CPSC 351 - Tutorial Exercise \#14
 Hint for the Problem in This Exercise

Consider an alphabet $\Sigma_{2 T M}=\Sigma_{\text {TM }} \cup\{\#\}$. A pair of Turing machines M_{1} and M_{2} can be encoded as a string $\alpha \# \beta \in \Sigma_{2 \text { TM }}^{\star}$ where $\alpha \in \mathrm{TM} \subseteq \Sigma_{\text {TM }}^{\star}$ is the encoding for M_{1} and $\beta \in \mathrm{TM} \subseteq$ $\Sigma_{\text {TM }}^{\star}$ is the encoding for M_{2}. Let Pair $_{T M} \subseteq \Sigma_{2}^{\star}$ TM be the language of encodings of pairs of Turing machines

$$
M_{1}=\left(Q_{1}, \Sigma, \Gamma_{1}, \delta_{1}, q_{0,1}, q_{A, 1}, q_{R, 1}\right)
$$

and

$$
M_{2}=\left(Q_{2}, \Sigma, \Gamma_{2}, \delta_{2}, q_{0,2}, q_{A, 2}, q_{R, 2}\right)
$$

with the same input alphabet Σ. As noted in this exercise, this language is decidable.

1. Let

$$
\text { Subset }_{T M} \subseteq \text { Pair }_{T M} \subseteq \Sigma_{\text {2TM }}^{\star}
$$

be the language including encodings of pairs of Turing machines M_{1} and M_{2}, with the same input alphabet Σ, such that $L\left(M_{1}\right) \subseteq L\left(M_{2}\right)$. You were asked to prove that the language $\mathrm{E}_{\text {TM }}$ is undecidable.

Hint: Recall that it is easy to describe a Turing machine

$$
\widehat{M}=\left(\widehat{Q}, \Sigma, \widehat{\Gamma}, \widehat{\delta}, \widehat{q}_{0}, \widehat{q}_{A}, \widehat{q}_{R}\right)
$$

with alphabet Σ and language Σ^{\star}, for any alphabet Σ.

