Lecture \#15: Many-One Reductions Lecture Presentation

1. Recall that an alphabet

$$
\Sigma_{D}=\{0,1,2,3,4,5,6,7,8,9\}
$$

was introduced. Following the definitions of the unpadded decimal expansion of a positive integer n, the unpadded decimal representation of a natural number n as a string in Σ_{D}^{\star}, the set Unpad $\subseteq \Sigma_{D}^{\star}$ of unpadded decimal representations of natural numbers, a (possibly) padded decimal representation of a natural number n, and the set Pad $\subseteq \Sigma_{D}^{\star}$ of (possibly) padded decimal representations of natural numbers, a set $S \subseteq \mathbb{N}$ was introduced and used to define two languages, $\mathcal{U}_{S} \subseteq$ Unpad $\subseteq \Sigma_{D}^{\star}$ and $\mathcal{P}_{S} \subseteq \operatorname{Pad} \subseteq \Sigma_{D}^{\star}:$

- $\mathcal{U}_{S} \subseteq$ Unpad is the set of all unpadded decimal representations of numbers $n \in$ S.
- $\mathcal{P}_{S} \subseteq$ Pad is the set of all padded decimal representations of numbers $n \in S$.

Our goal is to prove that $\mathcal{U}_{S} \preceq_{\mathrm{M}} \mathcal{P}_{S}$ for every subset $S \subseteq \mathbb{N}$.

What We Need To Provide - and the Properties It Must Satisfy:

Let $\omega \in \Sigma_{D}^{\star}$. What Can We Set $f(\omega)$ To Be, When $\omega \notin$ Unpad? Why?

What Can We Set $f(\omega)$ To Be, When $\omega \in$ Unpad Why?

The Function f :

A First Claim about f and Its Proof:

A Second Claim About f and Its Proof:

A Third Claim About f and Its Proof:
2. The lecture notes introduced a language $\mathrm{HALT}_{T M} \subseteq T M+1$ and a proof that

$$
\operatorname{HALT}_{T M} \preceq_{M} \mathrm{~A}_{T M} .
$$

Recall that $\mathrm{HALT}_{\text {TM }}$ was the set of encodings of Turing machines

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)
$$

and input string $\omega \in \Sigma^{\star}$ such that M 's execution on the input string ω halts, while $\mathrm{A}_{T м}$ is another subset of TM+I, namely the set of encodings of Turing machines M (as above) and input strings $\omega \in \Sigma^{\star}$ such that M accepts ω.
Suppose we wish to prove that $\mathrm{A}_{T M} \preceq_{\mathrm{M}} \mathrm{HALT}_{T M}$. What do we need to provide - and what properties must it satisfy?

Let $f_{1}: \Sigma_{\mathrm{TM}}^{\star} \rightarrow \Sigma_{\mathrm{TM}}^{\star}$ such that $f_{1}(\mu)=\mu$ for every string $\mu \in \Sigma_{\mathrm{TM}}^{\star}$. Is f_{1} a Many-One Reduction from $\mathrm{A}_{\text {TM }}$ to $\mathrm{HALT}_{\text {TM }}$?

Why - or Why Not?

Next let us consider a pair of Turing machines with input alphabet $\Sigma=\left\{\sigma_{1}\right\}$ and tape alphabet $\Gamma=\left\{\sigma_{1}, \sqcup\right\}$. The first of these Turing machines, M_{Y}, is as follows:

The second of these Turing machines, M_{N}, is as follows:

In both of these pictures the accept state is shown as " q_{A} " instead of $q_{\text {accept }}$, and the reject state is shown as " q_{R} " instead of " $q_{\text {reject }}$ ", to simplify the picture.

Now note that if $x_{\text {Yes }} \in \Sigma_{\text {TM }}^{\star}$ is the encoding of the above Turing machine M_{Y}, and the empty string λ, then $x_{\text {Yes }} \in \operatorname{HALT}_{\text {Tм }}$. On the other hand, if $x_{\text {No }} \in \Sigma_{\mathrm{TM}}^{\star}$ is the encoding of the Turing machine M_{N}, and the empty string λ, then $x_{\text {no }} \notin \operatorname{HALT}_{T M}$.

Let $f_{2}: \Sigma_{\mathrm{TM}}^{\star} \rightarrow \Sigma_{\mathrm{TM}}^{\star}$ such that, for every string $\mu \in \Sigma_{\mathrm{TM}}^{\star}$,

$$
f_{2}(\mu)= \begin{cases}x_{\text {Yes }} & \text { if } \mu \in \mathrm{A}_{\text {TM }}, \\ x_{\text {No }} & \text { if } \mu \notin \text { А }_{\text {TM }} .\end{cases}
$$

Is f_{2} a Many-One Reduction from $\mathrm{A}_{\text {TM }}$ to $\mathrm{HALT}_{\text {TM }}$?

Why - or Why Not?

