Lecture \#16: Proofs of Undecidability - Examples I Lecture Presentation

Languages of Interest

- TM+I: The language of encodings of Turing machines

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)
$$

and input strings $\omega \in \Sigma^{\star}$. This language is decidable.

- A Tm : A subset of TM+I, including encodings of Turing machines M (as above) and strings $\omega \in \Sigma^{\star}$ such that M accepts ω. This language is recognizable, since it is the language of the "universal Turing machine" introduced in Lecture \#12 - but it is also undecidable, as shown in Lecture \#13.
- HALT ${ }_{\text {тм }}$: Another subset of TM+I, including encodings of Turing machines M (as above) and strings $\omega \in \Sigma^{\star}$ such that M halts when executed on input ω.

Goal for Today

The goal for this presentation is to establish that

$$
\mathrm{A}_{T M} \preceq_{\mathrm{M}} \mathrm{HALT}_{\text {TM }}
$$

— introducing a process that can be used to establish many-one reductions, like these, along the way.
Thus participation in this lecture presentation will, very possibly, be useful preparation for Assignment \#2.

What Do We Want To Produce?

Useful Aspects of This Problem - and How to Use This

Using the Decidability of the Language TM+I

Thinking about Turing Machines and Input Strings

Suppose that the input string, $\mu \in \Sigma_{\mathrm{T} M}^{\star}$ encodes a Turing machine

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)
$$

and an input string

$$
\omega \in \Sigma^{\star} .
$$

- Either M accepts ω, M rejects ω, or M loops on ω.
- Since the membership of the string $f(\mu)$ in the language $\mathrm{HALT}_{T M} \subseteq \mathrm{TM}+\mathrm{l}$ is being considered, we can consider $f(\mu)$ to be an encoding of a Turing machine

$$
\widehat{M}=\left(\widehat{Q}, \widehat{\Sigma}, \widehat{\Gamma}, \widehat{\delta}, \widehat{q}_{0}, \widehat{q}_{\text {accept }}, \widehat{q}_{\text {reject }}\right)
$$

and a string

$$
\widehat{\omega} \in \widehat{\Sigma}^{\star}
$$

- so that $f(\mu) \in \mathrm{TM}+\mathrm{I}$ when $\mu \in \mathrm{TM}+\mathrm{I}$.
- Since we will need to show that the function f, \widehat{M} and $\widehat{\omega}$ should easy to describe from M and $\widehat{\omega}$.

Case: M accepts ω. What property should \widehat{M} and $\widehat{\omega}$ satisfy? Why?

Case: M rejects ω. What property should \widehat{M} and $\widehat{\omega}$ satisfy? Why?

Case: M loops on ω. What property should \widehat{M} and $\widehat{\omega}$ satisfy? Why?

What Should \widehat{M} and $\widehat{\omega} \mathrm{Be}$?

Describing This in More Detail

Once again,

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)
$$

and

$$
\widehat{M}=\left(\widehat{Q}, \widehat{\Sigma}, \widehat{\Gamma}, \widehat{\delta}, \widehat{q}_{0}, \widehat{q}_{\text {accept }}, \widehat{q}_{\text {reject }}\right) .
$$

How is \widehat{Q} Related To Q ?

How is $\widehat{\Sigma}$ Related To Σ ?

How is $\widehat{\Gamma}$ Related To Γ ?

How is $\widehat{\delta}$ Related To δ ?

How are $\widehat{q}_{0} \widehat{q}_{\text {accept }}$ and $\widehat{q}_{\text {reject }}$ Related To $q_{0}, q_{\text {accept }}$ and $q_{\text {reject }}$?

How is $f(\mu)$ Related To μ When $\mu \in \mathrm{TM}+\mathbf{l}$?

Since $\mu \in T M+1$,

$$
\begin{equation*}
\mu=\left(\mu_{1}, \mu_{2}\right) \tag{1}
\end{equation*}
$$

where μ_{1} is the encoding of the Turing machine μ_{1} and μ_{2} is the encoding of the string ω. If $f(\mu)$ is as described above then

$$
\begin{equation*}
f(\mu)=\left(\widehat{\mu}_{1}, \widehat{\mu}_{2}\right) \tag{2}
\end{equation*}
$$

where $\widehat{\mu}_{1}$ is the encoding of the Turing machine $\widehat{\mu}_{1}$ and $\widehat{\mu}_{2}$ is the encoding of the string $\widehat{\mu}_{2}$. As described in the lecture on "universal Turing machines",

$$
\begin{equation*}
\mu_{1}=\left(\mu_{1,1}, \mu_{1,2}, \mu_{1,3}, \mu_{1,4}\right) \tag{3}
\end{equation*}
$$

where the following properties are satisfied.

- $\mu_{1,1}$ is the encoding of the set of states Q - the unpadded decimal representation of the integer k such that $|Q|=k+1$.
- $\mu_{1,2}$ is the encoding of the input alphabet Σ — the unpadded decimal representation of the positive integer h such that $|\Sigma|=h$.
- $\mu_{1,3}$ is the encoding of the tape alphabet Γ — the unpadded decimal representation of the positive integer m such that $|\Gamma|=m+1$.
- $\mu_{1,4}$ is the encoding of the transition function δ - a listing of encodings of the transitions of M, separated by commas and enclosed by brackets, given in "dictionary" order.

Similarly,

$$
\begin{equation*}
\widehat{\mu}_{1}=\left(\widehat{\mu}_{1,1}, \widehat{\mu}_{1,2}, \widehat{\mu}_{1,3}, \widehat{\mu}_{1,4}\right) \tag{4}
\end{equation*}
$$

where the following properties are satisfied.

- $\widehat{\mu}_{1,1}$ is the encoding of the set of states \widehat{Q} - the unpadded decimal representation of the integer \widehat{k} such that $|\widehat{Q}|=\widehat{k}+1$.
- $\widehat{\mu}_{1,2}$ is the encoding of the input alphabet $\widehat{\Sigma}$ - the unpadded decimal representation of the positive integer \widehat{h} such that $|\widehat{\Sigma}|=\widehat{h}$.
- $\widehat{\mu}_{1,3}$ is the encoding of the tape alphabet $\widehat{\Gamma}$ - the unpadded decimal representation of the positive integer \widehat{m} such that $|\widehat{\Gamma}|=\widehat{m}+1$.
- $\widehat{\mu}_{1,4}$ is the encoding of the transition function $\widehat{\delta}$ - a listing of encodings of the transitions of \overparen{M}, separated by commas and enclosed by brackets, given in "dictionary" order.

How is \widehat{k} related to k ? How is $\widehat{\mu}_{1,1}$ related to $\mu_{1,1}$?

How is \widehat{h} related to h ? How is $\widehat{\mu}_{1,2}$ related to $\mu_{1,2}$?

How is \widehat{m} related to m ? How is $\widehat{\mu}_{1,3}$ related to $\mu_{1,3}$?

How are the transitions of \widehat{M} related to the transitions of M ? How is $\widehat{\mu}_{1,4}$ related to $\mu_{1,4}$?

How is the encoding, $\widehat{\mu}_{2}$, of $\widehat{\omega}$ related to the encoding, μ_{2}, of ω ?

How Can We Use All of This?

Suppose that an algorithm has already been used to confirm that $\mu \in \mathrm{TM}+\mathrm{I}$ and, furthermore, that the strings $\mu_{1,1}, \mu_{1,2}, \mu_{1,3}, \mu_{1,4}$ and μ_{2} (as shown at lines (1) and (3)) have all been written to separate tapes of a multi-tape Turing machine - so that a "high-level" algorithm would have access to the values k, h, m and the transitions of M, as described above.
A "high-level" algorithm that completes the computation of $f(\mu)$, from μ, in this case, is as follows:

Implementation-level details that might help a reader to understand, and agree, that the function f is computable, might include the following.

What about "Stage \#1" of Assignment \#2?

Writing Up the Solution: A First Claim and Its Proof

Writing Up the Solution: A Third Claim and Its Proof

Writing Up the Solution: A Third Claim and Its Proof

Conclusion

A Suggested Exercise

