Lecture #14: Oracle Reductions Lecture Presentation

Consider the language LOOP_{TM} $\subseteq \Sigma^{\star}_{TM}$, including encodings of Turing machines M and input strings ω for M such that M **loops** on ω .

At this point in the course several similar languages have been considered:

- The language TM+I $\subseteq \Sigma_{TM}^{\star}$ of encodings of Turing machines M and input strings ω for M. This language is **decidable** and it follows from the definitions of these languages that LOOP_{TM} $\subseteq \Sigma_{TM}$.
- The language A_{TM} ⊆ Σ^{*}_{TM} of encodings of Turing machines M and input strings ω for M such that M accepts ω.

This language is *recognizable*: A multi-tape Turing machine with language A_{TM} (called a "universal Turing machine") was described in Lecture #12 — and it follows, by results about multi-tape Turing machines included in Lecture #10, that there must also exist a standard (single tape) Turing machine, $M_{A_{TM}}$, whose language is A_{TM} , as well.

On the other hand it was proved in Lecture #13, that the language A_{TM} is *undecidable*.

The goal of this lecture presentation will be to use an *oracle reduction* — along with the above information — to prove that the language LOOP_{TM} is also *undecidable*.

Which Reduction Should We Use? Why?

An Algorithm That Uses a Subroutine

Adding Implementation-Level Details

How One Would Finish (If We Had Time and Wanted To Do Everything

Conclusion