\rho}(0000)=15=\widehat{\rho}(111)+1$.
It is possible to prove - for every alphabet Σ - that the function $\widehat{\rho}: \Sigma^{\star} \rightarrow \mathbb{N}$ is an bijective function: For every non-negative integer ℓ, there is exactly one string $\omega_{\ell} \in \Sigma^{\star}$ such that $\widehat{\rho}\left(\omega_{\ell}\right)=\ell$.
Continuing this example, one sees that that, for $\Sigma=\{0,1\}, \omega_{0}=\lambda, \omega_{1}=0, \omega_{2}=1$, $\omega_{3}=00$ - and the strings ω_{ℓ} for listed, for increasing ℓ, by continuing down the rows of the table.

Since the function $\widehat{\rho}$ is injective, it has a well-defined inverse function, namely, a function $f: \mathbb{N} \rightarrow \Sigma^{\star}$ such that $f\left(\widehat{\rho}(\omega)=\omega\right.$ for every string $\omega \in \Sigma^{\star}$ and $\widehat{\rho}(f(\ell))=\ell$ for every non-negative integer ℓ. The function f is certainly surjective (since it is also "injective") — is needed to establish that — for every alphabet Σ — the set Σ^{\star}, of all strings over Σ, is a countable set.

What Does This "Listing" of Strings in Σ^{\star} Formalize?

Application for Turing Machines

Consider the set of Turing machines - as given by strings in the language $\mathrm{TM} \subseteq \Sigma_{\mathrm{TM}}^{\star}$. One can show that the set of Turing machines is a countable set - and describe a way to list all Turing machines in a sequence

$$
M_{0}, M_{1}, M_{2}, M_{3}, \ldots
$$

(where each Turing machine could be listed more than once, but is always listed at least once), as follows:

One can also show that the set of Turing machines with the form

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)
$$

such that $\Sigma=\{0,1\}$ (that is, $|\Sigma|=2$) is a countable set - and describe a way to list all such Turing machines

$$
\widehat{M}_{0}, \widehat{M}_{1}, \widehat{M}_{2}, \widehat{M}_{3}, \ldots
$$

(where every such Turing machine could be listed more than once, but is always listed at least once), as follows:

What This Gives Us

Claim. There exists a language $L \subseteq \Sigma^{\star}$, where $\Sigma=\{0,1\}$, such that L is unrecognizable.
Proof: By contradiction. Let us assume that every language $L \subseteq \Sigma^{\star}$, where $\Sigma=\{0,1\}$, is recognizable. Then...

What Else Can We Establish Using This Idea?

Why is This Not Sufficient - Why Do We Need the Result in the Notes, Too?

