CPSC 351 — Tutorial Exercise #13 Hint for the Problem in This Exercise

1. Let $\text{Reject}_{TM}\subseteq TM+I\subseteq \Sigma^{\star}_{TM}$ be the set of encodings of Turing machines

 $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

and strings $\omega \in \Sigma^*$ such that M *rejects* ω .

You were asked to use a *many-one reduction* to prove that the language $Reject_{TM}$ is undecidable.

Hint: Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ be a Turing machine. How could you make a *very simple* change, in order to produce another Turing machine

 $\widehat{M} = (Q, \Sigma, \Gamma, \widehat{\delta}, q_0, q_{\text{accept}}, q_{\text{reject}})$

such that *M* rejects ω if and only if \widehat{M} *accepts* ω , for *every* string $\omega \in \Sigma^*$?