Process

Properties

Computer Science 313 Many-One Reductions

Instructor: Wayne Eberly

Department of Computer Science University of Calgary

Lecture #15

Many-One Reductions

Let Σ_1 and Σ_2 be two alphabets (possibly the same) and let $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$ be two languages over these alphabets.

Definition: A **many-one reduction** from L_1 to L_2 is a **total** function

$$f: \Sigma_1^\star o \Sigma_2^\star$$

such that the following properties are satisfied.

(a) For every string ω ∈ Σ₁^{*}, ω ∈ L₁ *if and only if* f(ω) ∈ L₂.
(b) The function *f* is computable.

We will say that L_1 is *many-one reducible* to L_2 , and write

 $L_1 \preceq_M L_2$

if a many-one reduction from L_1 to L_2 exists.

Process

Properties

Many-One Reductions

 It might help to think of a many-one reduction as being like a *signal converter*:

It is, effectively, converting an instance of *one* problem into an instance of *another* problem that has the same solution as the instance it was given.

An Example of a Many-One Reduction

Recall that

• TM = {
$$\zeta \in \Sigma_{TM}^{\star}$$
 |

 ζ is a valid encoding of a Turing machine M}

- TM+I = {ζ ∈ Σ^{*}_{TM} | ζ is a valid encoding of a Turing machine *M* and input string ω for *M*}
- A_{TM}, the subset of TM+I including valid encodings of Turing machines *M* and input strings ω for *M* such that *M* accepts ω.

It has already been argued that TM and TM+I are both *decidable*. On the other hand, A_{TM} is *recognizable* but also *undecidable*.

An Example of a Many-One Reduction

Now consider another language:

 HALT_{TM}, the subset of TM+I including valid encodings of Turing machines *M* and input strings ω for *M* such that *M halts* when executed on input ω.

An Example of a Many-One Reduction

Consider a function

$$f_1: \Sigma^{\star}_{\mathsf{TM}} \to \Sigma^{\star}_{\mathsf{TM}}$$

that is defined as follows, for an input $\zeta \in \Sigma^{\star}_{TM}$.

- If $\zeta \in \Sigma^{\star}_{\mathsf{TM}}$ and $\zeta \notin \mathsf{TM}+\mathsf{I}$ then $f_1(\zeta) = \zeta$.
- Suppose, instead, that ζ ∈ TM+I so that ζ encodes some Turing machine

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$$

with an input alphabet Σ and some string $\omega \in \Sigma^{\star}$.

Example of a Many-One Reduction

Let

$$\textit{M}_{1} = (\textit{Q}, \Sigma, \Gamma, \widehat{\delta}, \textit{q}_{0}, \textit{q}_{accept}, \textit{q}_{reject})$$

with the same set of states, input alphabet, tape alphabet, start state, accepting state and halting state, but where, for $q \in Q \setminus \{q_{\text{accept}}, q_{\text{reject}}\}$ and $\sigma \in \Gamma$,

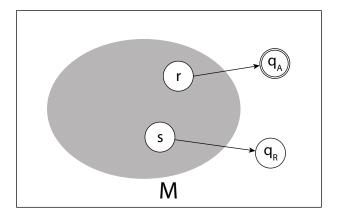
$$\widehat{\delta}(\boldsymbol{q}, \sigma) = \begin{cases} \delta(\boldsymbol{q}, \sigma) & \text{if } \delta(\boldsymbol{q}, \sigma) = (\boldsymbol{r}, \tau, \boldsymbol{m}) \text{ where } \boldsymbol{r} \neq \boldsymbol{q}_{\text{reject}}, \\ (\boldsymbol{q}_{\text{accept}}, \tau, \boldsymbol{m}) & \text{if } \delta(\boldsymbol{q}, \sigma) = (\boldsymbol{q}_{\text{reject}}, \tau, \boldsymbol{m}) \end{cases}$$

where $r \in Q$, $\tau \in \Gamma$, and $m \in \{L, R\}$ in the above definition.

Thus transitions to the *rejecting* state are replaced with similar transitions to the *accepting* state in M_1 , and everything else is the same.

Example of a Many-One Reduction

That is, if *M* looks like this...

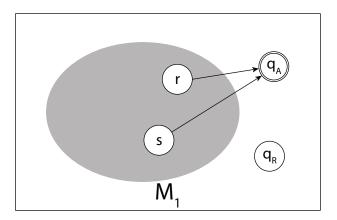


Process

Properties

Example of a Many-One Reduction

Then M_1 looks like this, instead...



 Now, if ζ encodes M and ω, let f₁(ζ) be a string in Σ^{*}_{TM} that encodes M₁ and ω, instead.

Example of a Many-One Reduction

Claim #1: If $\zeta \in \Sigma_{TM}^{\star}$ and $\zeta \in HALT_{TM}$ then $f_1(\zeta) \in A_{TM}$.

Proof: Suppose that $\zeta \in HALT_{TM}$. Then $\zeta \in TM+I$ and ζ encodes some Turing machine

 $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

and string $\omega \in \Sigma^*$ such that *M* halts when it is executed on input ω .

Let $f_1(\zeta)$ be as described, so that $f_1(\zeta)$ encodes the above Turing machine M_1 and the input string ω .

Since *M* halts when executed on the input ω either *M* accepts ω or *M* rejects ω . These cases are considered separately.

Example of a Many-One Reduction

Case: M accepts ω .

- In this case M₁ accepts ω too, because M₁ follows exactly the same sequence of configurations as M does.
- Since $f_1(\zeta)$ encodes M_1 and ω it now follows that $f_1(\zeta) \in A_{TM}$ as claimed.

Example of a Many-One Reduction

Case: M rejects ω .

- Consider the penultimate (second-to-last) configuration that *M* reaches when executed on input ω. *M*₁ reaches this configuration too.
- However, if *M* is in state *q* ∈ *Q* \ {*q*_{accept}, *q*_{reject}} at this point and a symbol *σ* ∈ Γ is visible on *M*'s tape then since *M* rejects *ω* in its next move *M* continues by applying a transition

$$\delta(\boldsymbol{q},\sigma) = (\boldsymbol{q}_{\mathsf{reject}},\tau,\boldsymbol{m})$$

for some symbol $\tau \in \Gamma$ and for $m \in \{L, R\}$.

Example of a Many-One Reduction

• M_1 must continue, instead, by applying a transition

$$\widehat{\delta}(\boldsymbol{q}, \sigma) = (\boldsymbol{q}_{\text{accept}}, \tau, \boldsymbol{m})$$

so that M_1 *accepts* ω in its next step, instead.

Once again, since *f*₁(ζ) encodes *M*₁ and ω, it follows that *f*₁(ζ) ∈ A_{TM} in this case too — as needed to complete the proof of the claim.

Example of a Many-One Reduction

Claim #2: If $\zeta \in \Sigma_{TM}^{\star}$ and $\zeta \notin HALT_{TM}$ then $f_1(\zeta) \notin A_{TM}$.

Proof:

 Suppose that ζ ∈ Σ^{*}_{TM} and ζ ∉ HALT_{TM}. Then either ζ ∉ TM+I or ζ ∈ TM+I but ζ ∉ HALT_{TM}; these cases are considered separately.

Case: ζ ∉ TM+I.

In this case f₁(ζ) = ζ ∉ TM+I, so that f₁(ζ) ∉ A_{TM}, as required.

Example of a Many-One Reduction

Case: $\zeta \in TM+I$ but $\zeta \notin HALT_{TM}$.

- In this case ζ encodes the Turing machine *M* and input string ω as described above.
- In this case *M* loops on ω .
- However, M_1 loops on ω too. Indeed, M_1 follows the same infinite sequence of transitions on the input ω as M does.
- Since f₁(ζ) encodes M₁ and ω it follows that f₁(ζ) ∉ A_{TM} in this case too as needed to complete the proof of this claim.

Example of a Many-One Reduction

Claim #3: The total function $f_1 : \Sigma^*_{TM} \to \Sigma^*_{TM}$ is a computable total function.

Proof: It follows from its definition that f_1 is a total function from Σ^*_{TM} to Σ^*_{TM} . It remains to prove that f_1 is also a **computable** function.

 Recall that the language TM+I is decidable, so that it is possible to include a test

if ($\zeta \in \mathsf{TM+I}$)

as part of an algorithm that computes f_1 .

Now, if ζ ∉ TM+I then f₁(ζ) = ζ. The identity function is *certainly* computable - so it remains only to prove that f₁(ζ) is also computable when ζ ∈ TM+I.

Example of a Many-One Reduction

 Suppose, now, that ζ ∈ TM+I. Then — as described in Lecture #12 — ζ has the form

$$(\nu,\rho) \tag{1}$$

where ν encodes a Turing machine and ρ encodes an input string for this Turing machine.

The encoding, ρ , does not include any commas, so that the comma between ν and ρ , shown above, is the *rightmost* comma in ζ — making the substrings ν and ρ easy to find.

Example of a Many-One Reduction

• As described in Lecture #12, if ν encodes a Turing machine

 $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

then ν has the form

$$(\alpha, \beta, \gamma, \varphi)$$
 (2)

where

- α encodes the set Q of states in M;
- β encodes the input alphabet Σ ;
- γ encodes the tape alphabet Γ ; and
- φ encodes the transition function δ .

The substrings α , β and γ do not include any commas so that the commas separating the substrings, above, are the first three commas in ν . This makes the substrings α , β , γ and δ easy to find.

Example of a Many-One Reduction

A consideration of the description of encodings of transition functions, previously supplied, should confirm that it is easy to produce a string φ encoding the transition function for *M*₁ from the string φ encoding the transition function for *M*: All that you need to do is replace occurrences of N in φ with occurrences of Y in φ — leaving all other symbols unchanged.

Example of a Many-One Reduction

 A string ν̂ encoding M₁ can be computed from ν that encodes M as well — for ν̂ has the form

(α , β , γ , $\widehat{\varphi}$)

where α , β and γ are as shown at line (2), above.

It now follows that f₁(ζ) is computable from ζ: f₁(ζ) has the form

 $(\hat{\nu}, \rho)$

where ρ is as shown at line (1), above.

This completes the proof of Claim #3.

Example of a Many-One Reduction

Since all properties of a "many-one reduction" have now been established it follows that the above function

$$\mathit{f}_1: \Sigma^\star_{TM} \to \Sigma^\star_{TM}$$

is a many-one reduction from $HALT_{TM}$ to A_{TM} . Thus

 $\mathsf{HALT}_{\mathsf{TM}} \preceq_{\mathsf{M}} \mathsf{A}_{\mathsf{TM}}.$

Process Followed To Provide a Mapping Reduction

To prove that a language $L_1 \subseteq \Sigma_1^*$ is many-one reducible to a language $L_2 \subseteq \Sigma_2^*$,

- 1. Clearly and precisely describe a *total* function $f : \Sigma_1^* \to \Sigma_2^*$.
- 2. *Prove* that if $x \in L_1$ then $f(x) \in L_2$ for every string $x \in \Sigma^*$.
- 3. *Prove* that if $x \notin L_1$ then $f(x) \notin L_2$ for every string $x \in \Sigma^*$.
- 4. **Sketch a Proof** that *f* is computable including enough detail for it to be reasonably clear that you really *could* write a Python or Java program that computes this function from strings to strings.

This process has been followed in the above example.

Mistakes To Watch For and Avoid

- Giving a definition of *f* that is vague, ambiguous, or just-plain-unreadable.
- Defining a *partial* function from Σ₁^{*} to Σ₂^{*} (that is not defined for every string x ∈ Σ₁^{*}) instead of a *total function*.
- Forgetting about step 3, above It is *not* sufficient just to show that if *x* ∈ *L*₁ then *f*(*x*) ∈ *L*₂.
- Failing to include enough detail at the end for it to be clear that your function *f* really *is* computable sometimes because *f* has not been clearly defined and sometimes because it has, but *f* is not actually computable at all!

The Set of Many-One Reductions Forms a Reducibility

- Recall that a *reducibility* is any binary relation ≤_Q between languages (possibly over different alphabets) such the following properties are satisfied.
 - (a) L ≤_Q L for every language L ⊆ Σ^{*} (and for every alphabet Σ).
 - (b) For all languages L₁ ⊆ Σ₁^{*}, L₂ ⊆ Σ₂^{*} and L₃ ⊆ Σ₃^{*} (and alphabets Σ₁, Σ₂ and Σ₃) if L₁ ≤_Q L₂ and L₂ ≤_Q L₃ then L₁ ≤_Q L₃.
- One kind of reducibility the set of all oracle reductions between languages was introduced in the previous lecture.

The Set of Many-One Reductions Forms a Reducibility

Claim #4: The set of many-one reductions forms a reducibility.

- This means that L ≤_M L for every language L ⊆ Σ* (and every alphabet Σ) and that, for all languages L₁ ⊆ Σ^{*}₁, L₂ ⊆ Σ^{*}₂ and L₃ ⊆ Σ^{*}₃ (for alphabets Σ₁, Σ₂ and Σ₃), if L₁ ≤_M L₂ and L₂ ≤_M L₃ then L₁ ≤_M L₃.
- A proof of Claim #4 is given in a supplemental document for this lecture.

A Relationship Between Reducibilities

Claim #5: Let $L_1 \subseteq \Sigma_1^*$ and let $L_2 \subseteq \Sigma_2^*$. If $L_1 \preceq_M L_2$ then $L_1 \preceq_O L_2$.

Proof: Let $L_1 \subseteq \Sigma_1^*$ and let $L_2 \subseteq \Sigma_2^*$ such that $L_1 \preceq_M L_2$.

- Then there exists a total function *f* : Σ₁^{*} → Σ₂^{*} such that ω ∈ L₁ if and only if *f*(ω) ∈ L₂ for all ω ∈ Σ₁^{*} such that *f* is computable.
- Consider an oracle Turing machine with an oracle for L₂ that does the following when given an input string ω ∈ Σ₁^{*}: Compute f(ω), writing this onto the query tape and enter the query state. If the oracle Turing machine is in its "Yes" state immediately after that then *accept* ω. Otherwise *reject* ω.
- Comparisons of definitions confirms that this gives an oracle reduction from L₁ to L₂ — as needed to establish the claim.

Process

Properties

Closure Properties

Claim: #6 Suppose that $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$ (for alphabets Σ_1 and Σ_2) are languages such that $L_1 \preceq_M L_2$. If L_2 is decidable then L_1 is decidable too.

Claim #7: Suppose that $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$ (for alphabets Σ_1 and Σ_2) are languages such that $L_1 \preceq_M L_2$. If L_2 is recognizable then L_1 is recognizable too.

• Proofs of Claim #5 and #6 are given in a supplemental document for this lecture.

Process

Properties

Closure Properties

The following are "corollaries" of Claim #6 and of Claim #7, respectively.

Corollary #8: Suppose that $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$ (for alphabets Σ_1 and Σ_2) are languages such that $L_1 \preceq_M L_2$. If L_1 is undecidable then L_2 is undecidable too.

Corollary #9: Suppose that $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$ (for alphabets Σ_1 and Σ_2) are languages such that $L_1 \preceq_M L_2$. If L_1 is unrecognizable then L_2 is unrecognizable too.

Another Way to Prove Undecidability

Another process to prove that a language $L \subseteq \Sigma^{\star}$ is undecidable:

- Choose another language L
 ⊆ Σ
 ^{*} (over some alphabet Σ
) such that L
 is undecidable.
- Prove that $\widehat{L} \preceq_{\mathsf{M}} L$.
- Conclude, by Corollary #8, above, that *L* must be undecidable too.

Process

Properties

A Way to Prove Unrecognizability

A process to prove that a language $L \subseteq \Sigma^{\star}$ is unrecognizable:

- Choose another language L
 ⊆ Σ
 ^{*} (over some alphabet Σ
) such that L
 is unrecognizable.
- Prove that $\widehat{L} \preceq_{\mathsf{M}} L$.
- Conclude, by Corollary #9, above, that *L* must be unrecognizable too.

A Relationship Between Reducibilities

Claim #10: There exist languages $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$ (for alphabets Σ_1 and Σ_2) such that $L_1 \preceq_O L_2$ but $L_1 \not\preceq_M L_2$. *Proof:* Recall, by Claim #11 from the previous lecture, that there exist languages $L \subseteq \Sigma^*$ and $\widehat{L} \subseteq \widehat{\Sigma}^*$ (for alphabets Σ and $\widehat{\Sigma}$) such that *L* is not recognizable, \widehat{L} is recognizable, and $L \preceq_O \widehat{L}$. Let $L_1 = L$ and let $L_2 = \widehat{L}$ (so that $\Sigma_1 = \Sigma$ and $\Sigma_2 = \widehat{\Sigma}$).

- It follows by the choice of L_1 and L_2 that $L_1 \preceq_O L_2$, as claimed.
- Suppose that L₁ ≤_M L₂. Then, since L₂ is recognizable it follows by Claim #7 that L₁ must be recognizable. However, since L₁ = L, L₁ is not recognizable and it now follows by this *contradiction* that our assumption must be false. That is, L₁ ∠_M L₂, as needed to establish the claim.

Example

Process

Properties

Who Invented These?

- *Emil Post* was a Polish-American logician and mathematician who made significant contributions to the theory of computation.
- Many-one reductions were first used in a paper published by Post in 1944.