CPSC 351 - Tutorial Exercise \#13
 Hint for the Problem in This Exercise

1. Let Reject ${ }_{\mathrm{TM}} \subseteq \mathrm{TM}+\mathrm{I} \subseteq \Sigma_{\mathrm{TM}}^{\star}$ be the set of encodings of Turing machines

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\mathrm{reject}}\right)
$$

and strings $\omega \in \Sigma^{\star}$ such that M rejects ω.
You were asked to use a many-one reduction to prove that the language Reject $_{T M}$ is undecidable.
Hint: Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be a Turing machine. How could you make a very simple change, in order to produce another Turing machine

$$
\widehat{M}=\left(Q, \Sigma, \Gamma, \widehat{\delta}, q_{0}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)
$$

such that M rejects ω if and only if \widehat{M} accepts ω, for every string $\omega \in \Sigma^{\star}$?

