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Goals for Today

• Introduce and relate two notions of “nondeterministic

computation”

• Introduce the complexity classes NTIME(f ) and NP, and

relate these to deterministic complexity classes
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Nondeterministic Turing Machines

Definition: A k-tape nondeterministic Turing machine is a

machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

such that

• Q, Σ, Γ, q0 qaccept and qreject are as defined for (standard)

deterministic Turing machines;

• The transition function, δ, is now a total function

δ : Q × Γk → P(Q × (Γ× {L, R, S})k )

where the “power set” P(S) of any finite set S is the set of

all subsets of S.
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Nondeterministic Turing Machines

• Since qaccept and qreject are “halting states,”

δ(qaccept, σ1, σ2, . . . , σk ) = δ(qreject, σ1, σ2, . . . , σk ) = ∅

for all symbols σ1, σ2, . . . , σk ∈ Γ.
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Nondeterministic Turing Machines

• Computation of a nondeterministic Turing machine M on a

string ω ∈ Σ⋆ can be modelled as a tree with

configurations of the machine at its nodes.

• The initial configuration of M on input ω is the configuration
at the root of this tree.

• If a configuration C of M has the machine in state q, with
symbols σ1, σ2, . . . , σk visible on its tapes, then the number

of children of the node with this configuration is equal to the

size of the set δ(q, σ1, σ2, . . . , σk ) — and there is node for
the configuration obtained by applying each of the

transitions in this set.

• Thus the node for a configuration is a leaf in this tree if and

only if this is a halting configuration.
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Nondeterministic Turing Machines

• Thus each path down through this tree (starting from the

root) corresponds to one possible computation of M on its

input string — corresponding to a series of guesses about

which possible transition to apply.

• M accepts a string ω if and only if there exists at least one

path leading to a configuration with M in its accepting

state qaccept.

• M recognizes a language L ⊆ Σ⋆ if L is the set of strings

in Σ⋆ that M accepts (as defined above).

• M decides a language L ⊆ Σ⋆ if
• M recognizes L and, furthermore
• The tree of configurations for M on input ω is finite, for

every string ω ∈ Σ⋆.
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Nondeterministic Turing Machines

• The time used by M on input ω ∈ Σ⋆ is defined to be the

depth of the tree of configurations for M on input ω — that

is, the maximum of the length of any path from the root

down to any leaf in this tree.

• If f : N → N then M decides L in time f if M decides L,

and the time used by M on input ω is at most f (|ω|) for

every string ω ∈ Σ⋆.

• One way to define NTIME(f ) is as follows: NTIME(f ) is the

set of languages L ⊆ Σ⋆ (for some alphabet Σ) such that

there exists a nondeterministic Turing machine M that

decides L using time in O(f ).

Older textbooks use this definition; most recent ones use a

different definition, as described next.
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Verification of a Language

• Once again, consider a language L ⊆ Σ⋆. Let ΣC be

another (possibly different) alphabet, suppose that # is a

symbol such that # /∈ Σ ∪ΣC , and let

Σ̂ = Σ ∪ ΣC ∪ {#}.

Then an ordered pair, consisting of a string ω ∈ Σ⋆ and a

string µ ∈ Σ⋆

C can be represented using the string

ω#µ ∈ Σ̂⋆

— which includes exactly one #.
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Verification of a Language

Definition: A verifier for a language L is a deterministic

Turing machine M — with the following properties.

• The input alphabet for M is an alphabet Σ̂ as defined on

the previous slide.

• M decides a language L̂ ⊆ Σ̂⋆ that is a subset of the set

{ω#µ | ω ∈ Σ⋆ and µ ∈ Σ⋆

C}.

• For every string ω ∈ Σ⋆, ω ∈ L if and only if there exists at

least one string µ ∈ Σ⋆

C such that ω#µ ∈ L̂.

ΣC is called the certificate alphabet for the verifier M. If

µ ∈ Σ⋆

C such that ω#µ ∈ L̂ then µ is a certificate for ω.
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Verification of a Language:

Another Definition of NTIME

Definition: Let f : N → N. A language L ⊆ Σ⋆ is in NTIMEV(f )
if there exists a verifier M (with certificate alphabet ΣC) such

that the number of steps used by M on any string ω#µ, such

that ω ∈ Σ⋆ and µ ∈ Σ⋆

C , is in O(f |ω|).

Note:

• The bound on the number of steps used by M, given

above, depends on the length of the string ω ∈ Σ⋆, and not

on the rest of the input supplied to the verifier M. In

particular, if does not depend on the length of µ.

• We do not worry about (or constrain) the number of steps

used by M when its input does not have the form ω#µ for

some string ω ∈ Σ⋆ and µ ∈ Σ⋆

C.
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Equivalence of Definitions — Under

a Reasonable Extra Condition

Recall that a function f : N → N is time-constructible if there

is a deterministic Turing machine that maps the string 1n to the

binary representation of f (n) using time in O(f (n)).

Claim #1: Let f : N → N be a time-constructible function such

that f (n) ∈ Ω(n). Then NTIME(f ) = NTIMEV(f ).

The proof has two components:

(a) To prove that NTIME(f ) ⊆ NTIMEV(f ), choose an arbitrary

language L ⊆ Σ⋆ such that L ∈ NTIME(f ), and prove that

L ∈ NTIMEV(f ).

(b) To prove that NTIMEV(f ) ⊆ NTIME(f ), choose an arbitrary

language L ⊆ Σ⋆ such that L ∈ NTIMEV(f ) and prove that

L ∈ NTIME(f ).
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Equivalence of Definitions — Under

a Reasonable Condition

Sketch of Proof — First Direction

Let L ⊆ Σ⋆ such that L ∈ NTIME(f ).

• Then there exists a nondeterministic Turing machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

such that M decides L, and the depth of the computation

tree for M and an input string ω ∈ Σ⋆ is in depth O(f (|ω|)).
In particular, there exist non-negative integers c0 and c1

such that the depth of the computation tree is at most

c1f (|ω|) + c0, for every string ω ∈ Σ⋆.
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Equivalence of Definitions — Under

a Reasonable Condition

• Suppose M has k tapes. Since M is a fixed Turing

machine there exists a positive constant U ∈ N such that

|δ(q, σ1, σ2, . . . , σk )| ≤ U

for all q ∈ Q and σ1, σ2, . . . , σk ∈ Γ.

• It is possible to order each of the transitions that can be

chosen — that is, if |δ(q, σ1, σ2, . . . , σk )| = m, for some

integer m such that 1 ≤ m ≤ U, then one can treat this set

as

δ(q, σ1, σ2, . . . , σk ) = {χ0, χ1, χ2, . . . , χm−1}

for χ0, χ1, χ2, . . . , χm−1 ∈ Q × (Γ×{L, R, S})k , in such that a

way that (for 0 ≤ i ≤ m − 1) one can determine χi , given i .
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Equivalence of Definitions — Under

a Reasonable Condition

• Now consider a “certificate alphabet”

ΣC = {τ0, τ1, . . . , τU−1}

so that |ΣC | = U.

• A verifier for L, with input alphabet Σ̂ = Σ ∪ ΣC ∪ {#}, can
be described that does the following.

1. This rejects its input unless this has the form ω#ν where
ω ∈ Σ⋆, ν ∈ Σ⋆

C , and the length of ν is at most c1f (|ω|) + c0.

2. This uses the certificate ν, otherwise, to determine a

specific path down the computation tree for M and ω —
accepting ω if this path leads to an accepting

configuration, and rejecting ω, otherwise.
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Equivalence of Definitions — Under

a Reasonable Condition

• Using the fact that f is time-constructible (which is

important for the implementation and analysis of step 1), it

can be shown that this verifies L using time in O(f ) —

implying that f ∈ NTIMEV(f ).
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Equivalence of Definitions — Under

a Reasonable Condition

Sketch of Proof — Second Direction

Let L ⊆ Σ⋆ such that L ∈ NTIMEV(f ).

• Then there exist non-negative integers c0 and c1, and a

verifier M (with some certificate alphabet ΣC) that

verifies L, using time at most c1f (|ω|) + c0 when the input

is a string ω#ν for ω ∈ Σ⋆ and ν ∈ Σ⋆

C .

• A nondeterministic Turing machine M̂, with input
alphabet Σ and a tape alphabet Γ with Σ ∪ ΣC ∪ {#} as a
subset, can decide L by carrying out the following, on input
ω ∈ Σ⋆.

1. Guess a certificate ν ∈ Σ⋆

C with length at most
c1f (|ω|) + c0, and append the string #ν onto the input.

2. Run M on the string that has been obtained — accepting if
M accepts, and rejecting if M rejects.
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Equivalence of Definitions — Under

a Reasonable Condition

• The fact, that the function f is time-constructible, is needed

to show that the first step can be carried out using

O(f (|ω|)) moves.

• Using this, it can be shown that the nondeterministic Turing

machine M̂ has language L and that, for every input string

ω ∈ Σ⋆, the computation tree for M̂ and ω has depth

in O(f (|ω|)) — implying that f ∈ NTIME(f ).

The supplemental material lecture includes a more detailed

proof of this result.
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Relating Nondeterministic Computation to

Deterministic Computation

Claim #2: TIME(f ) ⊆ NTIME(f ) for every function f : N → N.

Idea of Proof: Let L ⊆ Σ⋆ such that L ∈ TIME(f ).

• Then there exists a deterministic Turing machine M

deciding L such that the number of moves used when M is

executed on an input string ω is in O(f (|ω|)), for all ω ∈ Σ⋆.

• This can (trivially) be considered as a nondeterministic

Turing machine M̂ (that never does any “guessing”), with

language L, such that the computation tree for M̂ and a

string ω has depth in O(f (|ω|)), for all ω ∈ Σ⋆. It follows that

L ∈ NTIME(f ).

• Since L was arbitrarily chosen from TIME(f ) it follows that

TIME(f ) ⊆ NTIME(f ), as claimed.
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Relating Nondeterministic Computation to

Deterministic Computation

Claim #3: For every function f : N → N and for every language

L ⊆ Σ⋆ such that f ∈ NTIME(f ), there exists an integer

constant c (depending on L) such that L ∈ TIME(cf ). Thus

NTIME(f ) ⊆
⋃

c∈N

TIME(cf ).

Idea of Proof: Let L ⊆ Σ⋆ such that L ∈ NTIME(f ).

• Then there exists a nondeterministic Turing machine M

deciding L such that the computation tree for M and ω has

depth in O(f (|ω|)) for every string ω ∈ Σ⋆.



Nondeterminism Verification Equivalence Nondeterministic Time

Relating Nondeterministic Computation to

Deterministic Computation

• It follows that there exists an integer constants1 ĉ and d

such that the size of the computation tree for M and ω is at

most d × ĉf (|ω|) for all ω ∈ Σ⋆.

• It is possible to use a deterministic multi-tape Turing

machine M̂ that decides L by performing a depth-first

search on the computation tree for M and ω, using a

number of steps in O
(
cf (|ω|)

)
, for all ω ∈ Σ⋆, when

c = ĉ + 1 — establishing the claim.

1These depend on M, and the precise bound on the depth of the

computation tree that can be obtained.
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Relating Nondeterministic Computation to

Deterministic Computation

Definition:

NP =
⋃

k≥1

NTIME(nk ).

It follows by Claims #2 and #3 that

P ⊆ NP ⊆ EXPTIME =
⋃

k≥1

TIME(2(nk )).

This is (just about) all that has been proved about the

relationship between deterministic time and nondeterministic

polynomial time.
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Relating Nondeterministic Computation to

Deterministic Computation

Cook’s Conjecture: P 6= NP .

• Future lectures will concern the use of reductions to

establish additional (quite significant) results about the

relationship between P and NP , assuming that Cook’s

conjecture is correct.
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