Lecture \#8: Introduction to Nondeterministic Computation Lecture Presentation

Recall that a non-negative integer n, such that $n \geq 2$, is prime if the only integers k, such that $1 \leq k \leq n$ and k divides n, are 1 and n; an integer n such that $n \geq 2$ is composite, otherwise. Now let

$$
\Sigma_{D}=\{0,1,2,3,4,5,6,7,8,9\}
$$

and let $L_{\text {comp }} \subseteq \Sigma_{D}^{\star}$ be the set of unpadded decimal representations of non-negative integers n such that $n \geq 2$ and n is composite.

The goal for this lecture presentation is to prove that $L_{\text {comp }} \in \mathcal{N} \mathcal{P}$.

Defining Certificates:

A Verification Algorithm:

Correctness of This Verification Algorithm:

Efficiency of This Verification Algorithm:

