CPSC 351 — Tutorial Exercise #14 Hint for the Problem in This Exercise

Consider an alphabet $\Sigma_{2TM} = \Sigma_{TM} \cup \{\#\}$. A *pair* of Turing machines M_1 and M_2 can be encoded as a string $\alpha \# \beta \in \Sigma_{2TM}^{\star}$ where $\alpha \in TM \subseteq \Sigma_{TM}^{\star}$ is the encoding for M_1 and $\beta \in TM \subseteq \Sigma_{TM}^{\star}$ is the encoding for M_2 . Let $\text{Pair}_{TM} \subseteq \Sigma_{2TM}^{\star}$ be the language of encodings of pairs of Turing machines

$$M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, q_{0,1}, q_{A,1}, q_{R,1})$$

and

$$M_2 = (Q_2, \Sigma, \Gamma_2, \delta_2, q_{0,2}, q_{A,2}, q_{R,2})$$

with the same input alphabet Σ . As noted in this exercise, this language is *decidable*.

1. Let

$$\mathsf{Subset}_{\mathsf{TM}} \subseteq \mathsf{Pair}_{\mathsf{TM}} \subseteq \Sigma_{\mathsf{2TM}}^{\star}$$

be the language including encodings of pairs of Turing machines M_1 and M_2 , with the same input alphabet Σ , such that $L(M_1) \subseteq L(M_2)$. You were asked to prove that the language E_{TM} is *undecidable*.

Hint: Recall that it is easy to describe a Turing machine

$$\widehat{M} = (\widehat{Q}, \Sigma, \widehat{\Gamma}, \widehat{\delta}, \widehat{q}_0, \widehat{q}_A, \widehat{q}_R)$$

with alphabet Σ and language Σ^* , for any alphabet Σ .